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Abstract

Potential based reward shaping is a powerful technique for accelerating convergence
of reinforcement learning algorithms. Typically, such information includes an
estimate of the optimal value function and is often provided by a human expert or
other sources of domain knowledge. However, this information is often biased or
inaccurate and can mislead many reinforcement learning algorithms. In this paper,
we apply Bayesian Model Combination with multiple experts in a way that learns
to trust a good combination of experts as training progresses. This approach is
both computationally efficient and general, and is shown numerically to improve
convergence across discrete and continuous domains and different reinforcement
learning algorithms.

1 Introduction

Potential-based reward shaping incorporates prior domain knowledge in the form of additional
rewards provided during training to speed up convergence of reinforcement learning algorithms,
without changing the optimal policies (Ng et al. [1999]). While much of the existing theory and
applications assume that advice comes from a single source throughout training (Grześ [2017],
Harutyunyan et al. [2015], Tenorio-Gonzalez et al. [2010]), there is much less work done on learning
from multiple sources of advice as training progresses. One reason for doing so is that expert
demonstrations or advice can often be biased or incomplete, so being able to identify good advice
from bad is critical to guarantee robustness of convergence.

In this paper, the decision maker is presented with multiple sources of expert advice in the form of
potential-based reward functions, some of which can be misleading and should not be trusted. The
decision maker does not know a priori which expert(s) to trust, but rather learns this from experience
in a Bayesian framework. More specifically, the decision maker starts with a prior distribution over
the probability simplex, and updates the belief to a posterior distribution as new training rewards are
observed. Because our proposed algorithm follows the potential-based reward shaping framework, it
preserves the theoretical guarantees for policy invariance established in Ng et al. [1999].

This paper proceeds as follows. Section 2 introduces the key definitions used throughout the paper.
In Section 3, we apply Bayesian model combination, that allows the decision maker to asymptotically
learn the best combination of experts, all with reduced variance as compared to similar approaches. In
Section 3.1, we show that the total return can be written as a linear combination of individual return
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contributions from each expert, weighted by the expected posterior belief that the expert is correct. In
Section 3.2, we show that the exact posterior updates are analytically intractable. Instead, we apply
moment matching to project the true posterior distribution onto the multivariate Dirichlet distribution,
and show how accurate approximation and inference can be done in linear time in the number of
experts. In Section 3.3 we then show how our approach can be incorporated into any reinforcement
learning algorithm, preserving the asymptotically optimal policy without incurring additional runtime
complexity. Finally, in Section 4, we demonstrate the effectiveness of this approach across various
reinforcement learning methods and problem domains.

Related Work

Learning from expert knowledge is not new. In transfer learning, for example, the decision maker
uses prior knowledge obtained from training on task(s) to improve performance on future tasks
(Konidaris and Barto [2006]). In inverse reinforcement learning, the agent recovers an unknown
reward function that can then be used for shaping (Suay et al. [2016]). In many cases, a human
expert can directly provide the learning agent with training examples or preferences before or during
training to guide exploration (Brys et al. [2015], Christiano et al. [2017]). All of these approaches
try to perturb the intermediate value functions to encourage more guided exploration of the state
space. A somewhat different approach, called policy shaping, instead reshapes the learned policies
(Griffith et al. [2013]). Grzes and Kudenko [2009] and Grześ and Kudenko [2010] recently introduced
on-line methods to learn a reward shaping function, but only for model-based learning using R-Max
or model-free learning with multi-grid discretization. Our approach can work in on-line settings, with
general algorithms under minimal assumptions, and with value function approximation.

