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Abstract

In this paper we consider the problem of computing an e-optimal policy of a dis-
counted Markov Decision Process (DMDP) provided we can only access its tran-
sition function through a generative sampling model that given any state-action
pair samples from the transition function in O(1) time. Given such a DMDP with
states S, actions A, discount factor v € (0,1), and rewards in range [0, 1] we
provide an algorithm which computes an e-optimal policy with probability 1 — &
where both the time spent and number of sample taken are upper bounded by

o= (o) o ()]

For fixed values of ¢, this improves upon the previous best known bounds by a
factor of (1 — ~)~! and matches the sample complexity lower bounds proved in
[AMK13] up to logarithmic factors. We also extend our method to computing
e-optimal policies for finite-horizon MDP with a generative model and provide a
nearly matching sample complexity lower bound.

1 Introduction

Markov decision processes (MDPs) are a fundamental mathematical abstraction used to model se-
quential decision making under uncertainty and are a basic model of discrete-time stochastic control
and reinforcement learning (RL). Particularly central to RL is the case of computing or learning an
approximately optimal policy when the MDP itself is not fully known beforehand. One of the sim-
plest such settings is when the states, rewards, and actions are all known but the transition between
states when an action is taken is probabilistic, unknown, and can only be sampled from.

Computing an approximately optimal policy with high probability in this case is known as PAC
RL with a generative model. It is a well studied problem with multiple existing results providing
algorithms with improved the sample complexity (number of sample transitions taken) and running
time (the total time of the algorithm) under various MDP reward structures, e.g. discounted infinite-
horizon, finite-horizon, etc. (See Section 5 for a detailed review of the literature.)

In this work, we consider this well studied problem of computing approximately optimal policies
of discounted infinite-horizon Markov Decision Processes (DMDP) under the assumption we can
only access the DMDP by sampling state transitions. Formally, we suppose that we have a DMDP
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with a known set of states, S, a known set of actions that can be taken at each states, A, a known
reward r; , € [0,1] for taking action a € A at state s € S, and a discount factor v € (0,1). We
assume that taking action a at state s probabilistically transitions an agent to a new state based on
a fixed, but unknown probability vector P, ,. The objective is to maximize the cumulative sum
of discounted rewards in expectation. Throughout this paper, we assume that we have a generative
model, a notion introduced by [Kak03], which allows us to draw random state transitions of the
DMDP. In particular, we assume that we can sample from the distribution defined by P, , for all
(s,a) € S x Ain O(1) time. This is a natural assumption and can be achieved in expectation in
certain computational models with linear time preprocessing of the DMDP.!

The main result of this paper is that we provide the first algorithm that is sample-optimal and
runtime-optimal (up to polylogarithmic factors) for computing an e-optimal policy of a DMDP with
a generative model (in the regime of € > 1/4/(1 — 7)|S|). In particular, we develop a randomized
Variance-Reduced Q-Value Iteration (vQVI) based algorithm that computes an e-optimal policy with
probability 1 — § with a number of samples, i.e. queries to the generative model, bound by

X [(1&';)1%2 o ((1&%&) o ((1 - 7)6)] |

This result matches (up to polylogarithmic factors) the following sample complexity lower bound
established in [AMK13] for finding e-optimal policies with probability 1 — ¢ (see Appendix D):

lazopate(55)]

Furthermore, we show that the algorithm can be implemented using sparse updates such that the
overall run-time complexity is equal to its sample complexity up to constant factors, as long as each
sample transition can be generated in O(1) time. Consequently, up to logarithmic factors our run
time complexity is optimal as well. In addition, the algorithm’s space complexity is O(|S||.A]).

