
DifNet: Semantic Segmentation by Diffusion

Networks

Peng Jiang 1 Fanglin Gu 1 Yunhai Wang 1

Changhe Tu 1 Baoquan Chen 2,1

1Shandong University, China 2Peking University, China
sdujump@gmail.com, fanglin.gu@gmail.com, cloudseawang@gmail.com

chtu@sdu.edu.cn, baoquan.chen@gmail.com

Abstract

Deep Neural Networks (DNNs) have recently shown state of the art performance
on semantic segmentation tasks, however, they still suffer from problems of poor
boundary localization and spatial fragmented predictions. The difficulties lie in
the requirement of making dense predictions from a long path model all at once,
since details are hard to keep when data goes through deeper layers. Instead, in
this work, we decompose this difficult task into two relative simple sub-tasks: seed
detection which is required to predict initial predictions without the need of whole-
ness and preciseness, and similarity estimation which measures the possibility of
any two nodes belong to the same class without the need of knowing which class
they are. We use one branch network for one sub-task each, and apply a cascade of
random walks base on hierarchical semantics to approximate a complex diffusion
process which propagates seed information to the whole image according to the
estimated similarities.

The proposed DifNet consistently produces improvements over the baseline mod-
els with the same depth and with the equivalent number of parameters, and also
achieves promising performance on Pascal VOC and Pascal Context dataset. Our
DifNet is trained end-to-end without complex loss functions.

1 Introduction

Semantic Segmentation who aims to give dense label predictions for pixels in an image is one of the
fundamental topics in computer vision. Recently, Fully convolutional networks (FCNs) proposed
in [1] have proved to be much more powerful than schemes which rely on hand-crafted features.
Following FCNs, subsequent works [2–16] have get promoted by further introducing atrous convo-
lution, shortcut between layers and CRFs post-processing.

Even with these refinements, current FCNs based semantic segmentation methods still suffer from
the problems of poor boundary localization and spatial fragmented predictions, because of following
challenges: First, to abstract invariant high level feature representations, deeper models are preferred,
however, the invariance character of features and increasing depth of layers may lead detailed spatial
information lost. Second, given this long path model, the requirement of making dense predictions
all at once makes these problems more severe. Third, the lack of ability to capturing long-range
dependencies causes model hard to generate accuracy and uniform predictions [17].

To address these challenges, we relieve the burden of semantic segmentation model by decomposing
semantic segmentation task into two relative simple sub-tasks, seed detection and similarity estima-
tion, then diffuse seed information to the whole image according to the estimated similarities. For
each sub-task, we train one branch network respectively and simultaneously, therefore our model
has two branches: seed branch and similarity branch. The simplicity and motivation lie in these

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

following aspects: For seed detection, we hope it can give initial predictions without the need of
wholeness and preciseness, this requirement is highly appropriate to the property of DNNs’ high
level features which are good at representing high level semantic but hard to keep details. For simi-
larity detection, we intend to estimate the possibility of any two nodes that belong to the same class,
under this circumstance, relatively low level features already could be competent.

Based on the motivations mentioned above, we let seed branch predict initial predictions and let
similarity branch estimate similarities. To be specific, seed branch firstly generates a score map
which assigns score value for each class at each node (pixel), then an importance map is learned
to re-weight score map to get initial predictions. At the same time, similarity branch will extract
features from different semantic levels, and compute a sequence of transition matrices correspond-
ingly. Transition matrices measure the possibility of random walk between any two nodes, with our
implementation they could also reflect similarities on different semantic levels. Finally, we apply
a cascade of random walks based on these transition matrices to approximate a complex diffusion
process, in order to propagate seed information to the whole image according to the hierarchical
similarities. In this way, the inversion operation of dense matrix in the diffusion process could
be avoided. Our diffusion process by cascaded random walks shares the similar idea as residual
learning framework [18] who eases the approximation of a complex objective by learning residuals.
Moreover, our random walk actually computes the final response at a position as a weighted sum
of all the seed values which is a non-local operation that can capture long-range dependencies re-
gardless of positional distance. Besides, from Fig. 1(a), we can see the cascaded random walks also
increase the flexibility and diversity of information propagation paths.

