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Abstract

We propose the algorithms for online convex optimization which lead to cumulative

squared constraint violations of the form
T∑
t=1

(
[g(xt)]+

)2
= O(T 1−β), where

β ∈ (0, 1) . Previous literature has focused on long-term constraints of the form
T∑
t=1

g(xt). There, strictly feasible solutions can cancel out the effects of violated

constraints. In contrast, the new form heavily penalizes large constraint violations
and cancellation effects cannot occur. Furthermore, useful bounds on the single
step constraint violation [g(xt)]+ are derived. For convex objectives, our regret
bounds generalize existing bounds, and for strongly convex objectives we give
improved regret bounds. In numerical experiments, we show that our algorithm
closely follows the constraint boundary leading to low cumulative violation.

1 Introduction

Online optimization is a popular framework for machine learning, with applications such as dictionary
learning [14], auctions [1], classification, and regression [3]. It has also been influential in the
development of algorithms in deep learning such as convolutional neural networks [11], deep Q-
networks [15], and reinforcement learning [8, 20].

The general formulation for online convex optimization (OCO) is as follows: At each time t, we
choose a vector xt in convex set S = {x : g(x) ≤ 0}. Then we receive a loss function ft : S → R
drawn from a family of convex functions and we obtain the loss ft(xt). In this general setting, there
is no constraint on how the sequence of loss functions ft is generated. See [21] for more details.

The goal is to generate a sequence of xt ∈ S for t = 1, 2, .., T to minimize the cumulative regret
which is defined by:

RegretT (x∗) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) (1)

where x∗ is the optimal solution to the following problem: min
x∈S

T∑
t=1

ft(x). According to [2], the

solution to Problem (1) is called Hannan consistent if RegretT (x∗) is sublinear in T .
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For online convex optimization with constraints, a projection operator is typically applied to the
updated variables in order to make them feasible at each time step [21, 6, 7]. However, when the
constraints are complex, the computational burden of the projection may be too high for online
computation. To circumvent this dilemma, [13] proposed an algorithm which approximates the
true desired projection with a simpler closed-form projection. The algorithm gives a cumulative
regret RegretT (x∗) which is upper bounded by O(

√
T ), but the constraint g(xt) ≤ 0 may not

be satisfied in every time step. Instead, the long-term constraint violation satisfies
T∑
t=1

g(xt) ≤

O(T 3/4), which is useful when we only require the constraint violation to be non-positive on average:

limT→∞
T∑
t=1

g(xt)/T ≤ 0.

More recently, [10] proposed an adaptive stepsize version of this algorithm which can make

RegretT (x∗) ≤ O(Tmax{β,1−β}) and
T∑
t=1

g(xt) ≤ O(T 1−β/2). Here β ∈ (0, 1) is a user-

determined trade-off parameter. In related work, [19] provides another algorithm which achieves
O(
√
T ) regret and a bound of O(

√
T ) on the long-term constraint violation.

In this paper, we propose two algorithms for the following two different cases:

Convex Case: The first algorithm is for the convex case, which also has the user-determined trade-
off as in [10], while the constraint violation is more strict. Specifically, we have RegretT (x∗) ≤

O(Tmax{β,1−β}) and
T∑
t=1

(
[g(xt)]+

)2 ≤ O(T 1−β) where [g(xt)]+ = max{0, g(xt)} and β ∈ (0, 1).

Note the square term heavily penalizes large constraint violations and constraint violations from one
step cannot be canceled out by strictly feasible steps. Additionally, we give a bound on the cumulative

constraint violation
T∑
t=1

[g(xt)]+ ≤ O(T 1−β/2), which generalizes the bounds from [13, 10].

In the case of β = 0.5, which we call "balanced", both RegretT (x∗) and
T∑
t=1

([g(xt)]+)2 have the

same upper bound of O(
√
T ). More importantly, our algorithm guarantees that at each time step,

the clipped constraint term [g(xt)]+ is upper bounded by O( 1
T 1/6 ), which does not follow from

the results of [13, 10]. However, our results currently cannot generalize those of [19], which has
T∑
t=1

g(xt) ≤ O(
√
T ). As discussed below, it is unclear how to extend the work of [19] to the clipped

constraints, [g(xt)]+.

Strongly Convex Case: Our second algorithm for strongly convex function ft(x) gives us
the improved upper bounds compared with the previous work in [10]. Specifically, we have

RegretT (x∗) ≤ O(log(T )), and
T∑
t=1

[g(xt)]+ ≤ O(
√

log(T )T ). The improved bounds match

the regret order of standard OCO from [9], while maintaining a constraint violation of reasonable
order.

