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Abstract
As machine learning becomes more widely used in practice, we need new methods
to build complex intelligent systems that integrate learning with existing software,
and with domain knowledge encoded as rules. As a case study, we present such
a system that learns to parse Newtonian physics problems in textbooks. This
system, Nuts&Bolts, learns a pipeline process that incorporates existing code,
pre-learned machine learning models, and human engineered rules. It jointly trains
the entire pipeline to prevent propagation of errors, using a combination of labelled
and unlabelled data. Our approach achieves a good performance on the parsing
task, outperforming the simple pipeline and its variants. Finally, we also show how
Nuts&Bolts can be used to achieve improvements on a relation extraction task
and on the end task of answering Newtonian physics problems.

1 Introduction
End-to-end learning is the new buzz word in machine learning. Models trained in an end-to-end
manner have achieved state-of-the-art (SOTA) performance on various tasks like image classification,
machine translation and speech recognition. However, a common barrier for using end-to-end learning
is the amount of data needed to train the model. For reference, the SOTA image classification model,
VGGNet [43], is trained on 1.2M images with category labels and the SOTA machine translation
model, GNMT [52], is trained on a dataset of 6M sentence pairs, 340M words. One possible remedy
to the issue of data-hungriness is to incorporate domain knowledge. However, due to the very nature
of the methods used, incorporating domain knowledge in end-to-end learning is challenging [47].

The figure shows three forces
applied to a trunk that moves
leftward by 3.00 m over a
frictionless floor. The force
magnitudes are F1 = 5.00N, F2 =
9.00N, and F3 = 3.00N, and the
indicated angle is θ = 60.0°.
During the displacement, what is
the net work done on the trunk
by the three forces?

θF1

F2

F3

Objects: {block, floor}
Relative Position: lie-above(block, floor)
Forces acting on block:{F1, F2, F3}
Forces acting on floor: {} 
Force Directions: {F1: left, F2: right θ above horizontal, F3: down}

Figure 1: Above: An example Newtonian physics
problem. Below: Diagram parsed in formal language.

In contrast, pipelines [51] decompose a complex
task into a series of easier-to-handle sub-tasks
(stages), where the local predictor at a particular
stage depends on predictions from previous stages.
Pipelines can be tuned with small amount of la-
beled data and it is easier to incorporate domain
knowledge expressed as rules, existing software
and pre-learnt components. However, pipelining
suffers from propagation of local errors [11].

Thus, we propose Nuts&Bolts: an approach
for learning pipelines with labeled data, unlabeled
data, existing software and domain knowledge ex-
pressed as rules. By jointly learning the pipeline,
Nuts&Bolts retains the advantages of end-to-end learning (i.e. doesn’t suffer from error propaga-
tion). Furthermore, it allows for easy incorporation of domain knowledge and reduces the amount of
supervision required, removing the two key shortcomings of end-to-end learning.

We are motivated by the novel task of parsing Newtonian physics problems into formal language
(see Figure 1). This is useful as it builds a computer ingestable rich semantic representation of
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these problems. It is also a key step in a large line of concurrent research on building a solver
for such problems [41, 17, 38, 37, 39]. The problems typically consist of a paragraph of text and
(often) an associated diagram. These problems are quite diverse, representing complex physical and
mathematical concepts which are not often present in natural text and images1 – understanding them
itself requires substantial domain knowledge. Hence, traditional NLP and Computer Vision methods
cannot be directly ported to extract and represent the semantics of these problems, and a richer
integration of domain knowledge is needed. We model Nuts&Bolts using logic programming
and show improvements over multiple baselines as well as various pipeline approaches, achieving
state-of-the-art results.

Our paper is structured as follows: we first introduce the task of parsing Newtonian physics problems
in section 2 and use it to motivate our approach in section 3. Then, we describe the parsing pipeline
in section 4, and our experiments in section 5. We review related work in section 6. Then, finally we
will showcase the benefit of our approach on the problem of relation extraction from text in section 7
where we achieve state-of-the-art results outperforming Snorkel, a strong relation extraction system.

2 Motivation
Problem Definition: To motivate our work, we first define the task of parsing Newtonian physics
problems as one of mapping the problem (text and diagram) to a formal logical language. We choose
our formal language as a subset of typed first-order logic comprising of constants (3.00 m, 5.00
N, 60◦, etc.), variables (F1, θ, etc.), and a hand-picked set of 138 predicates (equals, mass,
distance, force, speed, velocity, work, etc.). Each element in the language is strongly
typed. For example, the predicate mass takes the first argument of the type “object” and the second
argument of the type “mass-quantity” such as 2kg, 3g, etc. As shown in Figure 1, the parse is
represented as logical formulas, i.e. conjunctions over applications of (possibly negated) predicates
with arguments which can be constants or variables.
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Figure 2: A pipeline for diagram parsing with
various (possibly multiple) pre-trained functions,
existing software and rules. The pre-learnt com-
ponents are shown in blue, the existing software
are shown in red and rule-based components are
shown in green.