Our proposed DifNet is trained end-to-end with common loss function and no post-processing. In
experiments, our model consistently shows superior performance over the baseline models with the
same depth and with the equivalent number of parameters, and also achieves promising performance
on Pascal VOC 2012 and Pascal Context datasets. In summary, our contributions are:

• We decompose the semantic segmentation task into two simple sub-tasks.

• We approximate a complex diffusion process by cascaded random walks.

• We provide comprehensive mechanism studies.

• Our model can capture long-range dependencies.

• Our model demonstrates consistent improvements over various baseline models.

2 Related Work

Many works [2, 8, 9, 15, 14, 13, 12, 11, 10, 19–21] (Here, we mainly focus on methods that are
based on deep neural networks, as these represent the state-of-the-art and are the most relevant to
our scheme.) have approached the problems of poor boundary localization and spatially fragmented
predictions for semantic segmentation.

Currently, conditional random field (CRF) is one of the major approaches used to tackle these two
problems. Works, such as [2], use CRF as a disjoint post-processing module on top of the main
model. Because of disjoint training and post-processing, they often fail to capture semantic relation-
ships between objects accurately and thus produce segmentation results spatially disjoint. Instead,
works [8, 10, 12, 9, 20] propose to integrate CRF into the networks, so as to enable end-to-end
training of the joint model. However, this integration may lead to a dramatic increase of param-
eters and computing complexity that the model usually needs many iterations of mean-field infer-
ence or a recurrent scheme [12] to optimize the CNN-CRF models. To avoid iterative optimization,
works [13, 14] employ Gaussian Conditional Random Fields which can be optimized by only solving
a system of linear equations, but at the cost of increasing complexity of gradient computation. Apart
from the view of CRF, work [15] utilizes graphical structures to refine results by random walks, but
the calculation has a dense matrix inversion term which is not appropriate for the networks. Unlike
above mentioned methods, work [21] does not compute global pairwise relations directly. It pre-
dicts four local pairwise relations along the different direction to approximate the global pairwise
relations, however, it also leads to the complexity of the model.

To integrate CRF into the model, several works also employ networks with two branches that one for
pairwise term and one for unary term. However, the definition and computation are different from

2

(a)

(b)

Figure 1: (a) Our DifNet contains two branches: 1. Seed Branch, which produces score map and
importance map, from which seed are obtained by Hadamard product ⊗; 2. Similarity Branch,
which extracts features from different layers to compute transition matrices and estimate pixel-wise
similarities. Finally, the model approximates the diffusion process by a cascade of random walks
⊕ to propagate seed information to the whole image according to the estimated similarities. (b)
Random Walk operation. For each random walk, the inputs are: 1. Output of last random walk
operation; 2. Features from Similarity Branch; 3. Seed from Seed Branch. Given the inputs, output
is calculated by ⊕. The specific computation procedure will be explained in Sec. 4.

ours that we represent pairwise similarities by the transition matrix whose summation in each row
or column equals one. For the purpose of measuring similarity, different metrics are presented, ours
and [14] compute similarities by inner product while most of the others use Mahalanobis distance.
It is important to note that our DifNet consists several transition matrices which are computed based
on features from different semantic levels, and each random walk operation is conducted according
to one transition matrix, see Fig. 1(a). In this way, we do not require each transition matrix contains
all the similarity information, which relieves the burden of similarity branch. Besides, the cascaded
random walks will also increase the flexibility and diversity of information propagation paths.

For supervised semantic segmentation tasks, cross-entropy is the most common used loss function.
However, in some previously mentioned models [15, 20], another loss for similarity estimation had
been applied, where similarity groundtruth are transformed from labels. According to [22], optimal
pairwise term and optimal unary term are mutually influenced, so strict constraint on only one of
these two terms may not lead to good results. Consequently, in our DifNet, we only penalize final
predictions by cross-entropy loss. As for training strategy, we train our two branches simultaneously,
while some works, for instance [14], train the two branches alternatively.