We show numerical experiments on three problems. A toy example is used to compare trajectories of
our algorithm with those of [10, 13], and we see that our algorithm tightly follows the constraints.
The algorithms are also compared on a doubly-stochastic matrix approximation problem [10] and an
economic dispatch problem from power systems. In these, our algorithms lead to reasonable objective
regret and low cumulative constraint violation.

2 Problem Formulation

The basic projected gradient algorithm for Problem (1) was defined in [21]. At each step, t, the
algorithm takes a gradient step with respect to ft and then projects onto the feasible set. With some
assumptions on S and ft, this algorithm achieves a regret of O(

√
T ).

Although the algorithm is simple, it needs to solve a constrained optimization problem at every
time step, which might be too time-consuming for online implementation when the constraints are
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complex. Specifically, in [21], at each iteration t, the update rule is:

xt+1 = ΠS(xt − η∇ft(xt)) = arg min
y∈S
‖y − (xt − η∇ft(xt))‖2 (2)

where ΠS is the projection operation to the set S and ‖ ‖ is the `2 norm.

In order to lower the computational complexity and accelerate the online processing speed, the work
of [13] avoids the convex optimization by projecting the variable to a fixed ball S ⊆ B, which always
has a closed-form solution. That paper gives an online solution for the following problem:

min
x1,...,xT∈B

T∑
t=1

ft(xt)−min
x∈S

T∑
t=1

ft(x) s.t.
T∑
t=1

gi(xt) ≤ 0, i = 1, 2, ...,m (3)

where S = {x : gi(x) ≤ 0, i = 1, 2, ...,m} ⊆ B. It is assumed that there exist constants R > 0 and
r < 1 such that rK ⊆ S ⊆ RK with K being the unit `2 ball centered at the origin and B = RK.

Compared to Problem (1), which requires that xt ∈ S for all t, (3) implies that only the sum of
constraints is required. This sum of constraints is known as the long-term constraint.

To solve this new problem, [13] considers the following augmented Lagrangian function at each
iteration t:

Lt(x, λ) = ft(x) +

m∑
i=1

{
λigi(x)− ση

2
λ2i

}
(4)

The update rule is as follows:

xt+1 = ΠB(xt − η∇xLt(xt, λt)), λt+1 = Π[0,+∞)m(λt + η∇λLt(xt, λt)) (5)

where η and σ are the pre-determined stepsize and some constant, respectively.

More recently, an adaptive version was developed in [10], which has a user-defined trade-off param-
eter. The algorithm proposed by [10] utilizes two different stepsize sequences to update x and λ,
respectively, instead of using a single stepsize η.

In both algorithms of [13] and [10], the bound for the violation of the long-term constraint is that ∀i,
T∑
t=1

gi(xt) ≤ O(T γ) for some γ ∈ (0, 1). However, as argued in the last section, this bound does not

enforce that the violation of the constraint xt ∈ S gets small. A situation can arise in which strictly
satisfied constraints at one time step can cancel out violations of the constraints at other time steps.
This problem can be rectified by considering clipped constraint, [gi(xt)]+, in place of gi(xt).

For convex problems, our goal is to bound the term
T∑
t=1

(
[gi(xt)]+

)2
, which, as discussed in the

previous section, is more useful for enforcing small constraint violations, and also recovers the

existing bounds for both
T∑
t=1

[gi(xt)]+ and
T∑
t=1

gi(xt). For strongly convex problems, we also show

the improvement on the upper bounds compared to the results in [10].

In sum, in this paper, we want to solve the following problem for the general convex condition:

min
x1,x2,...,xT∈B

T∑
t=1

ft(xt)−min
x∈S

T∑
t=1

ft(x) s.t.
T∑
t=1

(
[gi(xt)]+

)2 ≤ O(T γ),∀i (6)

where γ ∈ (0, 1). The new constraint from (6) is called the square-clipped long-term constraint
(since it is a square-clipped version of the long-term constraint) or square-cumulative constraint
(since it encodes the square-cumulative violation of the constraints).