The idea of combining multiple models/experts or learning algorithms to improve performance is
central to ensemble learning (Dietterich [2000]), and has been applied in a variety of ways in the RL
literature. For example, Maclin et al. [2005] used kernel regression, Philipp and Rettinger [2017]
used contextual bandits, and Downey and Sanner [2010] applied Bayesian model averaging. Asmuth
et al. [2009] applied a Bayesian method to sample multiple models for action selection. The only
work we are aware of that incorporated reward shaping advice in a Bayesian learning framework
is the recent paper by Marom and Rosman [2018]. However, that paper exploited the structure
of the transition model (belief clusters) in order to do efficient Bayesian inference, whereas our
paper focuses on posterior approximation using variational ideas, and their analysis and results are
considerably different from ours. More generally, Bayesian approaches have many advantages over
frequentist approaches, including prior specification, clear and intuitive interpretation, ability to test
hypotheses (O’Hagan [2004]), and theoretically optimal exploration (Thompson [1933]).

2 Definitions

2.1 Markov Decision Process

The decision-making framework used throughout this paper focuses on the Markov decision process
(MDP) (Bertsekas and Shreve [2004]). Formally, an MDP is defined as a tuple (S,A, T,R, γ), where:
S is a general set of states,A is a finite set of actions, T : S×A×S → R+ is a stationary Markovian
transition function, where T (s, a, s′) = P (s′|s, a), the probability of transitioning to state s′ after
taking action a in state s, R : S ×A×S → R is a bounded reward function, where R(s, a, s′) is the
immediate reward received upon transitioning to state s′ after taking action a in state s, and γ ∈ [0, 1]
is a discount factor.

We define a random policy µ as a probability distribution µ(s, a) = P (a|s) over actions A given
current state s. Given an MDP (S,A, T,R, γ), a policy µ, and initial state-action pair (s, a), we
define the infinite-horizon expected discounted rewards as

Qµ(s, a) = E

[ ∞∑
t=0

γtR(st, at, st+1)
∣∣∣s0 = s, a0 = a

]
, (1)

where at ∼ P (·|st) = µ(st, ·) and st+1 ∼ T (st, at, ·). The objective of the agent is to find an
optimal policy µ∗ that maximizes (1). When the transition and reward functions are known, the
existence of an optimal deterministic stationary policy is guaranteed, in which case value iteration or
policy iteration can be used to find an optimal policy (Bertsekas and Shreve [2004]).
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2.2 Reinforcement Learning

In the reinforcement learning (RL) setting, the transition probabilities and reward function are not
explicitly known to the agent but rather learned from experience. In order to learn the optimal
policies in this framework and to facilitate the development of the paper, we follow generalized policy
iteration (GPI) (Sutton and Barto [2018]). However, the Bayesian framework developed in this paper
is dependent on neither the exploration policy used nor the value function representation, and can be
applied with on-policy and off-policy learning, value function approximation, traces, deep RL (Li
[2017]), and other approaches.

More specifically, GPI performs two steps in alternation: a policy evaluation step that estimates
the value Qµi of the current policy µi, and a policy improvement step that uses Qµi to construct
a new policy µi+1. In practice, these two steps are often interleaved. A simple yet effective way
to implement GPI is to follow the ε-greedy policy, that encourages exploration by randomly and
uniformly selecting an action in A at time t with probability εt, and otherwise selects the best action
based on Qµi(s, a); the parameter εt ∈ (0, 1), t ≥ 0 controls the trade-off between exploration and
exploitation.

In order to estimate the value of policy µ = µi, we follow the temporal difference learning (TD)
approach. Specifically, given a new estimate of the expected future returns Rt at time t after taking
action at in state st according to some policy µ, Q(st, at) (dropping the dependence on µ) is updated
as follows

Qt+1(st, at) = Qt(st, at) + α [Rt −Qt(st, at)] , (2)

where α > 0 is a problem-dependent learning rate parameter.

Two popular approaches for estimating Rt are Q-learning and SARSA, given respectively as

Rt = rt + γ max
a′∈A

Qt(st+1, a
′)

Rt = rt + γQt(st+1, at+1),
(3)

where rt = R(st, at, st+1) is the immediate reward, st+1 ∼ T (st, at, ·) and at+1 ∼ µ(st+1, ·).
While both approaches compute Rt by bootstrapping from current Q-values, the key distinction
between them is that SARSA is an on-policy algorithm whereas Q-learning is off-policy. n-step TD
and TD(λ) are more sophisticated examples of TD-learning algorithms (Sutton and Barto [2018]).