3 Methodology

Given the input image I of size [c, h, w], the pairwise relationship can be expressed as affinity matrix
WN×N , where N = h × w and each element Wij encodes the similarity between node i and node
j. As mentioned in Sec. 1, our seed vector is defined as s = Mx where x is the score map of size
[N,K] (K is the number of classes) and importance map M is the diagonal matrix with the size of
N ×N and value in [0, 1].

Assuming the final predictions are y, in order to diffuse seed value to all the other nodes according
to the affinity matrix, we can optimize the following equation:

y = argmin
y∗

1

2
(µ

N
∑

i,j=1

Wij‖
y∗i√
dii

−
y∗j

√

djj
‖2 + (1− µ)

N
∑

i=1

Mii‖y∗i − xi‖2) (1)

Eq. 1 is convex and has a closed-form solution, without loss of generality:

y = (D−1(D − µW))−1(1− µ)Mx (2)

3

where D is the degree matrix that defined as D = diag{d11, ..., dNN} and dii =
∑

j Wij , µ is

the weight to balance smooth term and data term. Eq. 2 is usually considered as diffusion process
that y = L−1s, where s = Mx is the seed vector and L−1 = (D−1(D − µW))−1 is the diffusion
matrix (L equals to the inversion of normalized graph Laplacians). Works such as [15, 14] propose
to use networks with two branches to predict these two parts respectively. However, to compute final
predictions y, they have to solve dense matrix inversion or a system of linear equations, which is
time-consuming and unstable (the matrix to be inverted may be singular.). To tackle this problem,
we propose to use a cascade of random walks to approximate the diffusion process. A random walk
with the seed vector as initial state is defined as:

yt+1 = µPyt + (1− µ)s (3)

where µ is a parameter in [0, 1] that controls the degree of random walk to other states from the
initial state, and P = D−1W is transition matrix whose element measures the possibility that a
random walk occurs between corresponding positions and has value in [0, 1]. It is important to note
that Eq. 3 does not contain dense matrix inversion anymore and is equal to Eq. 2 when t → ∞,
which is proved by the following.

Proof. Eq. 3 can be reformulated as yt+1 = (µP)t+1s + (1 − µ)
∑t

i=0
(µP)is by unrolling the

recurrence. When t → ∞ and in view of P, µ ∈ [0, 1], apparently lim
t→∞

(µP)t+1 = 0 and yt+1 =

(1 − µ)
∑t

i=0
(µP)is. By computing yt+1 − µPyt+1 and setting t → ∞, we finally obtain y∞ =

(1− µP)−1(1− µ)s which equals to Eq. 2.

4 Implementation

In this section, we describe how we implement a cascade of random walks by DifNet to approximate
the diffusion process.

The key part of the random walk is the computing of transition matrix P = D−1W which is equiv-
alent to conducting a softmax along each row of W that P = softmax(W). To compute W
and measure similarities between nodes, we apply the inner product of features f from similarity
branch. Before that, in our implementation, we first adjust feature dimensions to fixed length by one

conv(1 × 1)-bn-pooling layer Ψ, so that W = Ψ(f)
T
Ψ(f). Because P has encoded similarities

between any node pairs and random walk is a non-local operation, so that long-range dependencies
can be captured.

To let DifNet approximate the diffusion process by learning, we should take full advantage of the
learning capacity of model. Instead of using a predefined and fixed parameter µ, our model learns
this parameter and determines the degree of each random walk adaptively. Besides, for the differ-
ent random walk, we compute the corresponding transition matrix Pt based on features from the
different layer of similarity branch which represent different semantic levels, thus the information
will be propagated gradually according to different levels’ semantic similarities. By this manner, the
diffusion process is not merely approximated by the cascaded random walks, but by the cascaded
random walks on hierarchical semantics. We demonstrate how these transition matrices look like in
Sec. 5.3. Consequently, our random walks can be defined as:

yt+1 = µtPty
t + (1− µt)s (4)

