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Abstract

The large majority of differentially private algorithms focus on the static setting,
where queries are made on an unchanging database. This is unsuitable for the
myriad applications involving databases that grow over time. To address this gap
in the literature, we consider the dynamic setting, in which new data arrive over
time. Previous results in this setting have been limited to answering a single non-
adaptive query repeatedly as the database grows [DNPR10,/(CSS11]. In contrast, we
provide tools for richer and more adaptive analysis of growing databases. Our first
contribution is a novel modification of the private multiplicative weights algorithm
of [HR10], which provides accurate analysis of exponentially many adaptive linear
queries (an expressive query class including all counting queries) for a static
database. Our modification maintains the accuracy guarantee of the static setting
even as the database grows without bound. Our second contribution is a set of
general results which show that many other private and accurate algorithms can
be immediately extended to the dynamic setting by rerunning them at appropriate
points of data growth with minimal loss of accuracy, even when data growth is
unbounded.

1 Introduction

Differential privacy is a well-studied framework for data privacy. First defined by [DMNSO06],
differential privacy gives a mathematically rigorous worst-case bound on the maximum amount of
information that can be learned about any one individual’s data from the output of an algorithm.
The theoretical computer science community has been prolific in designing differentially private
algorithms that provide accuracy guarantees for a wide variety of machine learning problems (see
[JLE14] for a survey). Differentially private algorithms have also begun to be implemented in practice
by major organizations such as Apple, Google, Uber, and the United Status Census Bureau.

The large majority of work in differential privacy focuses on the static setting, in which adaptive
or non-adaptive queries are made on an unchanging database. However, this is unsuitable for the
myriad applications involving databases that grow over time. For example, a hospital may want to
publish updated statistics on its growing database of patients, or a company may want to maintain an
up-to-date classifier for its expanding user base. To harness the value of growing databases and keep
up with data analysis needs, guarantees of private machine learning algorithms and other statistical
tools must apply not just to fixed databases but also to dynamic databases.

To address this gap in the literature, we consider the dynamic setting, in which new data arrive over
time. Previous results in this setting have been limited to answering a single non-adaptive query
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repeatedly as the database grows [DNPR10,|CSS11]]. In contrast, we provide tools for richer and
more adaptive analysis of growing databases. Our first contribution is a novel modification of the
private multiplicative weights algorithm of [HR10], which provides accurate analysis of exponentially
many adaptive linear queries (an expressive query class including all counting queries) for a static
database. Our modification maintains the accuracy guarantee of the static setting even in the presence
of unbounded data growth. Our second contribution is a set of more general techniques to adapt any
existing algorithm providing privacy and accuracy in the static setting to the dynamic setting. Our
techniques schedule black box access to a static algorithm as data accumulate, allowing for up-to-date
analysis of growing data with only a small accuracy cost relative to the static setting. Our work gives
the first private algorithms for answering adaptive queries in the dynamic setting.

1.1 Our results

Here we outline our two sets of results for adaptive analysis of dynamically growing databases.
Throughout the paper, we refer to the setting in which a database of n elements from a universe of
size N is fixed for the life of the analysis as the static setting, and we refer to the setting in which a
database is accumulating new data entries while the analysis is ongoing as the dynamic setting. We
use the standard definition of differential privacy, presented formally along with other notation in the
preliminaries.

Adaptive linear queries for growing databases. Our first result is a novel modification of the
private multiplicative weights (PMW) algorithm [HR10], a broadly useful algorithm for privately
answering an adaptive stream of linear queries. The static PMW algorithm works by maintaining
a public histogram that reflects the current estimate of the database given all previously answered
queries. It categorizes incoming queries as either easy or hard, updating the histogram and suffering
significant privacy loss only for the hard queries. The number of hard queries is bounded using a
potential argument, where the potential is defined as the relative entropy between the true database
and the public histogram. This quantity is initially bounded, decreases by a substantial amount after
every hard query, and never increases.