2.3 Potential-Based Reward Shaping

In many domains, particularly when rewards are sparse and the agent cannot learn quickly, it is
necessary to incorporate prior knowledge in order for TD-learning to converge faster. The idea
of reward shaping is to incorporate prior knowledge about the domain in the form of additional
rewards during training to speed up convergence towards the optimal policy. Formally, given an
MDP (S,A, T,R, γ) and a reward shaping function F : S × A × S → R, we solve the MDP
(S,A, T,R′, γ) with reward function R′ given by

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′). (4)

While this approach has been applied successfully to many problems, an improper choice of shaping
function can change the optimal policy (Randløv and Alstrøm [1998]).

In order to address this problem, potential-based reward shaping was proposed, in which F is
restricted to functions of the form

F (s, a, s′) = γΦ(s′)− Φ(s), (5)

where Φ : S → R is called the potential function. It has been shown that this is the only class of
reward shaping functions that preserves policy optimality (Ng et al. [1999]). Reward shaping has
also been shown to be equivalent to Q-value initialization (Wiewiora [2003]). More recently, policy
invariance has been extended for non-stationary time-dependent potential functions of the form

F (s, a, t, s′, t′) = γΦ(s′, t′)− Φ(s, t) (6)

(Devlin and Kudenko [2012]), for action-dependence (Wiewiora et al. [2003]), as well as for partially-
observed (Eck et al. [2013]) and multi-agent systems (Devlin and Kudenko [2011]).
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3 Bayesian Reward Shaping

The decision maker is presented with advice from N ≥ 1 experts in the form of potential functions
Φ1,Φ2, . . .ΦN . The advice could come from heuristics or guesses (Harutyunyan et al. [2015]), from
similar solved tasks (Taylor and Stone [2009]), from demonstrations (Brys et al. [2015]), and in
general can be analytic or computational. One concrete example that our proposed setup can be
applied to is transfer learning (Taylor and Stone [2009]). Here, models are first trained on a number
of tasks to obtain corresponding value functions. By defining suitable inter-task mappings (Taylor
et al. [2007]), these value functions can be incorporated into a target task as reward shaping advice.

Unfortunately in practice, the advice available to the learning agent is often contradictory or contains
numerical errors, in which case it could hurt convergence. In order to make optimal use of the expert
advice during the learning process, the agent should ideally learn which expert(s) to trust as more
information becomes available, and act on this knowledge by applying the techniques in Section 2.2.
To do this, the agent assigns weights w to the experts and updates them on-line during training.

The two main approaches to incorporating multiple models in a Bayesian framework are Bayesian
model averaging (BMA) and Bayesian model combination (BMC). Roughly speaking, taking experts
as hypotheses, BMA converges asymptotically toward the optimal hypothesis, while BMC converges
toward the optimal ensemble. The model combination approach has two clear advantages over
model averaging: (1) when two or more potential functions are optimal, it will converge to a linear
combination of them, and (2) it provides an estimator with reduced variance (Minka [2000]). In this
section, we show how BMC can be used to incorporate imperfect advice from multiple experts into
reinforcement learning problems, all with the same space and time complexity as TD-learning.

3.1 Bayesian Model Combination

In the general setting of Bayesian model combination, we interpret Q-values for each state-action
pair qs,a as random variables, and maintain a set of past return observations D and a multi-
variate posterior probability distribution P (q|D) over Q-values. We also maintain a posterior
probability distribution π : SN−1 → R+ over the (N − 1)-dimensional probability simplex
SN−1 =

{
w ∈ RN :

∑N
i=1 wi = 1, wi ≥ 0

}
. Here, weight vectors w are interpreted as cate-

gorical distributions over experts; such a mechanism will allow us to learn the optimal distribution
over experts, rather than a single expert. In the following subsections, we show how to maintain each
of these distributions over time, but here we show how to use them for the general RL problem.