To solve Problem (6), we change the augmented Lagrangian function Lt as follows:

Lt(x, λ) = ft(x) +

m∑
i=1

{
λi[gi(x)]+ −

θt
2
λ2i

}
(7)

In this paper, we will use the following assumptions as in [13]: 1. The convex set S is non-empty,
closed, bounded, and can be described bym convex functions as S = {x : gi(x) ≤ 0, i = 1, 2, ...,m}.
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Algorithm 1 Generalized Online Convex Optimization with Long-term Constraint
1: Input: constraints gi(x) ≤ 0, i = 1, 2, ...,m, stepsize η, time horizon T, and constant σ > 0.
2: Initialization: x1 is in the center of the B .
3: for t = 1 to T do
4: Input the prediction result xt.
5: Obtain the convex loss function ft(x) and the loss value ft(xt).
6: Calculate a subgradient ∂xLt(xt, λt), where:

∂xLt(xt, λt) = ∂xft(xt) +
m∑
i=1

λit∂x([gi(xt)]+), ∂x([gi(xt)]+) =

{
0, gi(xt) ≤ 0

∇xgi(xt), otherwise

7: Update xt and λt as below:

xt+1 = ΠB(xt − η∂xLt(xt, λt)), λt+1 = [g(xt+1)]+
ση

8: end for

2. Both the loss functions ft(x), ∀t and constraint functions gi(x), ∀i are Lipschitz continuous in the
set B. That is, ‖ft(x)− ft(y)‖ ≤ Lf ‖x− y‖, ‖gi(x)− gi(y)‖ ≤ Lg ‖x− y‖, ∀x, y ∈ B and ∀t, i.
G = max{Lf , Lg}, and

F = max
t=1,2,...,T

max
x,y∈B

ft(x)− ft(y) ≤ 2LfR, D = max
i=1,2,...,m

max
x∈B

gi(x) ≤ LgR

3 Algorithm

3.1 Convex Case:

The main algorithm for this paper is shown in Algorithm 1. For simplicity, we abuse the subgradient
notation, denoting a single element of the subgradient by ∂xLt(xt, λt). Comparing our algorithm
with Eq.(5), we can see that the gradient projection step for xt+1 is similar, while the update rule for
λt+1 is different. Instead of a projected gradient step, we explicitly maximize Lt+1(xt+1, λ) over λ.
This explicit projection-free update for λt+1 is possible because the constraint clipping guarantees
that the maximizer is non-negative. Furthermore, this constraint-violation-dependent update helps to
enforce small cumulative and individual constraint violations. Specific bounds on constraint violation
are given in Theorem 1 and Lemma 1 below.

Based on the update rule in Algorithm 1, the following theorem gives the upper bounds for both the

regret on the loss and the squared-cumulative constraint violation,
T∑
t=1

(
[gi(xt)]+

)2
in Problem 6.

For space purposes, all proofs are contained in the supplementary material.

Theorem 1. Set σ = (m+1)G2

2(1−α) , η = 1

G
√

(m+1)RT
. If we follow the update rule in Algorithm 1 with

α ∈ (0, 1) and x∗ being the optimal solution for min
x∈S

T∑
t=1

ft(x), we have

T∑
t=1

(
ft(xt)− ft(x∗)

)
≤ O(

√
T ),

T∑
t=1

(
[gi(xt)]+

)2
≤ O(

√
T ),∀i ∈ {1, 2, ...,m}

From Theorem 1, we can see that by setting appropriate stepsize, η, and constant, σ, we can obtain
the upper bound for the regret of the loss function being less than or equal to O(

√
T ), which is also

shown in [13] [10]. The main difference of the Theorem 1 is that previous results of [13] [10] all

obtain the upper bound for the long-term constraint
T∑
t=1

gi(xt), while here the upper bound for the

constraint violation of the form
T∑
t=1

(
[gi(xt)]+

)2
is achieved. Also note that the stepsize depends on

T , which may not be available. In this case, we can use the ’doubling trick’ described in the book [2]
to transfer our T -dependent algorithm into T -free one with a worsening factor of

√
2/(
√

2− 1).
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The proposed algorithm and the resulting bound are useful for two reasons: 1. The square-cumulative

constraint implies a bound on the cumulative constraint violation,
T∑
t=1

[gi(xt)]+, while enforcing

larger penalties for large violations. 2. The proposed algorithm can also upper bound the constraint
violation for each single step [gi(xt)]+, which is not bounded in the previous literature.

The next results show how to bound constraint violations at each step.
Lemma 1. If there is only one differentiable constraint function g(x) with Lipschitz continuous
gradient parameter L, and we run the Algorithm 1 with the parameters in Theorem 1 and large
enough T , we have

[g(xt)]+ ≤ O( 1
T 1/6 ), ∀t ∈ {1, 2, ..., T}, if [g(x1)]+ ≤ O( 1

T 1/6 ).