The main challenge in adapting PMW to the dynamic setting is that new data increase the number
of opportunities for privacy loss, harming the privacy-accuracy tradeoff. If we run static PMW on
a growing database, the previous potential argument fails because the relative entropy between the
database and the public histogram can increase as new data arrive. In the worst case, PMW can learn
the true database with high accuracy (using many hard queries), and then adversarial data growth will
change the composition of the database dramatically, essentially requiring the maximum possible
number of additional hard queries to retain the same accuracy.

We modify PMW so that when new data arrive, the algorithm adds a uniform distribution to the public
histogram and re-normalizes. This leads to no additional privacy loss and requires no assumptions on
the actual distribution of the new data. This technique defends against adversarial data growth that
could dramatically increase the relative entropy between the public histogram and the true database
incorporating the new data, allowing us to maintain the accuracy guarantee of the static setting
through unbounded data growth. Specifically, static PMW works on a fixed database of size n and
answers k linear queries. In comparison, our modification for growing databases (PMWG) works
on a database of starting size n and at each time step when the database is size ¢ > n answers up to

k- exp(4/t/n) queries.
Theorem 1 (Informal version of Theorem [5). PMWG is e-differentially private and for any
stream with up to k - exp(4/t/n) queries at each time ¢ > n incurs additive error at most

a = O((*eelloar)1/3) for all queries with high probability.

This error bound is tight with respect to static PMW, which incurs additive error O((W)l/ 3)
for only k total queries. This is somewhat surprising, given that the dynamic setting is strictly harder
than the static setting. Even on just the first time step when ¢ = n, PMWG must answer x queries on
a database of size n, and it achieves the same error guarantee on those queries as static PMW. Static
PMW terminates at this point, while PMWG will answer another & - exp(y/(n + 1)/n) queries at

the next time step and will continue answering queries as the database grows.

In the process of proving Theorem 1, we develop extensions of several static differentially private
algorithms to the dynamic setting, which may be of independent interest for future work on the



design of differentially private algorithms for growing databases. These algorithms are presented in
Appendix [C]

General transformations of static algorithms into algorithms for growing databases. Our sec-
ond set of results consists of two methods, BBSCHEDULER and BBIMPROVER, for generically
transforming a black box algorithm that is private and accurate in the static setting into an algorithm
that is private and accurate in the dynamic setting. BBSCHEDULER reruns the black box algorithm
every time the database increases in size (starting from n) by a small multiplicative factor, and it
provides privacy and accuracy guarantees that are independent of the total number of queries and the
current database size (Theorem[27). BBSCHEDULER instantiates each successive run of the black
box algorithm with an exponentially shrinking privacy parameter to achieve any desired total privacy
loss. The privacy parameter’s decay is tied to database growth so that the two scale together, yielding
a time-independent accuracy guarantee. We instantiate this scheduler using the SMALLDB algorithm
for answering linear queries as a black box (Corollary [T0).

Our second transformation, BBIMPROVER, runs the black box every time a new entry is added to
the database. As with BBSCHEDULER, the privacy parameter decreases for successive calls to the
black box, but in this case this shrinking eventually dominates the database growth to yield accuracy
guarantees that improve as more data accumulate. This algorithm is well-suited for problems where
data points are sampled from a distribution, where one would expect the accuracy guarantees of static
analysis to improve with the size of the sample. We apply this scheduler to private empirical risk
minimization (ERM) algorithms to output classifiers with generalization error that improves as the
training database grows (Table[3).

The following informal theorem statement summarizes our results for BBSCHEDULER (Theorem [27))
and BBIMPROVER (Theorem [29). Taken together, these results show that almost any private and
accurate algorithm can be rerun at appropriate points of data growth with minimal loss of accuracy,
even when data growth is unbounded.

Theorem 2 (Informal). Let M be an e-differentially private algorithm that for some constant p incurs
additive error o = O ((i)p) for all queries with high probability. Then,

1. BBSCHEDULER running M is e-differentially private and incurs additive error v =
O (()r/p+1)) for all queries with high probability.