As mentioned before, our seed s is expressed as a multiplication of importance map M and score
map x, this operation is denoted as ⊗ in Fig. 1(a). Score map x is the direct output of seed branch
with value in R, thus our DifNet is actually diffusing score and the influence of node i to others in
channel k when diffusion should be defined as |xi,k|. To further adjust the influence of nodes, we
introduce several layers H (with sigmoid as the last activation) on top of x to predict an importance
map M (diagonal matrix), such that M = H(x). Finally, we apply the important map to score
map and obtain seed by s = Mx. From experiments, we observe that importance map adjusts the
influence of nodes base on scores of the neighborhood. Fig. 2 demonstrates score map x, influence
map E and importance map M . Clearly, M will reduce the influence of over-emphasis nodes and
outliers. Please see Sec. 5.3 for details.

It’s worth to note that in our implementation s is of size [h′×w′,K] and P is of size [h′×w′, h′×w′],
where h′ = h/5 and w′ = w/5, meanwhile random walks only involve matrix multiplication

4

Figure 2: Visualization of input image, groundtruth, score map x (only show class corresponding to
the largest score value in each position), influence map E(x) and importance map M(x).

operations, consequently the amount of computation related to random walks in our model will be
relatively less.

According to [22], optimal seed s and optimal diffusion matrix L−1 are mutually determined. There-
fore, we choose to let model learn seed and similarities on its own instead of providing supervision
on affinity as [15]. However, no supervision for the cascaded random walks may also cause a
problem. By the definition of Eq. 4, if certain Pt cannot gain useful similarity information from cor-
responding features, µt will be set to a small value by model during training, thereby yt+1 ≈ s. In
this case, all the previous results of random walks will be discarded. To preserve useful information
of preceding random walks, we propose to employ an adaptive identity mapping term further. By
reformulating Eq. 4 as yt+1 = R(yt, Pt, s, µt), finally the ⊕ operation can be defined as:

yt+1 = βtR(yt, Pt, s, µt) + (1− βt)y
t (5)

where βt is another parameter to be learned, for the sake of controlling the degree of identity map-
ping. In our experiments, DifNet occasionally assigns a minimal value to certain µt, but will also
reduce the amount of βt at the same time. In this way, the effect actually equals to omit certain
random walk ⊕, so the information from preceding random walks can be preserved and passed to
following random walks.

Fig. 1(a) shows the whole framework of our DifNet, the upper branch is seed branch while the
lower branch is similarity branch. We use ⊕ to represent the random walk operation, as illustrated
in Fig. 1(b), for each ⊕ the inputs are: (1) features ft from certain intermediate layer of similarity
branch ; (2) seed vector s from seed branch; (3) output yt of previous random walk. Given the

inputs, ⊕ computes Pt = softmax(Ψ(ft)
T
Ψ(ft)), determines µt and βt, and finally gives output

yt+1 according to Eq. 5.

5 Experiments

5.1 Experimental Settings

Our DifNet can be built on any FCNs-like models. In this paper, we choose DeeplabV2 [3] as
our backbone. Original DeeplabV2 has reported promising performance by introducing atrous con-
volution, ASPP module, multi-scale inputs with max fusion, CRF-postproposing, and MS-COCO
pretrain. Among these operations, the last three are external components that other models could
also benefit from them. Thus, to better study diffusion property of our DifNet, we design our back-
bone only with atrous convolution, and ASPP module for seed branch.

5

mIOU(Val) mIOU(Test)

Sim-Deeplab-18 66.33% -
Sim-Deeplab-34 69.76% -
Sim-Deeplab-50 70.78% -
Sim-Deeplab-101 71.83% 72.54%
Sim-Deeplab-101-CRF 72.26% -

DifNet-18 70.17% 70.46%
DifNet-34 71.84% 71.62%
DifNet-50-noASPP 72.52% -
DifNet-50 72.57% 72.55%
DifNet-101 73.22% 73.21%

Table 1: Comparison with simplified DeeplabV2 of different depth on Pascal VOC dataset.