Lemma 1 only considers single constraint case. For case of multiple differentiable constraints, we
have the following:
Proposition 1. For multiple differentiable constraint functions gi(x), i ∈ {1, 2, ...,m} with Lipschitz

continuous gradient parameters Li, if we use ḡ(x) = log
( m∑
i=1

exp gi(x)
)

as the constraint function

in Algorithm 1, then for large enough T , we have

[gi(xt)]+ ≤ O( 1
T 1/6 ), ∀i, t, if [ḡ(x1)]+ ≤ O( 1

T 1/6 ).

Clearly, both Lemma 1 and Proposition 1 only deal with differentiable functions. For a non-
differentiable function g(x), we can first use a differentiable function ḡ(x) to approximate the
g(x) with ḡ(x) ≥ g(x), and then apply the previous Lemma 1 and Proposition 1 to upper bound each
individual gi(xt). Many non-smooth convex functions can be approximated in this way as shown in
[16].

3.2 Strongly Convex Case:

For ft(x) to be strongly convex, the Algorithm 1 is still valid. But in order to have lower upper

bounds for both objective regret and the clipped long-term constraint
T∑
t=1

[gi(xt)]+ compared with

Proposition 3 in next section, we need to use time-varying stepsize as the one used in [9]. Thus, we
modify the update rule of xt, λt to have time-varying stepsize as below:

xt+1 = ΠB(xt − ηt∂xLt(xt, λt)), λt+1 = [g(xt+1)]+
θt+1

. (8)

If we replace the update rule in Algorithm 1 with Eq.(8), we can obtain the following theorem:

Theorem 2. Assume ft(x) has strongly convexity parameter H1. If we set ηt = H1

t+1 , θt = ηt(m+

1)G2, follow the new update rule in Eq.(8), and x∗ being the optimal solution for min
x∈S

T∑
t=1

ft(x), for

∀i ∈ {1, 2, ...,m}, we have

T∑
t=1

(
ft(xt)− ft(x∗)

)
≤ O(log(T )),

T∑
t=1

gi(xt) ≤
T∑
t=1

[gi(xt)]+ ≤ O(
√

log(T )T ).

The paper [10] also has a discussion of strongly convex functions, but only provides a bound similar
to the convex one. Theorem 2 shows the improved bounds for both objective regret and the constraint
violation. On one hand the objective regret is consistent with the standard OCO result in [9], and on
the other the constraint violation is further reduced compared with the result in [10].

4 Relation with Previous Results

In this section, we extend Theorem 1 to enable direct comparison with the results from [13] [10]. In
particular, it is shown how Algorithm 1 recovers the existing regret bounds, while the use of the new
augmented Lagrangian (7) in the previous algorithms also provides regret bounds for the clipped
constraint case.
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The first result puts a bound on the clipped long-term constraint, rather than the sum-of-squares that
appears in Theorem 1. This will allow more direct comparisons with the existing results.

Proposition 2. If σ = (m+1)G2

2(1−α) , η = O( 1√
T

), α ∈ (0, 1), and x∗ = argmin
x∈S

T∑
t=1

ft(x), then the

result of Algorithm 1 satisfies

T∑
t=1

(
ft(xt)− ft(x∗)

)
≤ O(

√
T ),

T∑
t=1

gi(xt) ≤
T∑
t=1

[gi(xt)]+ ≤ O(T 3/4),∀i ∈ {1, 2, ...,m}

This result shows that our algorithm generalizes the regret and long-term constraint bounds of [13].

The next result shows that by changing our constant stepsize accordingly, with the Algorithm 1, we
can achieve the user-defined trade-off from [10]. Furthermore, we also include the squared version
and clipped constraint violations.

Proposition 3. If σ = (m+1)G2

2(1−α) , η = O( 1
Tβ

), α ∈ (0, 1), β ∈ (0, 1), and x∗ = argmin
x∈S

T∑
t=1

ft(x),

then the result of Algorithm 1 satisfies

T∑
t=1

(
ft(xt)− ft(x∗)

)
≤ O(Tmax{β,1−β}),

T∑
t=1

gi(xt) ≤
T∑
t=1

[gi(xt)]+ ≤ O(T 1−β/2),
T∑
t=1

([gi(xt)]+)2 ≤ O(T 1−β),∀i ∈ {1, 2, ...,m}

Proposition 3 provides a systematic way to balance the regret of the objective and the constraint
violation. Next, we will show that previous algorithms can use our proposed augmented Lagrangian
function to have their own clipped long-term constraint bound.