Given a state s = st and action a = at at time t, the return under model combination ρt(s, a) is

ρt(s, a) = E [qs,a|D] =

∫
R
q P (q|D) dq

=

∫
R
q

∫
SN−1

P (q|D,w)P (w|D) dw dq =

∫
R
q

∫
SN−1

N∑
i=1

P (q|i)wiπt(w) dw dq (7)

=

N∑
i=1

∫
R
q P (q|i)

∫
SN−1

wiπt(w) dw dq =

N∑
i=1

∫
R
q P (q|i)Eπt

[wi] dq (8)

=

N∑
i=1

Eπt
[wi]

∫
R
q P (q|i) dq =

N∑
i=1

Eπt
[wi]E [qs,a|i], (9)

where: the first equality in (7) follows from the law of total probability applied to P (q|D), whereas
the second equality follows from conditioning on the expert i ∈ {1, 2 . . . N}, using the facts that qs,a
is independent of w given i and P (i|w) = wi; the first equality in (8) follows from interchange of
summation and integration, while the second from the definition of expectation over wi; finally, (9)
follows from the definition of expectation of qs,a given i.

This result is intuitively and computationally pleasing, and shows that the total return can be written
as a linear combination of individual return “contributions" from each expert model, weighted by the
expected posterior belief that the expert is correct. We now show how each of these two expectations
can be computed.
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3.2 Posterior Approximation using Moment Matching

Starting with prior distribution πt at time t over the simplex SN−1, and given new data point d, we
would like to perform a posterior update using Bayes’ theorem

πt+1(w) = P (w|D, d) ∝ P (d|w)πt(w) ∝
N∑
i=1

P (d|i)P (i|w)πt(w)

=
1

Ct+1

N∑
i=1

eiwiπt(w), (10)

where we denote evidence ei = P (d|i), and Ct+1 is the normalizing constant for πt+1 determined as

Ct+1 =

∫
SN−1

N∑
i=1

eiwiπt(w) dw =

N∑
i=1

ei

∫
SN−1

wiπt(w) dw =

N∑
i=1

ei Eπt
[wi]. (11)

Unfortunately the exact posterior update is computationally intractable for general evidence ei, and
so an approximate posterior update is required.

Assumed density filtering, or moment matching, projects the true posterior distribution πt+1 onto an
exponential subfamily of proposal distributions by minimizing the KL-divergence between πt+1 and
the proposal distribution. We note that an excellent exponential family proposal distribution for our
posterior in (10) is the multivariate Dirichlet distribution with parameters α ∈ RN+ , density function

f(w;α) =
Γ
(∑N

i=1 αi

)
∏N
i=1 Γ(αi)

N∏
i=1

wαi−1
i , w ∈ SN−1, (12)

and generalized moments

Ef

[
N∏
i=1

wni
i

]
=

Γ
(∑N

i=1 αi

)
Γ
(∑N

i=1(αi + ni)
) N∏
i=1

Γ(αi + ni)

Γ(αi)
, ni ≥ 0. (13)

For the exponential family of proposal distributions, exact moment matching requires the moments
over the sufficient statistics. Since this is not available for the Dirichlet family in closed form, it
necessitates an iterative approach that is not computationally feasible in on-line RL. Instead, we
follow Hsu and Poupart [2016] and Omar [2016] by matching the moments (13), leading to an
efficient closed-form O(N) time update.

In particular, given means m1,m2 . . .mN−1 of marginals w1, w2 . . . wN−1 of πt+1 and second
moment s1 of w1, we apply approximate moment matching with proposal Dir(α) by solving the
system of equations

mi =
αi
α0
, i = 1, 2 . . . N − 1 (14)

s1 =
α1(α1 + 1)

α0(α0 + 1)
(15)

where α0 =
∑N
i=1 αi > 0. Please note that the second moment condition (15) is necessary here,

since without it the system is under-determined. Also, we could use any of s2, s3, . . . sN in place of
s1; in our experiments, we use the value of si which results in the largest value of si −m2

i to avoid
underflow in the solution. The unique positive solution of (14) and (15) is

α0 =
m1 − s1

s1 −m2
1

αi = miα0 = mi

(
m1 − s1

s1 −m2
1

)
, i = 1, 2 . . . N − 1.