The primary motivation behind modelling this task as a
pipeline is the difficulty of solving such a challenging
problem with a single monolithic learner; that express-
ing this problem directly in terms of input and output
will result in a complex function that may be impossible
to learn. At the same time, there is a high cost associ-
ated with obtaining sufficient labeled data to achieve
good learning performance which is difficult in such
niche domains. However, the pipeline allows us to think
of the task in a modular way, and to integrate stagewise
supervision and domain knowledge of physics into the
model. It also allows us to supervise the various sub-
components to aid rapid learning.

We begin by describing the parsing pipeline at a high
level. We break the parsing task into three phases. In
the first phase, we parse the diagram recognizing the
various diagram elements and relationships between
them, leading to a diagram parse in formal language.
In the second phase, we parse the problem text into the
same formal language. In the third and final phase, we
reconcile the diagram and the text parse and achieve
the final parse of the problem2. Diagram parsing is
performed in the following stages: (a) We first identify
low-level diagram elements such as the lines and arcs, corners i.e intersecting points
of various low-level diagram elements, objects (e.g. block in Figure 1) and text elements,
i.e. labels such as ~F1,~F2, ~F3 and θ in Figure 1. (b) Then, we assemble the various low-level diagram
elements (such as lines and arcs) to higher level diagram elements (such as axes, blocks, wedges,
pulleys, etc.) by a set of human engineered grouping rules. (c) Then, we map the various text

1For instance, in Figure 1, the visual concept of floor is represented as a solid horizontal line with many small, same sized, parallel lines
with their end points on the horizontal line (see Figure 3c). This concept can be concisely expressed as a rule but is hard to learn.

2Due to space constraints, we only describe the diagram parsing phase in the main paper. The methodology discussed can be
readily extended to the other phases. We present the pipeline and results on text parsing and final reconciliation in the supplementary.
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elements to corresponding diagram elements detected in the previous stages. For example, the text
element ~F1 in Figure 1 refers to the leftward arrow in the diagram. (d) In the final step, we use a set
of human-engineered rules to maps the diagram to formal language. We show the various stages in
the pipeline and their corresponding inputs and outputs in Figure 2. We will cover the details of the
pipeline later in section 4. For each stage of the pipeline, we have choices for various pre-existing
software (such a various line or corner detectors), rules or pre-learnt functions that we additionally
wish to integrate. We also wish to minimize propagation of errors by learning the pipeline jointly.
Next, we formalize the problem of learning such a pipeline.

3 Method
Let x ∈ X and y ∈ Y represent members of the input and output domains of a data mining task,
respectively where we wish to learn a prediction function f : X → Y such that ŷ ≈ f(x).

Pipeline. We formally define a pipeline P as a directed acyclic graph (DAG) G = (V,E) where
nodes V represent various computation modules in the pipeline and edges E represent input/output
relationships between the various modules. Given G, we can always derive a topological ordering
of the computation modules, thus decomposing the prediction problem into S stages. At each stage
s, a predictor f (s) takes in as input the data instance x and predictions from all previous stages
f (s) : z(s) → y(s) where z(s) = (x, ŷ(0), . . . , ŷ(s−1)). Given a model for each stage of the pipeline,
predictions are made locally and sequentially with the expressed goal of maximizing performance on
all the various stages, ŷ = f(x) = {f (s)(z(s))}Ss=1.

Extended Pipeline. Usually, a pipeline has a single predictor at each stage. However, system
engineers are often faced with many choices for every stage of the pipeline. For example, they might
have to choose between many different object detectors or many different part-of-speech taggers. It
will be useful to not have to make that choice but have an ensemble of these choices. Hence, we
extend our definition of the pipeline and assume that we are given multiple function approximators
{f (s)
i }

Ks
i=1 for the pipeline stage s and we wish to use them to estimate the true underlying function

f (s). f (s)
i could use a pre-existing software, encode a domain-specific rule or a pre-learnt function.

Problem Definition: Given the pipeline P , multiple function approximators for each stage
{{f (s)

i }
Ks
i=1}Ss=1 and partial supervision S = {(xn, {y(t)

n }t∈Ωn)}Nn=1 , we want to learn the global
prediction function f(x), Here, N denotes the total number of data instances and Ωn is a set of
stages for which supervision is available for the nth data instance xn. In general, at each stage,
the predictor f (s) may output a binary prediction y(s) ∈ {0, 1} or a regression y(s) ∈ (0, 1). We
desire a framework which can handle partial supervision, existing software and domain knowledge
expressed as rules in a feasible manner. To this end, we describe Nuts&Bolts, a probabilistic logic
framework that integrates these inputs while minimizing a global objective defined over all stages.