2. BBIMPROVER running M is (¢, d)-differentially private and incurs additive error oy =

0 <(loi([i/6))p> for all queries at time ¢ for all ¢ > n with high probability.

1.2 Related Work

Differential privacy for growing databases has been studied for a limited class of problems. We
summarize the relationship between our work and the most relevant previous work in Table |1} Both
[DNPR10] and [[CSS11] adapted the notion of differential privacy to streaming environments in a
setting where each entry in the database is a single bit, and bits arrive one per unit time. [DNPR10]]
and [CSS11] design differentially private algorithms for an analyst to maintain an approximately
accurate count of the number 1-bits seen thus far in the stream. This technique was later extended
by [ST13] to maintain private sums of real vectors arriving online in a stream. We note that both of
these settings correspond to only a single query repeatedly asked on a dynamic database, precluding
meaningful adaptive analysis. In contrast, we consider the much richer class of linear queries,
including 2/%! counting queries, allowing for adaptive analysis of a dynamically growing database.

Our setting also resembles the online learning setting, but differs in that we are interested in per-round
accuracy bounds, rather than regret bounds. We discuss this connection in more detail in Appendix[A,
along with background on private adaptive analysis of a static databases.

2 Preliminaries

All algorithms in this paper take as inputs a database over some fixed data universe X of finite size
N. Our algorithms and analyses represent a finite database D € X" equivalently as a fractional



Table 1: Asymptotic accuracy guarantees for answering adaptive linear queries

Work Database  Queries Accuracy

linear queries,

SmallDB [BLROS] static fixed

Previous non-adaptive
work PMW [HRI0] static linear queries, fixed
adaptive
Counting bits d . one fixed query, improving as
[DNPR10,ICSS11] yhamic non-adaptive database grows
. linear queries,

Our work PMWG dynamic adaptive fixed

BBSCHEDULER dynamic  any queries, adaptive  fixed

improving as

BBIMPROVER dynamic  any queries, adaptive database grows

histogram z € A(X) C RY, where 2 is the fraction of the database of type i € [N]. When we say a
database x € A(X) has size n, this means that for each i € [IV] there exists some n; € N such that
' =mn;/n.

If an algorithm operates over a single fixed database, we refer to this as the static setting. In the
dynamic setting, algorithms operate over a stream of databases, defined as a sequence of databases
X = {@¢}+>n starting with a database x,, of size n at time ¢ = n and increasing by one data entry per
time step so that ¢ always denotes both a time and the size of the database at that time. Our dynamic
algorithms also take a parameter n, which denotes the starting size of the database.

We consider algorithms that answer real-valued queries f : RY — R with particular focus on linear
queries. A linear query assigns a weight to each entry depending on its type and averages these
weights over the database. We can interpret a linear query as a vector f € [0,1]" and write the
answer to the query on database © € A(X) as (f, ), f(z), or z(f), depending on context. For f
viewed as a vector, f? denotes the ith entry. We note that an important special case of linear queries
are counting queries, which calculate the proportion of entries in a database satisfying some boolean
predicate over X.

Many of the algorithms we study allow queries to be chosen adaptively, i.e., the algorithm accepts a
stream of queries F' = { f; }le where the choice of f;1 can depend on the previous j — 1 queries

and answers. For the dynamic setting, we doubly index a stream of queries as F' = {f; .}1>n =

{{/e }?:1},2” so that ¢ denotes the size of the database at the time f; j isreceivedand j = 1,...,4;
indexes the queries received when the database is size ¢.

The algorithms studied produce outputs of various forms. To evaluate accuracy, we assume that an
output y of an algorithm for query class F (possibly specified by an adaptively chosen query stream)
can be interpreted as a function over F, i.e., we write y(f) to denote the answer to f € F based on
the mechanism’s output. We seek to develop mechanisms that are accurate in the following sense.

Definition 1 (Accuracy in the static setting). For a, 8 > 0, an algorithm M is («, 8)-accurate
for real query class F if for any input database x € A(X), the algorithm outputs y such that
|f(x) —y(f)] < aforall f € F with probability at least 1 — S3.