(16)

In order to apply the moment matching solution (16) to approximate the posterior update (10), it
remains to compute the moments m1,m2, . . .mN−1 and s1 of πt+1.
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We proceed by induction on t. More specifically, we assume that the prior π0 = Dir(α0) was chosen
arbitrarily and that the projection Dir(αt) of πt was already obtained. Given new evidence e ∈ RN+ ,
we obtain Ct+1 =

∑N
i=1 ei Eπt [wi] =

∑N
i=1 ei

αt,i

αt,0
= e·αt

αt,0
where αt,0 =

∑N
i=1 αt,i > 0. Using

(10) and (13),

mi = Eπt+1
[wi] =

∫
SN−1

αt,0
e · αt

N∑
j=1

ejwjwiπt(w) dw

=
αt,0
e · αt

N∑
j=1

ej

∫
SN−1

wjwiπt(w) dw =
αt,0
e · αt

N∑
j=1

ej Eπt
[wiwj ]

=
αt,0
e · αt

ei Eπt

[
w2
i

]
+
∑
j 6=i

ej Eπt
[wiwj ]


=

αt,0
e · αt

ei αt,i(αt,i + 1)

αt,0(αt,0 + 1)
+
∑
j 6=i

ej
αt,iαt,j

αt,0(αt,0 + 1)


=

αt,i(ei + e · αt)
(e · αt)(αt,0 + 1)

. (17)

Using the same technique, we can readily obtain the corresponding formula for s1,

s1 =
αt,1(αt,1 + 1)(2e1 + e · αt)
(e · αt)(αt,0 + 1)(αt,0 + 2)

. (18)

Combining (17) and (18) with the general solution to the moment matching problem (16) yields
the new projected posterior Dir(αt+1). This leads to a very efficient O(N) algorithm for posterior
updates given in Algorithm 1.

Algorithm 1 PosteriorUpdate(αt, e)

1: for i = 1, 2 . . . N − 1 do . Compute posterior moments
2: mi ← αt,i(ei+e·αt)

(e·αt)(αt,0+1)

3: s1 ← αt,1(αt,1+1)(2e1+e·αt)
(e·αt)(αt,0+1)(αt,0+2)

4: αt+1,0 ← m1−s1
s1−m2

1
. Compute αt+1

5: for i = 1, 2 . . . N − 1 do
6: αt+1,i ← miαt+1,0

7: αt+1,N ← αt+1,0 −
∑N−1
i=1 αt+1,i

8: return αt+1

Finally, once we have obtained αt, we can compute Eπt [wi] =
αt,i

αt,0
=

αt,i∑N
j=1 αt,j

. It remains only to

show how to compute E [qs,a|i] and evidence e.

3.3 Algorithm

Following the Bayesian Q-learning framework (Dearden et al. [1998]), we model Q-values for each
state-action pair as independent Gaussian distributed random variables. Since the best choice of Φ
should be the optimal value function V ∗, we model Q-values qs,a given the best expert Φi as

qs,a|i ∼ N
(
Φi(s), (σ

i
s,a)2

)
, (19)

where i ∈ {1, 2 . . . N}. Since (σis,a)2 is not known, we need to maintain an estimator of (σis,a)2.
However, maintaining an estimate for each expert and state-action pair would not be practical for
large spaces, so we follow Downey and Sanner [2010] and replace (σis,a)2 by the sample variance σ̂2

of D. This permits constant-time updates per sample without any additional memory overhead, and
this worked very well in our experiments.
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Using these observations and the approximation πt = Dir(αt) from Section 3.2, (9) reduces to

ρt(s, a) =

N∑
i=1

E [qs,a|i]Eπt
[wi] =

∑N
i=1 Φi(s)αt,i∑N

i=1 αt,i
, (20)

and defines the reward shaping potential function Φ̂ used during training. Finally, given a return
observation d ∈ D in state s, the evidence ei for each i ∈ {1, 2 . . . N} is computed simply from the
Gaussian probability distribution N

(
Φi(s), σ̂

2
)

in (19).