3.1 Nuts&Bolts
Probabilistic Logic: Probabilistic logic infers the most likely values for a set of unobserved pred-
icates, given a set of observed ground predicate values and logic rules. Unlike classical logic, the
truth values of ground predicates and rules are continuous and lie in the interval [0, 1], represent-
ing the probability that the corresponding ground predicate or rule is True. Boolean logic oper-
ators, such as AND (∧), OR (∨), NOT (¬) and IMPLIES (→) are redefined using Lukasiewicz
logic [23]: A ∧ B = max{A + B − 1, 0}, A ∨ B = min{A + B, 1}, ¬A = 1 − A, and
A→ B = min{1−A+B, 1}. Next, we define a probabilistic logic program in the most general case
for learning a pipeline that integrates different kinds of function approximators, domain knowledge
and partial supervision. The probabilistic logic program comprises of a model for integrating (a)
multiple function approximators and (b) domain knowledge.

A. Integrating multiple function approximators: Based on [30], we introduce a ‘trustworthiness’
model to integrate multiple function approximators. Let T (s)

i ∈ (0, 1) denote how much we can
trust the function approximator f (s)

i . In probabilistic logic, we introduce the following rules
which specify the relationship between various function approximators, the unknown true underlying
function and our trusts on the various function approximators. Thus, we have:

f
(s)
i (z(s)) ∧ T (s)

i → f (s)(z(s)),¬f (s)
i (z(s)) ∧ T (s)

i → ¬f (s)(z(s)) (1)

f
(s)
i (z(s)) ∧ ¬T (s)

i → ¬f (s)(z(s)),¬f (s)
i (z(s)) ∧ ¬T (s)

i → f (s)(z(s)) (2)
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Intuitively, the first set of rules state that if a function approximator is trustworthy, its output should
match the output of the true function. The second set of rules state that if a function approximator
is not trustworthy, its output should not match the output of the true function. The trust values are
implicitly learnt based on the agreement between various function approximators [30].

We make an additional assumption that most of the function approximators are better than
chance. With this assumption, we additionally add the following two rules: f

(s)
i (z(s)) →

f (s)(z(s)),¬f (s)
i (z(s)) → ¬f (s)(z(s)). This helps alleviate the identifiability issues introduced

by the above rules (eq. 1 and 2). Note that flipping the values of trusts (i.e. setting them to one
minus the trust values) and the true functions leads to the rules evaluating to the same set of rules as
before. In probabilistic frameworks where all the rules are weighted with a real value in [0, 1], we can
think of the weight of these prior belief rules as regularization weights which can be learnt from data.
Note that we estimate a single trust variable for every function approximator in the pipeline stage
– trust is shared across data instances. Thus, the trust variables implicitly couple various function
approximators by relating them to the true underlying function, aiding semi-supervised learning.

B. Integrating domain knowledge: Pre-existing software or pre-learnt functions can be incorporated
as function approximators in our probabilistic logic framework. Next, we will describe how we
incorporate domain knowledge in the form of rules. We assume that the rules are provided to
us as conditional statements (or implications) which can be read as “if Precondition then
Postcondition”. Note that Precondition and Postcondition can be arbitrary logical
formulas (i.e. conjunctions of possibly negated predicates). In our case, the rules relate the input at a
stage z(s) to the output y(s). To incorporate these rules, we introduce a function approximator for the
stage f (s)

j and a rule Precondition(z(s))→ f (s)(z(s)). Introducing rules as function approximators
allows us to combine domain knowledge expressed as rules with arbitrary function approximators
using the formulation described in (A).

C. Inference and Learning: We use a variant of probabilistic logic, PSL [3] in our work. PSL uses
soft logic as its logical component and Markov networks as its statistical model. Soft truth values of
ground predicates form variables of the PSL model and the model learns weights of various rules in
the logic program. Let X be the set of variables with known values each in the domain [0, 1] and Y
be the set of variables with unknown values in [0, 1]. Let φ = (φ1, . . . , φk) be the set of k potential
functions to be defined later. Given free parameters λ1, . . . , λk (which correspond to the weights of
various rules), we define the probability density over the set of unknown variables Y as:

f(Y) =
1

Z
exp

(
−

k∑
i=1

λiφi (X,Y)

)
Z denotes the normalization constant to ensure that f is a proper probability density function.
Inference i.e. finding the most probable values of the unknown variables Y in PSL is performed
by solving the convex optimization problem: minY