DeeplabV2 are based on ResNet [18] architecture. To approximate the diffusion process and for the
sake of efficiency, in view of backbone architecture, in our DifNet we conduct five random walks in
total based on five transition matrices computed from features out of four ResNet blocks as well as
input.

We study the performance and mechanism of our DifNet on the prevalent used Augmented Pascal
VOC 2012 dataset [23, 24] and Pascal Context dataset [25]. Augmented Pascal VOC 2012 dataset
has 10,582 training, 1,449 validation, and 1,456 testing images with pixel-level labels in 20 fore-
ground object classes and one background class, while Pascal Context has 4998 training and 5105
validation images with pixel-level labels in 59 classes and one background category. The perfor-
mance is measured in terms of pixel intersection-over-union (IOU) averaged across all the classes.
To train our model and baseline models, we use a mini-batch of 16 images for 200 epochs and set
learning rate, learning policy, momentum and weight decay same as [3]. We also augment training
dataset by flipping, scaling and finally cropping to 321× 321 due to computing resource limitation.

5.2 Performance Study

Pascal VOC For quantitative comparison, we use simplified DeeplabV2 models as our baselines
which only have atrous convolution and ASPP module as our model. Besides, both our DifNet and
baseline models use pre-trained ResNet architecture on ImageNet [26], while other components in
the models are trained from scratch. Though our DifNet has two branches, the depth of the model
is equal to the deepest one, because data flows through two branches parallelly other than cascadely
when doing inference. To be more fair, in Table. 1, instead of making comparison based on the
same depth, we also report results based on the equivalent number of parameters. For example,
DifNet-50 has the same depth as Sim-Deeplab-50 while has the equivalent number of parameters as
Sim-Deeplab-101. In experiments, our models achieve consistent improvements over sim-Deeplab
models of the same depth and number of parameters on Pascal VOC validation dataset, and the
performance is also verified on the testing dataset. To verify the effectiveness of our diffuse mod-
ule, we further conduct another two experiments: Firstly, we test DifNet-50 without ASPP module
(DifNet-50-noASPP), from experiments we can see ASPP module only plays a limited role. Then,
we run Sim-Deeplab-101 with CRF post-processing, which improves the performance from 71.83%
to 72.26% at the cost of about 1.8s/image (10 iterations), but is still worse than our DifNet-50
(72.57%).

Pascal Context In Table. 2, we further make comparison among DifNet with different depth and
components, original DeeplabV2 [3] with different components and other methods on Pascal Con-
text dataset. Compared with baseline models, our DifNet model achieves promising performance by
fewer components.

5.3 Mechanism Study

In this section, we focus on the mechanism and effect of components in our model. We use DifNet-
50 trained on Pascal VOC dataset to carry out following experiments.

6

mIOU(Val)

FCN-8s[1] 39.1%
CRF-RNN[12] 39.3%
ParseNet[6] 40.4%
ConvPP-8s[16] 41.0%
UoA-Context+CRF[8] 43.3%

MSC COCO ASPP CRF Diffuse

ResNet-101
Deeplab[3] X 41.4%
Deeplab[3] X X 42.9%
Deeplab[3](Sim-Deeplab) X 43.6%
Deeplab[3] X X X 44.7%
Deeplab[3] X X X X 45.7%
DifNet(our model) X X 46.0%

ResNet-50
DifNet(our model) X 44.7%
DifNet(our model) X X 45.1%

Table 2: Comparison with other methods and DeeplabV2 with different components on Pascal Con-
text dataset.

Figure 3: Visualization of corresponding rows in Pt of selected nodes in the image. The right five
columns demonstrate similarities measured on different Pt, respectively. Nodes more highlighted
are more similar to the selected node.