In the dynamic setting, accuracy must be with respect to the current database, and the bounds may be
parametrized by time.

Definition 2 (Accuracy in the dynamic setting). For o, appy1,... > 0 and 5 > 0, an algorithm M
is ({ou }+>n, B)-accurate for query stream F' = { f; . }+>y, if for any input data stream X = {x;};>np,
the algorithm outputs y such that | f; ;(x;) — y(fi,;)| < oy for all f;, ; € F with probability at least

1-5.
2.1 Differential privacy and composition lemmas

Differential privacy in the static setting requires that an algorithm produce similar outputs on neigh-
boring databases x ~ x’, which differ by a single entry. In the dynamic setting, differential privacy
requires similar outputs on neighboring database streams X, X' that satisfy that for some ¢t > n,



2y =a, forr =n,...,t —land 2, ~ 2 forT = t,t + 1,.... In the definition below, a pair
of neighboring inputs refers to a pair of neighboring databases in the static setting or a pair of
neighboring database streams in the dynamic setting. We note that in the dynamic setting, an element
in Range(M) is an entire (potentially infinite) transcript of outputs that may be produced by M.
Definition 3 (Differential privacy [DMNSO06]). For €,6 > 0, an algorithm M is (e, &)-differentially
private if for any pair of neighboring inputs x, 2" and any subset S C Range(M),

Pr[M(x) € S] < e -Pr[M(a') € S] +6.
When § = 0, we will say that M is e-differentially private.

Differential privacy is typically achieved by adding random noise that scales with the sensitivity of
the computation being performed. The sensitivity of any real-valued query f : A(X) — R is the
maximum change in the query’s answer due to the change of a single entry in the database, denoted
Ay = maxg~|f(x) — f(2')|. Note that a linear query on a database of size n has sensitivity 1/n.

The following composition theorems quantify how the privacy guarantee degrades as additional
computations are performed on a database.

Theorem 3 (Basic composition, [DMNSO06]). Let M; be an ¢;-differentially private algorithm for
all i € [k]. Then the composition M defined as M(z) = (M, (z))F_, is e-differentially private for

€= 25:1 €
Theorem 4 (CDP composition, Corollary of [BS16]). Let M; be a ¢;-differentially private algorithm
for all i € [k]. Then the composition of M defined as M(z) = (M;(x))E_, is (e, §)-differentially

private for e = %(Zle €2) + \/Q(Zle €2)log(1/6). In particular, for § < e~* and ZiT:1 e <1,

we have e < 2\/(Zf:1 €2)log(1/9).

3 Adaptive linear queries for growing databases

In this section we show how to modify the static private multiplicative weights (PMW) algo-
rithm [HR10] for the dynamic setting to allow for private and accurate adaptive analysis of a
growing database. Static PMW answers an adaptive stream of linear queries while maintaining
a public histogram y reflecting the current estimate of the static database = given all previously
answered queries. Critical to the performance of the algorithm is that it uses the public histogram to
categorize incoming queries as either easy or hard, and it updates the histogram after hard queries in
a way that moves it closer to a correct answer on that query. The number of hard queries is bounded
using a potential argument, where potential is defined as the relative entropy between the database
and the public histogram, i.e., RE (z|ly) = 3¢y xlog(z*/y*). This quantity is initially bounded,
decreases by a substantial amount after every hard query, and never increases. However, this argument
does not extend to the dynamic setting because the potential can increase with the arrival of new data.
We instead modify the algorithm so the public histogram updates in response to new data arrivals as
well as hard queries. This modification allows us to suffer only constant loss in accuracy per query
relative to the static setting, while maintaining this accuracy through unbounded data growth and a
growing query budget at each stage of growth. Table [2]compares our results to the static setting.

We remark that PMW runs in time linear in the data universe size V. If the incoming data entries are
drawn from a distribution that satisfies a mild smoothness condition, a compact representation of the
data universe can significantly reduce the runtime [HR10]. The same idea applies to our modification
of PMW for the dynamic setting without requiring new technical tools.