Our method and analysis builds upon a number of prior works. (See Section 5 for an in-depth com-
parison.) The paper [AMK13] provided the first algorithm that achieves the optimal sample com-
plexity for finding e-optimal value functions (rather than e-optimal policy), as well as the matching
lower bound. Unfortunately an e-optimal value function does not imply an e-optimal policy and if
we directly use the method of [AMK13] to get an e-optimal policy for constant ¢, the best known

sample complexity is O(|S||A|(1 — v)~®¢2). 2 This bound is known to be improvable through
related work of [SWWY 18] which provides a method for computing an e-optimal policy using
O(|S|]A|(1 — ~v)~%e~?) samples and total runtime and the work of [AMK13] which in the regime
of small approximation error, i.e. where ¢ = O((1 — ~)~'/2|S|~1/2), already provides a method
that achieves the optimal sample complexity. However, when the approximation error takes fixed
values, e.g. € > Q((1 — ~)~1/2|S|~'/2), there remains a gap between the best known runtime and
sample complexity for computing an e-optimal policy and the theoretical lower bounds. For fixed
values of €, which mostly occur in real applications, our algorithm improves upon the previous best
sample and time complexity bounds by a factor of (1 — ~)~! where v € (0, 1), the discount factor,
is typically close to 1.

We achieve our results by combining and strengthening techniques from both [AMKI13] and
[SWWY18]. On the one hand, in [AMK13] the authors showed that simply constructing a “sparsi-
fied” MDP model by taking samples and then solving this model to high precision yields a sample
optimal algorithm in our setting for computing the approximate value of every state. On the other
hand, [SWWY 18] provided faster algorithms for solving explicit DMDPs and improved sample and
time complexities given a sampling oracle. In fact, as we show in Appendix B.1, simply combining
these two results yields the first nearly optimal runtime for approximately learning the value function
with a generative model. Unfortunately, it is known that an approximate-optimal value function does
not immediately yield an approximate-optimal policy of comparable quality (see e.g. [Ber13]) and
it is was previously unclear how to combine these methods to improve upon previous known bounds
for computing an approximate policy. To achieve our policy computation algorithm we therefore

'If instead the oracle needed time 7, every running time result in this paper should be multiplied by 7.

2[AMK13] showed that one can obtain e-optimal value v (instead of e-optimal policy) using sample size
o (1 —~)"3¢ 2. By using this e-optimal value v, one can get a greedy policy that is [(1 —~) ~'¢]-optimal. By
setting € — (1 — )¢, one can obtain an e-optimal policy, using the number of samples o (1 — ) e 2



open up both the algorithms and the analysis in [AMK13] and [SWWY 18], combining them in non-
trivial ways. Our proofs leverage techniques ranging from standard probabilistic analysis tools such
as Hoeffding and Bernstein inequalities, to optimization techniques such as variance reduction, to
properties specific to MDPs such as the Bellman fixed-point recursion for expectation and variance
of the optimal value vector, and monotonicity of value iteration.

Finally, we extend our method to finite-horizon MDPs, which are also occurred frequently in real

applications. We show that the number of samples needed by this algorithm is O(H3|S||.A|e~2), in
order to obtain an e-optimal policy for H-horizon MDP (see Appendix F). We also show that the
preceding sample complexity is optimal up to logarithmic factors by providing a matching lower
bound. We hope this work ultimately opens the door for future practical and theoretical work on
solving MDPs and efficient RL more broadly.

2 Preliminaries

We use calligraphy upper case letters for sets or operators, e.g., S, A and 7. We use bold small
case letters for vectors, e.g., v, 7. We denote v, or v(s) as the s-th entry of vector v. We denote
matrix as bold upper case letters, e.g., P. We denote constants as normal upper case letters, e.g., M.
For a vector v € RV for index set AV, we denote \/v, |v|, and v? vectors in RV with v/, | - |, and
(-)2 acting coordinate-wise. For two vectors v, u € RN , we denote by v < w as coordinate-wise
comparison, i.e., Vi € N : v(i) < w(i). The same definition are defined to relations <, < and >.