∑k
i=1 λiφi (X,Y) solved using consensus

ADMM. For learning, PSL proposes a number of approximate learning approaches such as structured
perceptron, maximum-pseudolikelihood estimation and large-margin estimation. Our approach is
agnostic to the choice of learning approach. In our experiments, we use maximum-pseudolikelihood
estimation which maximizes the likelihood of each variable conditioned on all other variables. We
refer the reader to [3] for more details. In PSL, potential functions φi are typically chosen to be of
the form φi = (max{0, li(X,Y)})pj for pj ∈ {1, 2} and li is some linear function corresponding
to a measure of the distance to satisfiability of a logic rule. According to the theory of PSL, all logic
rule can be written in the form A1 ∧ A2 · · · ∧ Au → B1 ∨ B2 · · · ∨ Bv [4]. In this case, it is easy
to see that the distance to satisfiability li can be written as max{0,

∑u
i=1Ai −

∑v
i=1Bi + 1− u}

and minimizing the distance to satisfiability amounts to making the rule more satisfied. This joint
modeling of the entire pipeline avoids error propagation often incurred when we sequentially use
local models. The joint modeling of known and unknown variables with variable coupling through
the various constraints described earlier aids semi-supervised learning as shown in our experiments.

4 The Diagram Parsing Pipeline
Next, we describe the various components of the diagram parsing pipeline, pointing out the pre-learnt
functions, software and rules in each stage of the pipeline (see Table 1). Note that every pre-learnt
function can be treated as a software. We present this difference merely due to philosophical reasons.

In the first stage, we detect low-level diagram elements (lines and arcs) using a number of pre-learnt
functions and software. For corner detection, we use Harris corner detectors [14]. Then we further
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Table 1: Various components of the diagram parsing pipeline. We denote the pre-learnt functions by •, software
by • and rules by • in each stage of the pipeline.

Apply a weak Gaussian blur on the raw image and then binarized it using a threshold selection method proposed
in [26]. Then using it, apply:
• Boundary detection and grouping method [19]
• Hough transforms [9]

Line • Detect parallel curved edge segments in a canny edge map.
• Recursively merge proposals that exhibit a low residual when fit to a 1st or a 2nd degree polynomial.
• A 2 class CNN resembling VGG-16 [43] with a fourth channel (which specifies the location of the diagram element

smoothed with a Gaussian kernel of width 5) appended to the standard 3 channel RGB input.

Corner • Harris corner detector [14]

{IF:THEN} expressions, i.e. IF ’condition’ THEN ’result’ rules as described below:
• Arrow: The central line (stem line) is the longest of the three lines, the two arrowhead lines are roughly of the

same length, and the two angles subtended by the arrowhead lines with the arrow stem line must be roughly equal
• Dotted line: The various lines should be in a straight line, roughly the same sized lines and equi-spaced

High
Level

• Ground: The solid line is in contact with a number of smaller parallel lines which subtend roughly the same angle
with it, their end-point lies on the solid line and the smaller lines are on the same side with respect to the solid line

• Coordinate System: Three arrows where the arrow tails are incident on the same point. Two lines are mutually
perpendicular (i.e. angle=90◦) and the third roughly bisects the complementary (270◦) angle

• Block: Four lines which form a rectangle
• Wedge: Three lines where each two share a distinct end-point
• Pulley: A circle with two lines tangent to it. An end-point of the two lines lies on the circle

• An off-the-shelf OCR system – Tesseract3.
Text • Since many textual elements are heavily structured (these include elements in vector notation (e.g. ~F ), greek

alphabets (e.g. θ), physical quantities (e.g. 2 m/s)) and are usually longer than a single character, we trained a text
localizer using a CNN having the same architecture as AlexNet [20]. We used the Chars74K dataset [7], a dataset
obtained from vector PDFs of a number of physics textbooks and a set of synthetic renderings of structured textual
elements generated by us as training data.

• Window classification [50] • Perceptual grouping [13, 5] • Cascaded ranking svm [54]
• Objectness [1] • Selective search [49] • Global and local search [33] • Edge boxes [56]

Object • A classifier with features capturing location, size, central and Hu moments, etc.
• A discriminatively trained part-based model [10] trained to focus on the detection of a manually selected list of

objects commonly seen in physics diagrams (blocks, pulleys, etc.).

Label As-
sociation

• Type Matching Rules: Type matching rules note that if the element is of type t1 and the text label is of type t2,
then the element should be matched to the text label. Thus, the rule can be written down as type(e, t1) ∧
type(t, tw) → Mto. We have type matching experts for the following element-object types: (a) element is an
arrow and the text label is one of F., v., a., g, x, d indicating physical vector quantities such as forces, velocity,
acceleration and displacement, (b) element is the coordinate system and the text label is one of x, y or z indicating
one of coordinate system axes, (c) element is a block or a wedge and the text labels it as a block’ or ‘wedge’ (or
one of their synonyms) respectively.