Seed Branch We compute seed as s = Mx, where x is the score map and M is the importance
map learned based on the neighborhood of x. The influence of node i in the diffusion process in
channel k is |xi,k|. To visualize the influence of nodes on all channels, we define influence map E as

Ei =
∑K

k=1
|xi,k|. We show our x, E and M in Fig. 2. Obviously, x contains many outliers and has

the problems of poor boundary localization and spatial fragmented predictions. However, observed
from the influence map E, most of these outliers have little influence to the diffusion process. The
importance map M will further reduce or increase the influence of certain regions, such as columns
4, 5 where keyboard is suppressed and columns 3, 9 where sofa is enhanced, to refine the diffusion
process.

7

Figure 4: Visualization of our seed and outputs after each random walk ⊕.

Similarity Branch Our cascaded random walks are carried out on a sequence of transition matri-
ces Pt which measure similarities on the different level of semantics. To visualize these hierarchical
semantic similarities, in Fig. 3, for selected node i, we reshape the corresponding rows in all the
transition matrices Pti,: to [h′, w′] and show them by color coding. Pti,: represents the possibilities

that other nodes random walk to node i based on t-th transition matrix with
∑

j Pti,j = 1. As shown

in Fig. 3, from P1 to P5, similarities are measured from low-level feature such as color, texture to
high-level feature such as object. Particularly, Pt is able to identify fine-grained similarities among
pixels belonging to coarsely labeled objects, such as figures for nodes 1, 6 where table mat and paint-
ing are highlighted when they are labeled as table and background respectively. These results also
meet our assumption that similarity branch estimates the possibility of any two nodes that belong to
the same class without knowing which class they are. Finally, figures for nodes 3, 4, 6, 7 also prove
the ability of capturing long-range dependencies in our model.

Diffusion We show outputs of random walks in Fig. 4. RWt represents the output after t-th ran-
dom walk ⊕t. Obviously, the outputs are gradually refined after each random walk. We also report
learned µt and βt for each random walk in Table. 3. The increasing of parameter value means the out-
put is more depended on information transited from other nodes rather than initial seed and previous
random walk result as data flows through our model. To validate the effectiveness of the transition
matrices built on all the ResNet blocks, we also test DifNet-50 without 2-th and 4-th random walks,
the performance will have 1 percent drop on Pascal VOC validation dataset.

µt βt

⊕1 0.4159 0.4159

⊕2 0.4193 0.4825

⊕3 0.4077 0.5104

⊕4 0.6520 0.6570

⊕5 0.8956 0.8451

Table 3: Learned µt and βt for each ⊕t.

model time

DifNet-50 Seed 0.018±0.003s
Similarity 0.015±0.003s
Diffusion 0.006±0.001s

Sim-Deeplab-101 0.036±0.003s

Table 4: Time consumption compari-
son.

5.4 Efficiency Study

In Table. 4, we report the time consumption for doing inference with inputs of size [3, 505, 505] on
one GTX 1080 GPU. For inference, total time consumption of our DifNet-50 is equivalent to Sim-
Deeplab-101. However, in this case, the data can flow through two branches of our model parallelly,
so the computation of our model can be further accelerated by model parallel to two times faster. The
diffusion process only involves matrix multiplication (five random walks) and can be implemented
efficiently with little extra computation.

8

On the contrary, the backpropagation of our model will require much more calculations compared
with the vanilla model. Since the outputs of two branches determine the final results together from
amounts of information propagation paths, the parameters of two branches will be heavily mutually
influenced when doing optimization. The time consumption of backpropagation in our DifNet-50
model is about 1.3 times than Sim-Deeplab-101. However, in view of benefits from model parallel
during inference, extra time spent on training is considered acceptable.

6 Conclusion

We present DifNet for semantic segmentation task, our model applies the cascaded random walks to
approximate a complex diffusion process. With these cascaded random walks, more details can be
complemented according to the hierarchical semantic similarities and meanwhile long-range depen-
dencies are captured. Our model achieves promising performance compared with various baseline
models, the effectiveness of each component in our model is also verified through comprehensive
mechanism studies.