We describe a DMDP by the tuple (S, A, P, r,v), where S is a finite state space, A is a finite action
space, P € RS*AXS ig the state-action-state transition matrix, r € RS> is the state-action reward
vector, and v € (0, 1) is a discount factor. We use P ,(s’) to denote the probability of going to
state s’ from state s when taking action a. We also identify each P , as a vector in RS. We use Ts.a
to denote the reward obtained from taking action a € A at state s € S and assume 7 € [0, 1]5*A.3
For a vector v € RS, we denote Pv € RS*4 as (Pv),, = Plav. A policy 7 : S — A maps
each state to an action. The objective of MDP is to find the optimal policy 7* that maximizes the
expectation of the cumulative sum of discounted rewards.

In the remainder of this section we give definitions for several prominent concepts in MDP analysis
that we use throughout the paper.

Definition 2.1 (Bellman Value Operator). For a given DMDP the value operator T : RS + RS is

defined for all u € RS and s € S by T (u)s = maxae[ra(s) + 7 - P;':av], and we let v* denote
the value of the optimal policy 7*, which is the unique vector such that 7 (v*) = v*.

Definition 2.2 (Policy). We call any vector 7 € AS a policy and say that the action prescribed by
policy 7 to be taken at state s € S is m,. We let 7, : RS — RS denote the value operator associated

with  defined for all u € RS and s € Sby Tr(u)s = 7g r(s) + 7 PIW(S)u ,and we let v™ denote
the values of policy w, which is the unique vector such that 7, (v™) = v™.
Note that 7, can be viewed as the value operator for the modified MDP where the only available

action from each state is given by the policy 7. Note that this modified MDP is essentially just an
uncontrolled Markov Chain, i.e. there are no action choices that can be made.

Definition 2.3 (e-optimal value and policy). We say values u € R® are e-optimal if ||v* —u| < €
and policy 7 € A® is e-optimal if |v* — v™||o < €, i.e. the values of 7 are e-optimal.

Definition 2.4 (Q-function). For any policy 7, we define the Q-function of a MDP with respect to 7
as a vector Q € RS> such that Q" (s, a) = r(s,a) + 'yPIa'v“. The optimal Q-function is defined

as Q" = Q’T*. We call any vector Q € RS* a Q-function even though it may not relate to a policy
or a value vector and define v(Q) € R® and 7(Q) € A as the value and policy implied by @, by

Vs e S :v(Q)(s) = max Q(s,a) and 7(Q)(s) = arg max Q(s,a).

For a policy m, let P"Q € RS*A be defined as (P"Q)(s,a) = Y., c s Ps.a(s)Q(s',7(s")).

3A general » € RS*“ can always be reduced to this case by shifting and scaling.



3 Technique Overview

In this section we provide a more detailed and technical overview of our approach. At a high
level, our algorithm shares a similar framework as the variance reduction algorithm presented in
[SWWY18]. This algorithm used two crucial algorithmic techniques, which are also critical in this
paper. We call these techniques as the monotonicity technique and the variance reduction technique.
Our algorithm and the results of this paper can be viewed as an advanced, non-trivial integration of
these two methods, augmented with a third technique which we refer to as a total-variation technique
which was discovered in several papers [MM99, LH12, AMK13]. In the remainder of this section
we give an overview of these techniques and through this, explain our algorithm.

The Monotonicity Technique Recall that the classic value iteration algorithm for solving a MDP
repeatedly applies the following rule