• Proximity Rules: The proximity rule notes that if the element and the text label are close to each other (i.e. the
closest pixels of the element and the text label are closer than a threshold) then the element should be matched
to the text label i.e. proximal(t, o)→Mto

• Orientation Rule: The orientation rule notes that if the element and the text label are in the same orientation,
they should be matched i.e. orientation_match(t, o) → Mto. The orientations are computed using the first
principal component of the grey scale pixels labeled as the element/text.

Formal
Language

• Rules (one for each predicate) decide if the predicate holds for a set of diagram elements which are type consistent
with the arguments of the predicate.

(a)

θ
θ

(b) (c) (d) (e) (f) (g)
Figure 3: Some example high-level diagram elements: (a) Arrow, (b) Dotted line, (c) Ground, (d) Coordinate
System, (e) Block, (f) Wedge, and (g) Pulley. We describe rules to form these elements in Table 1.

assemble these low-level diagram elements to high level elements. High level elements can be easily
expressed by humans as rules given their knowledge of Physics (see Figure 3). However, it is difficult
to learn the input-output mapping for high-level elements directly as this will require a very large
amount of labelled data for each high-level element. We introduce a set of manually curated grouping
rules for grouping low-level diagram elements to form high-level diagram elements. For example,
the rule to form an arrow tests if there are three detected lines which share an end-point which can
be combined to form an arrow. The three lines must also satisfy some additional conditions for the
high-level element to be an arrow. The central line (stem line) is the longest of the three lines, the
two arrowhead lines are roughly of the same length and the two angles subtended by the arrowhead
lines with the arrow stem line must be roughly equal. This rule is incorporated as shown below:

C1 = isLine(line1) ∧ isLine(line2) ∧ isLine(line3)

C2 = length(line1) > length(line2) ∧ length(line1) > length(line3) i.e. line1 is stem
C3 = roughly_equal(angle(line1, line2), angle(line1, line3))

C1 ∧ C2 ∧ C3 → Hline
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All our rules take the form of {IF:THEN} expressions, e.g. {IF condition THEN result},
where the condition tests if a set of detected low-level elements satisfy the requirements to
form the high-level element. In general, we write down a rule for high-level element detection
as ri : AND(li1 , li2 , . . . , liα , ci1 , ci2 , . . . , ciβ ) → hi s.t. the rule preconditions Pi1 , Pi2 , . . . , Piγ
are all satisfied. Here, li1 , li2 , . . . , liα denote pre-requisite low-level elements and ci1 , ci2 , . . . , ciβ
denote pre-requisite corner elements required for the application of rule ri leading to the formation
of high-level element hi. Then, we map textual element labels with diagram elements. Let Mte

represent a variable that takes values 1 if the detected element (high-level element or object) e is
matched with the detected text label t, and 0 otherwise. Here, we have a matching constraint that∑
eMte = 1 which states that every text label must be matched to exactly one high-level element

or object. Next, we build a set of candidate matching rules. These rules essentially capture features
accounting for type, shape, orientation, distance, etc. In the final stage, we again use a set of rules to
map diagrams to formal language. These rules, one for each predicate, decide if the predicate holds
for a set of diagram elements which are type consistent with the arguments of the predicate. We have
rules for listing objects, relative position of objects, forces acting on objects, force directions, etc.

5 Experiments
Implementation: In our implementation, we over-generate candidate low-level elements, corners,
objects, text elements and plausible high-level elements from various candidate function approxima-
tors. Then, we create a set of binary variables which take value 1 if the element/corner/object/text
element is correct and 0 otherwise. Then, with these variables and domain knowledge expressed as
rules, we use Nuts&Bolts for learning the pipeline.

Dataset: We validated our system on a dataset of physics questions taken from three popular
pre-university physics textbooks: Resnick Halliday Walker, D. B. Singh and NCERT.
Millions of students in India study physics from these books every year and these books are available
online. We manually identified chapters relevant for Newtonian physics in these textbooks and took
all the exercise questions provided in these chapters. This resulted in a dataset of 4941 questions,
out of which 1019 had associated diagrams. We partitioned the dataset into a random split of 4441
training (912 diagrams) and 500 test (107 diagrams) questions. We annotated ground truth logical
forms for a part of the training set (1000 questions containing 207 diagrams) and the entire test
set. The annotated train set questions were used along with the unannotated train set questions for
training our method – thus, our method is semi-supervised. We report our results on the test set. We
additionally evaluated our system on the task of answering these problems on two datasets: section 1
of three AP Physics C Mechanics tests4 – a practice test and official tests for the years 1998 and 2012.