3.1 Private multiplicative weights for growing databases (PMWG)

Our algorithm for PMW for growing databases (PMWG) is given as Algorithm [T in Appendix
We give an overview here to motivate our main results. The algorithm takes as inputs a data stream

X = {x}+>n and an adaptively chosen query stream F' = {{f; ; }§t:1}t2n- It also accepts privacy
and accuracy parameters €, §, « > 0, although in this section we consider the case that § = 0.

The algorithm maintains a fractional histogram y over X', where y; ; denotes the histogram after the
Jjth query at time ¢ has been processed. This histogram is initialized to uniform, i.e., y;, o = 1 /N



for all i € [N]. As with static PMW, when a query is deemed hard, our algorithm performs a
multiplicative weights update of y with learning rate «/6. As an extension of the static case, we also
update the weights of y¥ when a new data entry arrives to reflect a data-independent prior belief that
data arrive from a uniform distribution, i.e., for all ¢ > n,i € [N], yi,o = %yzfl’ekl + %% Itis
important to note that a multiplicative weights update depends only on the noisy answer to a hard
query as in the static case, and the uniform update only depends on the knowledge that a new entry
arrived, so this histogram can be thought of as public.

As in static PMW, we determine hardness using a numeric sparse subroutine. As part of our proof,
we adapt the Numeric Sparse and the underlying Above Threshold algorithms of [DNR*09] to the
dynamic setting. The proofs for our dynamic versions of these algorithms are in Appendix [C|and may
be of independent interest for future work in the design of private algorithms for growing databases.

We now present our main result for PMWG, Theorem[5. We sketch its proof here and give the full
proof in Appendix [B.I] Whereas the accuracy results for static PMW are parametrized by the total
allowed queries k, our noise scaling means our algorithm can accommodate more and more queries
as new data continue to arrive. Our accuracy result is with respect to a query stream respecting a
query budget. This budget increases at each time ¢ by a quantity increasing exponentially with v/,
and it is parametrized by some time-independent x > 1, which is somewhat analogous to the total
query budget & in static PMW. This theorem tells us that PMWG can accommodate poly () queries
on the original database. Since s degrades accuracy logarithmically, this means we can accurately
answer exponentially many queries before any new data arrive. In particular, our accuracy bounds
are tight with respect to the static settin and we maintain this accuracy through unbounded data

growth, subject to a generous query budget specified by the theorem’s bound on Zi:n L.

Theorem 5. The algorithm PMWG(X, F,¢,0, o, n) is (e, 0)-differentially private, and for any time-
independent x > 1 and 8 > 0 it is («, 3)-accurate for any query stream F' such that 3% _ ¢, <

kYL, exp(%) for all ¢ > n and sufficiently large constant C' as long as N > 3,n > 21
and

ne

a> C (log(Nn) log(nn/ﬂ))l/?) )

Proof sketch. The proof hinges on showing that we do not have to answer too many hard queries,
even as the composition of the database changes with new data, which can increase the relative
entropy between the database and the public histogram. We first show that our new public histogram
update rule bounds this relative entropy increase (Lemma[6), and then our bound on the number of
hard queries suffers accordingly relative to static PMW (Corollary [7)).

Lemma 6. Let z,y,7,y € A(X) be databases of size ¢,t,t 4 1,t + 1, respectively, where T is
obtained by adding one entry to x and §* = H%yl + m for i € [N]. Then,

RE (z||7) — RE (x[y) < & + &L 4 Jog(L2).

The corollary below comes from a straightforward modification of the proof on the bound on hard
queries in static PMW using the result above.

Corollary 7. If the numeric sparse subroutine returns «/3-accurate answers for each query for a
particular run of PMWG, then the total number of hard queries answered by any time ¢ > n is
t t log(N) | log(r—1
S hr < 2308 N+ Y04 B + R+ log(E).