v (s) ¢ max(r(s,a) + 7P ,007Y). 3.1

A greedy policy 7(*) can be obtained at each iteration i by

Vs : 7 (s) < argmax(r(s, a) + ’yPIav(i)). (3.2)
For any u > 0, it can be shown that if one can approximate v(*)(s) with o (s) such that ||ﬁ(l) -
v/ < (1 — 4)u and run the above value iteration algorithm using these approximated values,
then after ©((1 — )~ ! log[u~!(1 — v)~!]) iterations, the final iteration gives an value function that
is u-optimal ([Ber13]). However, a u-optimal value function only yields a u/(1 — ~y)-optimal greedy
policy (in the worst case), even if (3.2) is precisely computed. To get around this additional loss, a
monotone-VI algorithm was proposed in [SWWY 18] as follows. At each iteration, this algorithm
maintains not only an approximated value v(*) but also a policy 7(?). The key for improvement is to
keep values as a lower bound of the value of the policy on a set of sample paths with high probability.
In particular, the following monotonicity condition was maintained with high probability

v < ﬂ(i)(v(i)) .
By the monotonicity of the Bellman’s operator, the above equation guarantees that v(*) < o,
If this condition is satisfied, then, if after R iterations of approximate value iteration we obtain an
value 5™ that is u-optimal then we also obtain a policy 7 (%) which by the monotonicity condition
and the monotonicity of the Bellman operator 7 (r) yields
v < T (009) < Ty (01) < < T (0) = 07
(R)

)
< v*.

and therefore this 7''*) is an u-optimal policy. Ultimately, this technique avoids the standard loss of
a (1 — ~)~! factor when converting values to policies.

The Variance Reduction Technique Suppose now that we provide an algorithm that maintains
the monotonicity condition using random samples from P, , to approximately compute (3.1). Fur-
ther, suppose we want to obtain a new value function and policy that is at least (u/2)-optimal. In

order to obtain the desired accuracy, we need to approximate Plav(i) up to error at most (1—~)u/2.
Since [|[v(?[|o < (1 —~)~, by Hoeffding bound, O((1 — v)~*u~2) samples suffices. Note that
the number of samples also determines the computation time and therefore each iteration takes
O((1 — ) *u=2|S||.A|) samples/computation time and O((1 — +) 1) iterations for the value itera-

tion to converge. Overall, this yields a sample/computation complexity of O((1 — ) 5u~2|S||.A]).
To reduce the (1 —~)~° dependence, [SWWY 18] uses properties of the input (and the initialization)
vectors: ||v(®) — v*||o, < u and rewrites value iteration (3.1) as follows

v(i)(s) +— max [r(s, a) + Pza(v(i_l) — U(O)) + Plav(o)], (3.3)

Notice that P;av(o) is shared over all iterations and we can approximate it up to error (1 — )u/4
using only O((1 — v)~*u~2) samples. For every iteration, we have ||v(i=1) — v(©) || < u (recall
that we demand the monotonicity is satisfied at each iteration). Hence Pla(v(i’l) — v() can
be approximated up to error (1 — ~)u/4 using only O((1 — ~)~2) samples (note that there is no u-
dependence here). By this technique, over O((1—~) 1) iterations only O((1—)*u~24(1—7)3)
samples/computation per state action pair are needed, i.e. there is a (1 — ) improvement.



The Total-Variance Technique By combining the monotonicity technique and variance reduction
technique, one can obtain a O((1 —~)~*) sample/running time complexity (per state-action pair) on
computing a policy; this was one of the results [SWWY 18]. However, there is a gap between this
bound and the best known lower bound of Q[|S||Ale~2(1 — v) 3] [AMKI13]. Here we show how
to remove the last (1 — ) factor by better exploiting the structure of the MDP. In [SWWY 18] the
update error in each iteration was set to be at most (1 —v)u/2 to compensate for error accumulation
through a horizon of length (1 — )~ (i.e., the accumulated error is sum of the estimation error
at each iteration). To improve we show how to leverage previous work to show that the true error
accumulation is much less. To see this, let us now switch to Bernstein inequality. Suppose we would
like to estimate the value function of some policy 7. The estimation error vector of the value function
is upper bounded by O(y/a/m), where 0(s) = Varg.p, ., (v"(s")) denotes the variance of
the value of the next state if starting from state s by playing policy 7, and m is the number of
samples collected per state-action pair. The accumulated error due to estimating value functions can
be shown to obey the following inequality (upper to logarithmic factors)