Experimental Design: We design our experimental study to evaluate the following claims:
C1: Nuts&Bolts outperforms prior work on the task of diagram parsing. This also leads to

improvements on down stream tasks – in our case, answering Newtonian physics questions.
C2: Nuts&Bolts utilizes labelled data as well as unlabelled data to achieve better performance.
C3: Nuts&Bolts can incorporate supervision at various stages of the pipeline. It is robust to low

amounts of supervision at certain stages in the pipeline.
C4: Nuts&Bolts jointly models the various stages of a pipeline which prevents error propagation.

C1: Since there is no existing prior work which performs end-to-end parsing of diagrams to formal
language, we created three baselines. The first baseline, EB proposes diagram elements using
EdgeBoxes [56] and then uses rules defined in Table 1 for label associations and generation of
formal language. EdgeBoxes was chosen as it relies less on colors and gradients observed in
natural images, and because it is the only computer vision approach that performs well on all element
detection stages in our experiments. The second baseline, G-ALIGNER proposes diagram elements
using G-ALIGNER [40] and then uses rules. G-ALIGNER works by maximizing the agreement
between textual and visual data via a submodular objective. Similarly, the third baseline, DSDP-Net
uses DSDP-Net [17] followed by rules. DSDP-Net proposes diagram elements using an LSTM
based scoring mechanism.

We compare the three baselines with Nuts&Blots in terms of the performance on predicting each
type of diagram element as well as overall results in terms of the final diagram parse. We use two
metrics: (a) Jaccard similarity [21] and (b) F1 score (comparing with gold annotation). Table 2

4The other sections of the tests are subjective which we leave as future work. Details about the exam questions are available at: https:
//apstudent.collegeboard.org/apcourse/ap-physics-c-mechanics
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Table 2: Comparison (F1 scores and Jaccard similarity with gold annotation) for individual stages of the pipeline
as well as the final parse. Certain baselines cannot be used to model some stages of the pipeline (denoted as -).
We use the corresponding Nuts&Blots model for those stage to compute the final parse. The performance of
various component function approximators is available in the supplementary.

F1 Jaccard Similarity
EB G-ALIGNER DSDP-Net Nuts&Bolts EB G-ALIGNER DSDP-Net Nuts&Bolts

Low-level 0.59 0.78 0.76 0.94 0.57 0.80 0.83 0.87
Corner - 0.95 - 0.95 - 0.91 - 0.91
High-level 0.45 0.71 0.50 0.90 0.42 0.74 0.52 0.82
Text 0.57 0.77 0.66 0.90 0.54 0.78 0.71 0.85
Object 0.33 0.30 0.52 0.82 0.29 0.31 0.47 0.64
Label Associations - 0.80 - 0.83 - 0.86 - 0.88
Parsing Performance 0.42 0.65 0.58 0.74 0.44 0.68 0.56 0.78

reports the results. Nuts&Blots achieves a much superior performance to all the three baselines on
both the metrics. Furthermore, we get improvements on all the stages of the pipeline. Prior computer
vision techniques are tuned for natural images and hence, do not port well to diagrams which require
domain knowledge. However, our carefully engineered pipeline with ensembles of element detectors
and explicit domain knowledge in the form of rules can work well even in this challenging domain.
The results for problem text parsing are available in the supplementary.

T P ’98 ’12

EB 20 16 16 18
G-ALIGNER 23 19 16 21
DSDP-Net 21 16 15 18
N&B 32 24 24 26
Table 3: Question Answering accu-
racy of Nuts&Bolts (N&B) com-
pared to the various baselines in the
Parsing to Programs (P2P)
framework on four datasets: prob-
lems from physics textbooks (T), AP
Physics C Mechanics – Section 1
practice test (P) and official tests for
1998 and 2012.

We additionally used Nuts&Bolts in Parsing to
Programs [37], an existing framework proposed for “sit-
uated” question answering. The system takes in the formal
representation of the problem and uses it to solve the problems
using an expert system with axioms and laws of Physics written
down as executable programs. We compared systems which use
the Nuts&Bolts output against systems that use the output
from various diagram parsing baselines as the formal diagram
parse (all systems used Nuts&Bolts for text parsing). Table
3 shows the score (percentage of questions correctly answered)
achieved by Nuts&Bolts and the various baselines on the
four question answering datasets describe before. We observe
that Nuts&Bolts achieves a better performance than all the
baselines on the challenging task of answering Newtonian physics
problems. We show examples of correctly and incorrectly
answered questions in the supplementary.
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Figure 4: F1 score for diagram parsing
and various pipeline stages with varying
amount of unlabelled diagrams.