Proposition 4. If we run Algorithm 1 in [13] with the augmented Lagrangian formula defined in
Eq.(7), the result satisfies

T∑
t=1

(
ft(xt)− ft(x∗)

)
≤ O(

√
T ),

T∑
t=1

gi(xt) ≤
T∑
t=1

[gi(xt)]+ ≤ O(T 3/4),∀i ∈ {1, 2, ...,m}.

For the update rule proposed in [10], we need to change the Lt(x, λ) to the following one:

Lt(x, λ) = ft(x) + λ[g(x)]+ −
θt
2
λ2 (9)

where g(x) = maxi∈{1,...,m} gi(x).

Proposition 5. If we use the update rule and the parameter choices in [10] with the augmented
Lagrangian in Eq.(9), then ∀i ∈ {1, ...,m}, we have

T∑
t=1

(
ft(xt)− ft(x∗)

)
≤ O(Tmax{β,1−β}),

T∑
t=1

gi(xt) ≤
T∑
t=1

[gi(xt)]+ ≤ O(T 1−β/2).

Propositions 4 and 5 show that clipped long-term constraints can be bounded by combining the
algorithms of [13, 10] with our augmented Lagrangian. Although these results are similar in part to
our Propositions 2 and 3, they do not imply the results in Theorems 1 and 2 as well as the new single
step constraint violation bound in Lemma 1, which are our key contributions. Based on Propositions
4 and 5, it is natural to ask whether we could apply our new augmented Lagrangian formula (7) to the
recent work in [19] . Unfortunately, we have not found a way to do so.

Furthermore, since
(

[gi(xt)]+

)2
is also convex, we could define g̃i(xt) =

(
[gi(xt)]+

)2
and apply

the previous algorithms [13] [10] and [19]. This will result in the upper bounds of O(T 3/4) [13] and
O(T 1−β/2) [10], which are worse than our upper bounds of O(T 1/2) (Theorem 1) and O(T 1−β) (
Proposition 3). Note that the algorithm in [19] cannot be applied since the clipped constraints do not
satisfy the required Slater condition.
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Figure 1: Toy Example Results: Trajectories generated by different algorithms. Note how trajectories
generated by Clipped-OGD follow the desired constraints tightly. In contrast, OGD oscillates around
the true constraints, and A-OGD closely follows the boundary of the outer ball.
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Figure 2: Doubly-Stochastic Matrices. Fig.2(a): Clipped Long-term Constraint Violation. Fig.2(b):
Long-term Constraint Violation. Fig.2(c): Cumulative Regret of the Loss function
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Figure 3: Economic Dispatch. Fig.3(a): Power Demand Trajectory. Fig.3(b): Constraint Violation
for each time step. All of the previous algorithms incurred substantial constraint violations. The
figure on the right shows the violations of our algorithm, which are significantly smaller. Fig.3(c):
Running Average of the Objective Loss
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5 Experiments

In this section, we test the performance of the algorithms including OGD [13], A-OGD [10], Clipped-
OGD (this paper), and our proposed algorithm strongly convex case (Our-strong). Throughout
the experiments, our algorithm has the following fixed parameters: α = 0.5, σ = (m+1)G2

2(1−α) , η =
1

TβG
√
R(m+1)

. In order to better show the result of the constraint violation trajectories, we aggregate

all the constraints as a single one by using g(xt) = maxi∈{1,...,m} gi(xt) as done in [13].

5.1 A Toy Experiment

For illustration purposes, we solve the following 2-D toy experiment with x = [x1, x2]T :

min
T∑
t=1

cTt x, s.t. |x1|+ |x2| − 1 ≤ 0. (10)

where the constraint is the `1-norm constraint. The vector ct is generated from a uniform random
vector over [0, 1.2]× [0, 1] which is rescaled to have norm 1. This leads to slightly average cost on
the on the first coordinate. The offline solutions for different T are obtained by CVXPY [5].

All algorithms are run up to T = 20000 and are averaged over 10 random sequences of {ct}Tt=1.
Since the main goal here is to compare the variables’ trajectories generated by different algorithms,
the results for different T are in the supplementary material for space purposes. Fig.1 shows these
trajectories for one realization with T = 8000. The blue star is the optimal point’s position.