o oo 1/2
accumated error o Z VP o m < L Z YV PLo/m ,
i=0 =73
where c; is a constant and the inequality follows from a Cauchy-Swartz-like inequality. According
to the law of total variance, for any given policy 7 (in particular, the optimal policy 7*) and initial
state s, the expected sum of variance of the tail sums of rewards, WQiP;aW, is exactly the variance
of the total return by playing the policy m. This observation was previously used in the analysis of
[MM99, LH12, AMKI13]. Since the upper bound on the total return is (1 — 7)_1, it can be shown

that Y, 7% PLo, < (1 — )72 - 1 and therefore the total error accumulation is /(1 —~)~3/m.
Thus picking m ~ (1 —-)~3e~2 is sufficient to control the accumulated error (instead of (1 —~)~%).
To analyze our algorithm, we will apply the above inequality to the optimal policy 77* to obtain our
final error bound.

Putting it All Together In the next section we show how to combine these three techniques into
one algorithm and make them work seamlessly. In particular, we provide and analyze how to com-
bine these techniques into an Algorithm 1 which can be used to at least halve the error of a current
policy. Applying this routine a logarithmic number of time then yields our desired bounds. In the
input of the algorithm, we demand the input value v(°) and (%) satisfies the required monotonicity
requirement, i.e., (0 < T (v(O)) (in the first iteration, the zero vector 0 and an arbitrary pol-
icy 7 satisfies the requirement). We then pick a set of samples to estimate Pv(?) accurately with

O((1—)~3e~2) samples per state-action pair. The same set of samples is used to estimate the vari-
ance vector o,~. These estimates serve as the initialization of the algorithm. In each iteration 7, we
draw fresh new samples to compute estimate of P(v(?) — v(?)). The sum of the estimate of Pv(%)
and P (v — v(9)) gives an estimate of Pv(?). We then make the above estimates have one-sided
error by shifting them according to their estimation errors (which is estimated from the Bernstein
inequality). These one-side error estimates allow us to preserve monotonicity, i.e., guarantees the
new value is always improving on the entire sample path with high probability. The estimate of
Po is plugged in to the Bellman’s operator and gives us new value function, »“t1) and policy
71 satisfying the monotonicity and advancing accuracy. Repeating the above procedure for the
desired number of iterations completes the algorithm.

4 Algorithm and Analysis

In this section we provide and analyze our near sample/time optimal e-policy computation algo-
rithm. As discussed in Section 3 our algorithm combines three main ideas: variance reduction, the
monotone value/policy iteration, and the reduction of accumulated error via Bernstein inequality.
These ingredients are used in the Algorithm 1 to provide a routine which halves the error of a given
policy. We analyze this procedure in Section 4.1 and use it to obtain our main result in Section 4.2.

4.1 The Analysis of the Variance Reduced Algorithm

In this section we analyze Algorithm 1, showing that each iteration of the algorithm approximately
contracts towards the optimal value and policy and that ultimately the algorithm halves the error



Algorithm 1 Variance-Reduced QVI
1: Input: A sampling oracle for DMDP M = (S, A, r, P,~)
Input: Upper bound on error u € [0, (1 — ) ~!] and error probability § € (0,1)
Input: Initial values v(®) and policy 7(%) such that v(©) < 7. v, and v* — v(©) < ul;
Output: v, 7 such that v < T (v) and v* — v < (u/2) - 1.