We note that all steps can be performed efficiently on-line and so this approach does not require
storing D explicitly. Furthermore, it can be easily incorporated into general reinforcement learning
algorithms without increasing the runtime complexity. Perhaps most importantly, since ρt in (20) is a
potential-based reward shaping function, it would not change the asymptotically optimal policy. The
complete algorithm is summarized in Algorithm 2. Here, TrainRL(F) is a general procedure for
training on one state-action-reward sequence using the immediate reward function R+ F .

Algorithm 2 RL with Bayesian Reward Shaping

1: initialize α ∈ RN+
2: for episode = 0, 1 . . .M do . Main loop
3: Φ̂←

∑N
i=1 Φiαi∑N
i=1 αi

. Pool experts and compute shaped reward

4: F (s, a, s′)← γΦ̂(s′)− Φ̂(s)
5: (Rt, st)t=1...T ← TrainRL(F ) . Perform one episode of training
6: for all (Rt, st) do . Posterior update
7: update σ̂2 and compute e
8: α← PosteriorUpdate(α, e)

Remarks: Steps 3 and 4 in Algorithm 2 update the advice off-line on a sequence of cached observations.
It is possible to make this algorithm on-line by performing steps 3 and 4 after each observation, but
care must be taken to ensure consistency of the optimal policies (Devlin and Kudenko [2012]).

4 Experimental Results

In order to validate the effectiveness of our proposed algorithm, we apply it to a Gridworld problem
with subgoals and the classical CartPole problem. We implement the exact tabular Q-learning and
SARSA algorithms (2) and the off-policy Deep Q-Learning algorithm with experience replay (Mnih
et al. [2013]). In all cases, we followed ε-greedy policies introduced in Section 2.2, and manually
selected parameters that worked well for all experts. Policies are learned from scratch, with table
entries initialized to zero and neural networks initialized randomly.

4.1 Gridworld

This is the 5-by-5 navigation problem with subgoals introduced in Ng et al. [1999]. We charge +1
points for every move, and one additional point whenever it is invalid (e.g. choosing “UP" when
adjacent to the top edge, or an attempt is made to collect a flag in an incorrect order) to encourage the
agent to choose valid moves. For all algorithms, we set the length of each episode to T = 200 steps,
γ = 1.0, and εt = 0.98t, where t ≥ 0 is the episode.

In the tabular case, we set α = 0.4 for Q-learning and α = 0.36 for SARSA. The DQN is a dense
network with encoded state s as inputs and action-values {Q(s, a) : a ∈ A} as outputs, and two
fully-connected hidden layers with 25 neurons per layer. We use one-hot encoding for states (see,
e.g. Lantz [2013]). Hidden neurons use leaky ReLU activations and outputs use linear to allow
unbounded values. The learning rate is fixed at 0.001 throughout training that is done on-line using
the Adam optimizer in batches of size 16 sampled randomly from memory of size 10000 (we found
that doing 5 epochs of training per batch led to more stable convergence).

We consider the following five experts in our analysis: Φopt(s) = V ∗(s) the optimal value function,
Φgood(x, y, c) = −22(5− c− 0.5)/5 is reasoned in Ng et al. [1999] assuming equidistant subgoals,
Φzero(x, y, c) = 0, Φrand(x, y, c) = U where U ∼ U [−20, 20], and Φneg(s) = −V ∗(s).
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Figure 1: Test performance (number of steps required to reach the final goal) of the learned policy on
Gridworld for each potential versus the number of training episodes, averaged over 100 independent
runs of tabular Q/SARSA and 20 runs of DQN. BMC corresponds to Algorithm 2 applied to all
potential functions.
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Figure 2: Test performance (number of steps that the pole was balanced) of the learned policy on
CartPole for each potential versus the number of training episodes, averaged over 100 runs of tabular
Q/SARSA and 20 of DQN.