T

With this corollary, we separately prove privacy and accuracy (Theorems [[T]and[I2) in terms of the
noise function &, which yield our desired result when instantiated with the & specified by Algorithm 1]
As with static PMW, the only privacy is leaked by the numeric sparse subroutine. Privacy loss
depends in the usual ways on the noise parameter, query sensitivity, and number of hard queries,
although in our setting both the noise parameter and query sensitivity change over time. O

2This tightness claim assumes 7 = O(poly(N)). We think of PMW as being useful in this setting when the
data universe is large relative to the size of the database, otherwise an analyst could learned the dataset more
accurately with N < n counting queries using output perturbation.



Table 2: Asymptotic accuracy guarantees for answering adaptive linear queries

Work Setting Accuracy for (e, 0)-DP Accuracy for (e, §)-DP

[HRIO] Static (M) 1/3 (1og1/2 N log(k/B) 10g(1/5)>1/2

€N €N

€N €N

This work  Dynamic (M)l/?’ (1og1/2(Nn)1og(m/a)1og1/2(1/5))1/2

After the proof of the above theorem in Appendix [B.T, Theorem 16| generalizes PMWG as specified
by Equation (B.5). This generalization leaves a free parameter in the noise function £ used by the

subroutine, allowing one to trade off between accuracy and a query budget that increases more with
time. See Observation[17]

We remark that we can tighten our accuracy bounds if we allow (¢, §)-differential privacy and use
CDP composition [BSI6]. These results are proven in Appendix [B.2 and included informally in
Table 2l

Theorem 8. The algorithm PMWG(X, F,¢,0,a,n) is (e, d)-differentially private for any € €
(0,1],8 € (0,e~1), and for any time-independent > 1 and 8 € (0,27 '%/2) it is («, 3)-accurate for

t t o’ey/nT

any q.uery stream F suchthat ) /. < k) __ exp( CTog 2 () 10g1/2(1/5)) for all ¢ > n and
sufficiently large constant C' as long as N > 3,n > 17 and

a>C (logW(Nn) log'/2(1/9) log(nn/@))l/ 2.

ne

4 General transformations from static to dynamic settings

In this section, we give two schemes for answering a stream of queries on a growing database, given
black box access to a differentially private algorithm for the static setting In SectiongE, we describe
an algorithm BBSCHEDULER for scheduling repeated runs of a static algorithm. BBSCHEDULER
runs an underlying offline mechanism with exponentially decreasing frequency and offers the same
accuracy guarantee at every point in data growth. We instantiate BBSCHEDULER with the SmallDB
algorithm as an illustrative example. In Section[4.2] we describe a second algorithm BBIMPROVER,
which runs an underlying mechanism at every time step. Its results are initially inferior but improve
over BBSCHEDULER with sufficient data growth. This result is well-suited for problems where data
points are sampled from a distribution, where one would expect the accuracy guarantees of static
analysis to improve with the size of the sample. We showcase our result by applying it to solve private
empirical risk minimization on a growing database. We formalize these algorithms and give privacy
and accuracy guarantees in full generality in Appendix D!

4.1 Fixed accuracy as data accumulate

In this section, we give results for using a private and accurate algorithm for the static setting as a
black box to solve the analogous problem in the dynamic setting. Our general purpose algorithm
BBSCHEDULER treats a static algorithm as a black box endowed with privacy and accuracy guaran-
tees, and it reruns the black box whenever the database grows by a small multiplicative factor. This
schedule can be applied to any algorithm that satisfies e-differential privacy and (c, 3)-accuracy for
« of a certain form as specified in Definition 4] below.

Definition 4 ((p, g)-black box). An algorithm M (z,,, €, a, 3,n) is a (p, g)-black box for a class of
linear queries F if it is (e, 0)-differentially private and with probability 1 — it outputs y : F — R

such that |y(f) — 2, (f)| < a forevery f € F when a > g - (W)p for some g that is
independent of €, n, 5.