INITIALIZATION:

Let B+ (1 —~)~ %, and R < [e18In[Bu~1]] for constant c;

Let my < c233u~2log(8|S||.A|6~1) for constant cy;

9: Let ma < c33%1og[2R|S||.A|5~1] for constant c3;

10: Let oy < my~tlog(8|S||Al671);

11: For each (s,a) € S x A, sample independent samples sg}g, 5&23, R sgﬁl) from P ,;
12: Initializew = w =& = Q*) «~ 05,4, and i + 0;

13: for each (s,a) € S x A do

14: \\ Compute empirical estimates ofPIa'U(O) and o ) (s, a)

150 Let(s,a) ¢ = X7 0O (sP))

16 Letd(s,a) ¢ ;2 37 (v©)2(sY0) — @3 (s, a)

17:

18: \\Shift the empirical estimate to have one-sided error and guarantee monotonicity

19: w(s,a) + w(s,a) — \/2010(s,a) — 40!?/4”1)(0)“00 — (2/3)a1||v(0)||00

21: \\ Compute coarse estimate of the Q-function

22: Q9 (s,a) « 7(s,a) + yw(s,a)

23:

24: REPEAT: \\successively improve

25: fori =1to R do

26: \\ Compute g©") the estimate of P [v(i) — v(o)} with one-sided error

27: Letv® « v(QU V), 7D  7(QUV); \\let 8V « v @ 7O « 7O (for analysis);

28:  Foreachs € S, if v()(s) < v(=1(s), then v (s) < v~V (s) and 7V (s5) < 71 (s);

29: For each (s,a) € S x A, draw independent samples 5&1()1, fs{f()l, . ,3@7&2) from P ;
300 Letg((s,a) + = 372 [w@(E0) — 0@ GE0)] — (1 - y)u/s;

31:

32: \\Improve Q¥

33 QY 4y [w+gW);
34: return v 7 (7)),

of the input value and policy with high probability. All proofs in this section are deferred to Ap-
pendix E.1.

We start with bounding the error of w and & defined in Line 15 and 16 of Algorithm 1. Notice that
these are the empirical estimations of Plav(o) and o ) (s, a).

Lemma 4.1 (Empirical Estimation Error). Let w and & be computed in Line 15 and 16 of Algorithm
1. Recall that w and & are empirical estimates of Pv and o, = Pv? — (Pv)? using m, samples

per (s, a) pair. With probability at least 1 — §, for L = log(8|S||.A|6~1), we have

[ — P 0@ < \/2m oy - L+ 23m1) o] L @.1)

V(s,a) €S x A:  [G(s,a) — oy (s,a)| < 4o V)% - \/2m L. (4.2)

and

The proof is a straightforward application of Bernstein’s inequality and Hoeffding’s inequality.

Next we show that the difference between o) and o+ is also bounded.



Lemma 4.2. Suppose ||[v — v*||oc < €for some € > 0, then /T, < /Oy +€- 1.

Next we show that in Line 30, the computed g(*) concentrates to and is an overestimate of P[v(i) —
v(?)] with high probability.

Lemma 4.3. Let g\ be the estimate ofP['u(i) — v(o)} defined in Line 30 of Algorithm 1. Then
conditioning on the event that ||v() — v(©)|| . < 2u, with probability at least 1 — § /R,

Plo — o] % 1< g < Plot) — o]
provided appropriately chosen constants c1, co, and cs in Algorithm 1.

Now we present the key contraction lemma, in which we set the constants, ¢y, c2, ¢, in Algorithm 1
to be sufficiently large (e.g., c1 > 4,ce > 8192, c3 > 128). Note that these constants only need to
be sufficiently large so that the concentration inequalities hold.

Lemma 4.4. Let Q(i) be the estimated Q-function of v") in Line 33 of Algorithm 1. Let 7 and
v be estimated in iteration i, as defined in Line 27 and 28. Then, with probability at least 1 — 26,
foralll <i <R,

o0 <ol <T [P, QY <r4+yPv, and Q —-QW <P [Q" Q" V] +¢,
where for o = ml_lL < 1 the error vector & satisfies

0<¢<Cyaroy + [(1 —Yu/C+ Caf/4||v(0)||oo} -1,
Sfor some sufficiently large constant C' > 8.