C2: A key benefit of Nuts&Blots is its ability to incor-
porate unlabelled data. We investigate how changing the
amount of unlabelled data in addition to the labelled data
changes the performance of our diagram parser. Figure 4
plots the F1 performance of the final diagram parse as well
as various stages as we vary the amount of unlabelled dia-
grams while keeping the labelled diagram set fixed. We can
observe from the plot that adding unlabeled data substan-
tially improves performance (from 0.58 when no unlabelled
data is used to 0.74 when all unlabelled data is used). Such
improvements are also observed for various stages of the
pipeline to varying degrees.

C3: Nuts&Blots allows for varying amount of supervision at each stage in the pipeline. Figure
5 shows the performance of individual pipeline stages as well as overall performance when we vary
supervision for one stage in the pipeline (keeping supervision for all other stages same). We can
observe that our model has a robust performance when supervision at an individual stage is reduced
(by reducing the number of diagrams whose supervision is provided to the stage). For example, the
performance merely reduces from 0.74 to 0.61 even when supervision to the text-element detection
stage is reduced from 207 diagrams (the entire labelled set) to 25 diagrams.

C4: Nuts&Blots learns the entire pipeline jointly, thus preventing error propagation. To test this,
we perform an ablation study using a traditional pipeline which makes sequential predictions in a
stagewise manner. We consider variants of the traditional pipeline which aggregates the function
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Table 4: F1 scores for identifying diagram elements, label associations and the final parse.
Traditional Pipeline Nuts&Bolts

Best pred. Maj. Vote Wtd. Avg. AdaBoost Trust=1 No Learn Full

Low-level 0.70 0.79 0.81 0.84 0.81 0.76 0.94
Text 0.68 0.77 0.79 0.80 0.84 0.80 0.90
Object 0.63 0.68 0.71 0.71 0.76 0.73 0.82
Label Associations 0.67 0.74 0.73 0.72 0.76 0.73 0.83
Parsing Performance 0.55 0.59 0.65 0.66 0.64 0.59 0.74

approximators via various combination approaches: best predictor, majority vote,
weighted average and AdaBoost. We report the results in Table 4. We observe that
Nuts&Bolts performs significantly better than each of the traditional pipeline, validating our case.

The case can be made stronger by observing Figure 5. The dotted green curve represents the
performance of models that learn the combination of various function approximators separately
for that stage. The solid green curve shows results for Nuts&Bolts. The difference between the
slope of the solid green curve and the dotted green curve show that independently trained function
combinators suffer much more than jointly trained function combinators with decreasing amount of
available training data. Similarly, the difference between slopes of dotted blue curve and solid blue
curve show how overall performance degrades when the function combinator for a particular stage is
independently learned, particularly in low data scenarios.

We further investigate the importance of modelling trust in our approach. We compared
Nuts&Bolts to a variant of Nuts&Bolts where we do not model trustworthiness (i.e. set
all trust variables to 1). We observe a significant drop in performance which confirms the necessity of
learning trust for various candidate function approximators. Then, we also show results when we do
not perform learning i.e. we simply set the weights of the various rules in the PSL automatically to
1 in Table 4. We can observe that the performance of our model drops even if we do not learn rule
weights of our Nuts&Bolts approach showing the importance of learning.

6 Related Work
The issue of data hungriness of end-to-end models is well known [53, 22]. Even though a number
of regularization [45] and semi-supervised learning [18] techniques have been proposed, in practice
data hungriness is still an issue in these models. One possible solution is incorporating domain
knowledge into these models. This is also difficult and heuristic solutions such as fusing predictions
from external models, feature concatenation or averaging output are popular [27]. Two promising
but under-explored lines of work here are [16] and [25] who propose a teacher-student network to
harness logical rules and distant supervision, respectively,

We mitigate the data hungriness issue by learning a pipeline – thereby making the learning process
modular [2] and integrating domain knowledge – yet, without incurring error propagation. Our
proposal is related to previous works which propose linear programming [24, 32] and graphical
model [31, 15] formulations for post-hoc inference in a cascade of classifiers. A key difference in
this line of work and our work is that we allow multiple function approximators in each stage in the
pipeline and integration of domain knowledge in the form of rules. The former has been explored
separately in various ensemble approaches [8], in error estimation from unlabeled data [28, 29, 30]
and crowd-sourcing applications [46]. Our work is also related to parallel pipelines for feature
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Figure 5: These plots show how the performance (F1 score for diagram parsing) varies when we vary the
amount of supervision in our models for one stage in the pipeline, keeping the supervision at all other stages the
same. The chart label notes the pipeline stage whose supervision is varied. For example, in the first plot we vary
the amount of low-level element supervision provided to the system. The plots in solid green (SP) show the
performance at the stage level, the solid blue plots (OP) show the overall performance of the system (in terms
of diagram parse literals). The dotted green curve (ISP) represents the performance of models that learn the
combination of various function approximators independently for that stage. The dotted blue curve (ISOP) is
obtained by incorporating the independently learned aggregator into Nuts&Bolts.
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Table 5: F1 scores for identifying diagram elements, label associations and the final parse using the bi-lattice
logic formalism [42], PCFG based hierarchical grammars [55] and Nuts&Bolts (N&B). We have different
variants for each model where we perform only inference (Inf.) where rule weights are set to 1, supervised (Sup.)
and semi-supervised learning (Semi-sup.).