The parameter g captures dependence on domain-specific parameters that affect accuracy of the
black box algorithm, such as the dependence on log IV for SMALLDB. If these other parameters

3For ease of presentation, we restrict our results to accuracy of real-valued queries, but the algorithms we
propose could be applied to settings with more general notions of accuracy or to settings where the black box
algorithm itself can change across time steps, adding to the adaptivity of this scheme.



are constant, then o = O(( log(l/ B )) ). As a concrete example, see Corollary @ and surrounding
discussion as an instantiation of BBSCHEDULER with the SMALLDB algorithm as a black box.

Our generic algorithm BBSCHEDULER runs the black box M (x,, €;, s, B;, ;) at times {¢;}5°, for
t; = (1 + v)'n with parameters as listed below and receives output y;. Upon receipt of query f; ;
fort € [t;,...,tit1), we output y;(f; ;). We give the & = 0 case below; the full algorithm including
parameter settings for the § > 0 case is presented in Appendix D!

_ o1 (log(1/8)\ BT _ %) _(1es(1/8) \P _ (8!
Y = gett (gT) , €= (’I+7)7+2€ ai—g(ei(iiy)in)a ﬁi—(m)

There are two key technical properties that allow this result to hold. First, since the epochs are
exponentially far apart, the total privacy loss from multiple calls to M is not too large. Second,
each data point added to a database of size ¢ can only change a linear query by roughly %, S0 since
a database grows by v¢; in epoch ¢, an answer to a query at the end of epoch ¢ using y; incurs at
most «y extra additive error relative to a query issued at time ¢;. We now state our main result for
BBSCHEDULER, including the result for 6 > 0:

Theorem 9. Let M be a (p, g)-black box for query class F. Then for any database stream X and
stream of linear queries F' over 7, BBSCHEDULER(X, F, M, €, 9, 3,n,p, g) is (€, §)-differentially
private for € < 1 and («, 3)-accurate for sufficiently large constant C' and

Cgmer . (%)T c5_0
_pP
1 1.5p+1 .
Gy - <1g<1/6>1g<1/ﬂ)) T =0

o>
en
For concreteness, we instantiate this general result with SMALLDB [BLROS], a differentially private

algorithm for generating a synthetic database y that closely approximates a true database x on a every
query from some fixed set F of k linear queries. Specifically, SMALLDB outputs some y : F — R

1/3
such that |y(f) — z(f)| < aforevery f € F whena > C (logNlongrlog(l/B)) . SMALLDB is

EN

thus a (1/3, C(log N log k)'/3)-black box for an arbitrary set of k linear queries over a data universe
of size IV, and so we have the following corollary of Theorem 27]

Corollary 10. BBSCHEDULER instantiated with SMALLDB is e-differentially private and can
answer all queries in F' with («, )-accuracy for sufficiently large constant C' and

a2 C (s isl log(l/ﬂ))1/5 ,

EN

4.2 Improving accuracy as data accumulate

In some applications it is more natural for accuracy bounds to improve as the database grows.
For instance, in empirical risk minimization (ERM), we expect to be able to find classifiers with
diminishing empirical risk, which implies diminishing generalization error.

We can extend our black box scheduler framework to allow for accuracy guarantees that improve as
data accumulate. Like our first scheduler, our new algorithm BBIMPROVER takes in a private and
accurate static black box M. Unlike the first scheduler, it reruns M on the current database at every
time step. The algorithm no longer incurs accuracy loss from ignoring new data points mid-epoch
because it runs M at every time step. However, this also means that privacy loss will accumulate
much faster because more computations are being composed. To combat this and achieve overall
privacy loss €, each run of M will have increasingly strict (i.e., smaller) privacy parameter €;. The
additional noise needed to preserve privacy will overpower the improvements in accuracy until the
database grows sufficiently large (¢ > n?), when the accuracy of BBIMPROVER will surpass the
comparable fixed accuracy guarantee of BBSCHEDULER. Our BBIMPROVER algorithm and general
results (Theorem [29) are presented in Appendix [D. We also instantiate BBIMPROVER with various
private ERM algorithms in Theorem [31]in Appendix [E.
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