Using the previous lemmas we can prove the guarantees of Algorithm 1.

Proposition 4.5. On an input value vector v(*), policy 7(%), and parameters u € (0, (1 —~)~1],0 €
(0,1) such that v(9) < T, o) [0©], and v* — v < w1, Algorithm 1 halts in time O((1 —~)~'u~2-
|S||A] - log(|S|| A6~ (1 — v)~tu~1)) and outputs values v and policy 7 such that v < 7 (v) and
v* — v < (u/2)1 with probability at least 1 — §, provided appropriately chosen constants, ¢1, ¢z, ¢3.

We prove this proposition by iteratively applying Lemma 4.4. Suppose v(*) is the output of the
algorithm, after R iterations. We show v* — v(f) < 4E-1p™ [Q* — QO] + (I —~P™ )7 1¢.
Notice that (I — vP™ )~1¢ is related to (I — vP™ )~!,/Gy-. We then apply the variance an-

alytical tools presented in Section C to show that (I — yP™ )~*¢ < (u/4)1 when setting the
constants properly in Algorithm 1. We refer this technique as the fotal-variance technique, since

[(I —=yP™ )1 /G- |2 < O[(1—~) 3] instead of a naive bound of (1 —~)~%. We complete the
proof by choosing R = ©((1 —~)~*log(u~!)) and showing that %=1 P™ Q" — QO} < (u/4)1.

4.2 From Halving the Error to Arbitrary Precision

In the previous section, we provided an algorithm that on an input policy, outputs a policy with
value vector that has /., distance to the optimal value vector only half of that of the input one. In
this section, we give a complete policy computation algorithm by by showing that it is possible to
apply this error “halving” procedure iteratively. We summarize our meta algorithm in Algorithm 2.
Note that in the algorithm, each call of HALFERR draws new samples from the sampling oracle. We
refer in this section to Algorithm 1 as a subroutine HALFERR, which given an input MDP M with
a sampling oracle, an input value function v(*), and an input policy 7(*), outputs an value function
v+ and a policy 701,

Combining Algorithm 2 and Algorithm 1, we are ready to present main result.

Theorem 4.6. Let M = (S, A, P,r,~) be a DMDP with a generative model. Suppose we can
sample a state from each probability vector P o within time O(1). Then for any €, € (0,1), there
exists an algorithm that halts in time

0 [ v (2 )




Algorithm 2 Meta Algorithm
1: Input: A sampling oracle of some M = (S, A,r, P,7),e > 0,0 € (0,1)
- Initialize: v(¥) « 0, 7(9) « arbitrary policy, R + O[log(e~'(1 —~)~1)]
: fori ={1,2,...,R} do
//HALFERR is initialized with QVI(u = 2~t1(1 — 7)1, 6,00 = (=1 7(0) = z(-1))
v® 1) « HALFERR « v~ 7(-1)
: Output: v 71,

and obtains a policy 7 such that v* — el < v™ < v*, with probability at least 1 — § where v* is the
optimal value of M. The algorithm uses space O(|S||A|) and queries the generative model for at
most O(T) fresh samples.

Remark 4.7. The full analysis of the halving algorithm is presented in Section E.2. Our algorithm
can be implemented in space O(|S||.A|) since in Algorithm 1, the initialization phase can be done
for each (s, a) and compute w(s, a), w(s,a), &(s,a), Q" (s, a) without storing the samples. The
updates can be computed in space O(|S||.A]) as well.