Acknowledgment

This work was supported by the grants of National Natural Science Foundation of China (61702301),
China Postdoctoral Science Foundation funded project (2017M612272), Fundamental Research
Funds of Shandong University, National Natural Science Foundation of China (61332015) and Na-
tional Basic Research grant (973) (2015CB352501).

References

[1] Long, J., E. Shelhamer, T. Darrell. Fully convolutional networks for semantic segmentation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015.

[2] Chen, L.-C., G. Papandreou, I. Kokkinos, et al. Semantic image segmentation with deep convolutional
nets and fully connected crfs. In International Conference on Learning Representations (ICLR). 2015.

[3] —. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

[4] Chen, L.-C., G. Papandreou, F. Schroff, et al. Rethinking atrous convolution for semantic image segmen-
tation. In arXiv preprint arxiv:1706.05587. 2017.

[5] Zhao, H., J. Shi, X. Qi, et al. Pyramid scene parsing network. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017.

[6] Liu, W., A. Rabinovich, A. Berg. Parsenet: Looking wider to see better. In arXiv preprint
arXiv:1506.04579. 2015.

[7] Liu, S., L. Qi, H. Qin, et al. Pyramid scene parsing network. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2018.

[8] Lin, G., C. Shen, A. van den Hengel, et al. Efficient piecewise training of deep structured models for
semantic segmentation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016.

[9] Vemulapalli, R., O. Tuzel, M.-Y. Liu, et al. Gaussian conditional random field network for semantic
segmentation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[10] Liu, Z., X. Li, P. Luo, et al. Semantic image segmentation via deep parsing network. In The IEEE
International Conference on Computer Vision (ICCV). 2015.

[11] Jampani, V., M. Kiefel, P. V. Gehler. Learning sparse high dimensional filters: Image filtering, dense
crfs and bilateral neural networks. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016.

[12] Zheng, S., S. Jayasumana, B. Romera-Paredes, et al. Conditional random fields as recurrent neural net-
works. In The IEEE International Conference on Computer Vision (ICCV). 2015.

[13] Chandra, S., I. Kokkinos. Fast, exact and multi-scale inference for semantic image segmentation with
deep gaussian crfs. In European Conference on Computer Vision (ECCV). 2016.

[14] Chandra, S., N. Usunier, I. Kokkinos. Dense and low-rank gaussian crfs using deep embeddings. In The
IEEE International Conference on Computer Vision (ICCV). 2017.

[15] Bertasius, G., L. Torresani, S. X. Yu, et al. Convolutional random walk networks for semantic image
segmentation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

[16] Xie, S., X. Huang, Z. Tu. Top-down learning for structured labeling with convolutional pseudoprior. In
European Conference on Computer Vision (ECCV). 2016.

9

[17] Wang, X., R. Girshick, A. Gupta, et al. Non-local neural networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2018.

[18] He, K., X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016.

[19] Bertasius, G., J. Shi, L. Torresani. Semantic segmentation with boundary neural fields. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[20] Adam W Harley, I. K., Konstantinos G. Derpanis. Segmentation-aware convolutional networks using
local attention masks. In IEEE International Conference on Computer Vision (ICCV). 2017.

[21] Liu, S., S. De Mello, J. Gu, et al. Learning affinity via spatial propagation networks. In Advances in
Neural Information Processing Systems (NIPS). 2017.

[22] Jiang, P., N. Vasconcelos, J. Peng. Generic promotion of diffusion-based salient object detection. In The
IEEE International Conference on Computer Vision (ICCV). 2015.

[23] Everingham, M., S. M. A. Eslami, L. Van Gool, et al. The pascal visual object classes challenge: A
retrospective. International Journal of Computer Vision, 2015.

[24] Hariharan, B., P. Arbelaez, L. Bourdev, et al. Semantic contours from inverse detectors. In International
Conference on Computer Vision (ICCV). 2011.

[25] Mottaghi, R., X. Chen, X. Liu, et al. The role of context for object detection and semantic segmentation
in the wild. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2014.

[26] Russakovsky, O., J. Deng, H. Su, et al. ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 2015.

10