Bi-lattice logic PCFG N&B
Inf. Sup. Inf. Supervised Semi-sup. Inf. Sup. Semi-sup.

Low-level 0.65 0.70 0.62 0.66 0.77 0.72 0.75 0.94
Corner 0.81 0.85 0.76 0.79 0.90 0.86 0.89 0.95
High-level 0.57 0.63 0.54 0.59 0.66 0.62 0.65 0.90
Text 0.57 0.59 0.53 0.56 0.78 0.60 0.61 0.90
Object 0.50 0.53 0.48 0.51 0.68 0.53 0.57 0.82
Label Associations 0.48 0.54 0.49 0.55 0.70 0.52 0.60 0.83

Parsing Performance 0.49 0.53 0.47 0.51 0.64 0.52 0.58 0.74

extraction, bi-lattice logic formalism, hierarchical grammars, performance modeling and Bayesian
fusion methods. These formalisms can be used in our problem setting. However, these usually do not
incorporate: (a) multiple function approximators for each sub-task which is necessary when we have
many weak learners but no one best model to do the sub-task, (b) existing software pieces as sub-task
functions, (c) stage-wise supervision, and (d) semi-supervised learning. All these are necessary in low
data scenarios when end-to-end models are infeasible. For the sake of completeness, we implemented
the bi-lattice logic formalism as in [42] and a PCFG based hierarchical grammar formalism proposed
in [55] where we used the best function approximator at each stage of the pipeline. PCFGs are
popular in NLP and can be trained both in a supervised (via MLE) as well as semi-supervised manner
(via EM). Table 5 reports F1 scores of various stages as well as the overall parsing and shows how our
supervised variant outperforms the supervised learners in the bi-lattice logic formalism and PCFG.
In addition, when we incorporate unlabeled data, Nuts&Bolts achieves a huge boost – a significant
improvement over the supervised competitors and semi-supervised PCFG. Finally, our method is
based on PSL [3] which allows for easy integration of first order logic rules. PSLs are a generalization
of MLNs [36] which can also be used. Our approach can also be extended to other constraint driven
methods such as CCMs [6] which incorporate domain knowledge in the form of constraints.

From an application perspective, while, the domain of natural images has received a lot of interest,
the domain of diagram analysis is not very well studied. In particular, [12] analyzed graphs and
finite automata sketches, [17] studied food-web diagrams and [40] studied geometry diagrams. As
shown in our experiments, these techniques do not perform as well as Nuts&Bolts. This is because
we leverage domain knowledge and structure of diagrams by building a bottom-up diagram parser.
The idea of bottom-up analysis has been sparsely explored in images [48, 55, 44], however, without
domain knowledge and use of existing softwares in the pipeline process.

7 Relation Extraction

We additionally also performed experiments on relation extraction (a key NLP task) comparing our
approach to Snorkel, the recently proposed state-of-the-art approach for the task (it beat the previous
best LSTM model and won the 2014 TAC-KBP challenge). We followed the same experimental
protocol as in [34, 35] and compared our method to Snorkel (discriminative model – the best Snorkel
model) on four datasets provided with the Snorkel release. Table 6 shows the predictive performance
(in terms of Precision, Recall and F1 scores) on the relation extraction task. We use the same labeling
rules as described in the Snorkel papers. Nuts&Bolts achieves a better performance than Snorkel on
all the four datasets, and notably a new state-of-the-art. This makes a case that our framework is
indeed general and widely applicable.

Table 6: Precision/Recall/F1 scores comparing Nuts&Bolts to Snorkel on four relation extraction datasets.
CDR Spouses KBP (News) Genomics

P R F1 P R F1 P R F1 P R F1

Snorkel 38.8 54.3 45.3 48.4 61.6 54.2 50.5 29.2 37.0 83.9 43.4 57.2
N&B 41.5 54.5 47.1 49.3 61.9 54.9 51.2 30.3 38.1 84.5 43.3 57.3

8 Conclusion
We proposed Nuts&Bolts, a framework to learn pipelines with a provided hierarchy of sub-
tasks. Our framework incorporates multiple function approximators for various sub-tasks, domain
knowledge in the form of rules and stage-wise supervision. Nuts&Bolts is a philosophy of learning
with modularization and can be beneficiary in limited data domains when we can learn from labelled
as well as unlabelled data and when end-to-end training becomes infeasible.
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