4.2 CartPole

This is a classical control problem described in Geva and Sitte [1993] and implemented in OpenAI
Gym (Brockman et al. [2016]). In order to encourage the agent to balance the pole, we provide a
reward of +1 at every step as long as the pole is upright. We set T = 500 frames, γ = 0.95, and
εt = 0.98t. Finally, to prevent over-fitting, we stop training whenever the score attained on each of
the last 5 episodes is 500.

In both tabular cases, we set αt = max{0.01, 1
20.99t} and εt = max{0.01, 0.98t}, where t ≥ 0 is

the episode. States (x, θ, ẋ, θ̇) are discretized into 3, 3, 6 and 3 bins, respectively, for a total of 162
states. The neural network takes continuous inputs in R4 and has two fully-connected hidden layers
with 12 neurons in each. Once again we use ReLU activations for hidden neurons and linear for
output neurons. We set the learning rate to 0.0005 and train using the Adam optimizer. To further
prevent over-fitting, we train off-line at the end of each episode on 100 batches of size 32 and use L2
regularization with penalty 1E-6.

We consider the following five experts: Φguess(s) = 20(1 − |θ|
0.2618 ) assigns a reward based on

the proximity of the pole angle to the vertical, Φnet is a pre-trained neural network with two
hidden layers with 6 neurons per layer, Φzero(s) = 0, Φrand(s) = U where U ∼ U [−20, 20], and
Φneg(s) = −Φnet(s).

4.3 Summary

The performance obtained from each expert and the model combination approach are illustrated in
Figure 1 for Gridworld and 2 for CartPole, and the learned expert weights are illustrated in Figure 3.
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Figure 3: Posterior weights assigned to each potential as a function of the number of episodes of
training, averaged over 100 independent runs using tabular Q and SARSA and 20 runs using DQN.

In Gridworld, it is interesting to see that Φgood and Φopt are quantitatively very similar, yet both have
similar effects on the rate of convergence in the tabular case, whereas Φopt considerably outperforms
Φgood in the deep learning case. As shown in Figure 3, our algorithm assigns most of its weight to
Φopt and results in near-optimal performance in all three cases.

In CartPole, it is not immediately clear that Φguess is better than Φnet, since both should be very
close to V ∗. However, Φnet is both a biased estimate of V ∗ and noisy (due the inexactness of gradient
descent), whereas the simple expert Φguess is highly related to the goal (keeping the pole centered).
Furthermore, Φnet is even less accurate in the tabular case due to state discretization. Once again,
Figure 3 clearly shows that our approach can handle both analytic and computational advice and is
sensitive to approximation error and noise.

5 Conclusion and Future Work

In this paper, the decision maker is presented with multiple sources of expert advice in the form of
potential-based reward functions, some of which can be misleading and should not be trusted. We
assumed that the decision makes does not know a priori which expert(s) to trust, but rather learns
this from experience in a Bayesian framework. More specifically, we followed the Bayesian model
combination approach and assigned posterior probabilities to distributions over experts. We showed
that the total expected return is a linear combination of individual expert predictions, weighted by the
posterior beliefs assigned to them. We solved the issue of tractability by projecting the true posterior
distribution onto the Dirichlet family using moment matching, and then specialized our analysis to
Bayesian Q-learning. Our approach followed the potential-based reward shaping framework and
does not change the optimal policies. Finally we showed that our proposed method accelerated the
learning phase when solving discrete and continuous domains using different learning algorithms.

Further extensions and generalizations of this work could include rigorous theoretical analysis of
posterior convergence under certain conditions on the reward shaping functions. It is also possible
to extend our analysis to state/action-dependent weightings of experts, at the cost of higher space
complexity; this could be useful in situations where the most suitable potential function changes in
different regions of the state space. It also remains to scale our work to large-scale and real-world
problems where imperfect advice and issues in convergence could be more prevalent.
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