S Comparison to Previous Work

Algorithm Sample Complexity References
Phased Q-Learning 19) (C (1‘:91,‘;3‘52 ) [KS99]
Empirical QVI O( (1‘1‘;;62 )4 [AMK13]
Empirical QVI O(A4L ) if e = O(———) [AMK13]
mpirical Q (i—)3e2 T8l
Randomized Primal-Dual =~ |S||A| .
Method o( (1—7)462) [Wanl7]
Sublinear Randomized Value = 1S|1A
Iteration 0 ((1*"/)462 ) [SWWY18]
Sublinear Randomized QVI 0 (%) This Paper

Table 1: Sample Complexity to Compute e-Approximate Policies Using the Generative Sampling Model:
Here |S| is the number of states, |.A4| is the number of actions per state, v € (0, 1) is the discount factor, and C'
is an upper bound on the ergodicity. Rewards are bounded between 0 and 1.

There exists a large body of literature on MDPs and RL (see e.g. [Kak03, SLL09, KBJ14, DB15]
and reference therein). The classical MDP problem is to compute an optimal policy exactly or
approximately, when the full MDP model is given as input. For a survey on existing complexity
results when the full MDP model is given, see Appendix A.

Despite the aforementioned results of [Kak03, AMK13, SWWY 18], there exists only a handful of
additional RL methods that achieve a small sample complexity and a small run-time complexity at
the same time for computing an e-optimal policy. A classical result is the phased Q-learning method
by [KS99], which takes samples from the generative model and runs a randomized value itera-
tion. The phased Q-learning method finds an e-optimal policy using O(|S||.Ale=2/poly(1 — 7))
samples/updates, where each update uses O(1) run time.> Another work [Wanl7] gave a ran-
domized mirror-prox method that applies to a special Bellman saddle point formulation of the
DMDP. They achieve a total runtime of O(|S|*|Ale=2(1 — ~)~%) for the general DMDP and

O(C|S|| Ale=2(1 — v)~*) for DMDPs that are ergodic under all possible policies, where C' is a
problem-specific ergodicity measure. A recent closely related work is [SWWY 18] which gave a
variance-reduced randomized value iteration that works with the generative model and finds an e-
approximate policy in sample size/run time O(|S||.A|e~2(1—~)~*), without requiring any ergodicity
assumption.

*Although not explicitly stated, an immediate derivation shows that obtaining an e-optimal policy in
[AMK 3] requires O(|S||A|(1 — ) ®e2) samples.

>The depe7ndence on (1 — ) in [KS99] is not stated explicitly but we believe basic calculations yield
o/t =7)").



Finally, in the case where e = O (1 /(1 =v)"YS ) [AMK13] showed that the solution obtained
by performing exact PI on the empirical MDP model provides not only an e-optimal value but also
an e-optimal policy. In this case, the number of samples is O(|S||.A|(1 —7)~3e~2) and matches the
sample complexity lower bound. Although this sample complexity is optimal, it requires solving the
empirical MDP exactly (see Appendix B), and is no longer sublinear in the size of the MDP model

because of the very small approximation error ¢ = O(1/4/(1 —7)|S|). See Table 1 for a list of
comparable sample complexity results for solving MDP based on the generative model.

6 Concluding Remark

In summary, for a discounted Markov Decision Process (DMDP) M = (S, A, P, r,~) provided
we can only access the transition function of the DMDP through a generative sampling model, we
provide an algorithm which computes an e-approximate policy with probability 1 — d where both the
time spent and number of sample taken is upper bounded by O((1—+)~3¢~2|S||.A|). This improves
upon the previous best known bounds by a factor of 1/(1 — 7) and matches the the lower bounds
proved in [AMK13] up to logarithmic factors.

The appendix is structured as follows. Section A surveys the existing runtime results for solving the
DMDP when a full model is given. Section B provides an runtime optimal algorithm for computing
approximate value functions (by directly combining [AMK13] and [SWWY18]). Section C gives
technical analysis and variance upper bounds for the total-variance technique. Section D discusses
sample complexity lower bounds for obtaining approximate policies with a generative sampling
model. Section E provides proofs to lemmas, propositions and theorems in the main text of the
paper. Section F extends our method and results to the finite-horizon MDP and provides a nearly
matching sample complexity lower bound.
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