From Fig.1 we can see that the trajectories generated by Clipped-OGD follows the boundary very
tightly until reaching the optimal point. This can be explained by the Lemma 1 which shows that
the constraint violation for single step is also upper bounded. For the OGD, the trajectory oscillates
widely around the boundary of the true constraint. For the A-OGD, its trajectory in Fig.1 violates the
constraint most of the time, and this violation actually contributes to the lower objective regret shown
in the supplementary material.

5.2 Doubly-Stochastic Matrices

We also test the algorithms for approximation by doubly-stochastic matrices, as in [10]:

min
T∑
t=1

1
2 ‖Yt −X‖

2
F s.t. X1 = 1, XT 1 = 1, Xij ≥ 0. (11)

where X ∈ Rd×d is the matrix variable, 1 is the vector whose elements are all 1, and matrix Yt is the
permutation matrix which is randomly generated.

After changing the equality constraints into inequality ones (e.g.,X1 = 1 into X1 ≥ 1 and X1 ≤ 1),
we run the algorithms with different T up to T = 20000 for 10 different random sequences of
{Yt}Tt=1. Since the objective function ft(x) is strongly convex with parameter H1 = 1, we also
include our designed strongly convex algorithm as another comparison. The offline optimal solutions
are obtained by CVXPY [5].

The mean results for both constraint violation and objective regret are shown in Fig.2. From the
result we can see that, for our designed strongly convex algorithm Our-Strong, its result is around the
best ones in not only the clipped constraint violation, but the objective regret. For our most-balanced
convex case algorithm Clipped-OGD with β = 0.5, although its clipped constraint violation is
relatively bigger than A-OGD, it also becomes quite flat quickly, which means the algorithm quickly
converges to a feasible solution.

5.3 Economic Dispatch in Power Systems

This example is adapted from [12] and [18], which considers the problem of power dispatch. That
is, at each time step t, we try to minimize the power generation cost ci(xt,i) for each generator i

while maintaining the power balance
n∑
i=1

xt,i = dt, where dt is the power demand at time t. Also,

each power generator produces an emission level Ei(xt,i). To bound the emissions, we impose the
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constraint
n∑
i=1

Ei(xt,i) ≤ Emax. In addition to requiring this constraint to be satisfied on average, we

also require bounded constraint violations at each timestep. The problem is formally stated as:

min
T∑
t=1

( n∑
i=1

ci(xt,i) + ξ(
n∑
i=1

xt,i − dt)2
)
, s.t.

n∑
i=1

Ei(t, i) ≤ Emax, 0 ≤ xt,i ≤ xi,max.

(12)
where the second constraint is from the fact that each generator has the power generation limit.

In this example, we use three generators. We define the cost and emission functions according to
[18] and [12] as ci(xt,i) = 0.5aix

2
t,i + bixt,i, and Ei = dix

2
t,i + eixt,i, respectively. The parameters

are: a1 = 0.2, a2 = 0.12, a3 = 0.14, b1 = 1.5, b2 = 1, b3 = 0.6, d1 = 0.26, d2 = 0.38, d3 = 0.37,
Emax = 100, ξ = 0.5, and x1,max = 20, x2,max = 15, x3,max = 18. The demand dt is adapted
from real-world 5-minute interval demand data between 04/24/2018 and 05/03/2018 1, which is
shown in Fig.3(a). The offline optimal solution or best fixed strategy in hindsight is obtained by
an implementation of SAGA [4]. The constraint violation for each time step is shown in Fig.3(b),
and the running average objective cost is shown in Fig.3(c). From these results we can see that our
algorithm has very small constraint violation for each time step, which is desired by the requirement.
Furthermore, our objective costs are very close to the best fixed strategy.

6 Conclusion

In this paper, we propose two algorithms for OCO with both convex and strongly convex objective
functions. By applying different update strategies that utilize a modified augmented Lagrangian
function, they can solve OCO with a squared/clipped long-term constraints requirement. The
algorithm for general convex case provides the useful bounds for both the long-term constraint
violation and the constraint violation at each timestep. Furthermore, the bounds for the strongly
convex case is an improvement compared with the previous efforts in the literature. Experiments show
that our algorithms can follow the constraint boundary tightly and have relatively smaller clipped
long-term constraint violation with reasonably low objective regret. It would be useful if future work
could explore the noisy versions of the constraints and obtain the similar upper bounds.
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