
Scaling Gaussian Process Regression with Derivatives

David Eriksson
Center for Applied Mathematics

Cornell University
Ithaca, NY 14853

dme65@cornell.edu

Kun Dong
Center for Applied Mathematics

Cornell University
Ithaca, NY 14853

kd383@cornell.edu

Eric Hans Lee
Department of Computer Science

Cornell University
Ithaca, NY 14853

ehl59@cornell.edu

David Bindel
Department of Computer Science

Cornell University
Ithaca, NY 14853

bindel@cornell.edu

Andrew Gordon Wilson
School of Operations Research
and Information Engineering

Cornell University
Ithaca, NY 14853

andrew@cornell.edu

Abstract

Gaussian processes (GPs) with derivatives are useful in many applications, includ-
ing Bayesian optimization, implicit surface reconstruction, and terrain reconstruc-
tion. Fitting a GP to function values and derivatives at n points in d dimensions
requires linear solves and log determinants with an n(d+ 1)× n(d+ 1) positive
definite matrix – leading to prohibitive O(n3d3) computations for standard direct
methods. We propose iterative solvers using fast O(nd) matrix-vector multipli-
cations (MVMs), together with pivoted Cholesky preconditioning that cuts the
iterations to convergence by several orders of magnitude, allowing for fast kernel
learning and prediction. Our approaches, together with dimensionality reduc-
tion, enables Bayesian optimization with derivatives to scale to high-dimensional
problems and large evaluation budgets.

1 Introduction

Gaussian processes (GPs) provide a powerful probabilistic learning framework, including a marginal
likelihood which represents the probability of data given only kernel hyperparameters. The marginal
likelihood automatically balances model fit and complexity terms to favor the simplest models that
explain the data [22, 21, 27]. Computing the model fit term, as well as the predictive moments
of the GP, requires solving linear systems with the kernel matrix, while the complexity term, or
Occam’s factor [18], is the log determinant of the kernel matrix. For n training points, exact kernel
learning costs of O(n3) flops and the prediction cost of O(n) flops per test point are computationally
infeasible for datasets with more than a few thousand points. The situation becomes more challenging
if we consider GPs with both function value and derivative information, in which case training and
prediction become O(n3d3) and O(nd) respectively [21, §9.4], for d input dimensions.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Derivative information is important in many applications, including Bayesian Optimization (BO)
[29], implicit surface reconstruction [17], and terrain reconstruction. For many simulation models,
derivatives may be computed at little extra cost via finite differences, complex step approximation, an
adjoint method, or algorithmic differentiation [7]. But while many scalable approximation methods
for Gaussian process regression have been proposed, scalable methods incorporating derivatives
have received little attention. In this paper, we propose scalable methods for GPs with derivative
information built on the structured kernel interpolation (SKI) framework [28], which uses local
interpolation to map scattered data onto a large grid of inducing points, enabling fast MVMs using
FFTs. As the uniform grids in SKI scale poorly to high-dimensional spaces, we also extend the
structured kernel interpolation for products (SKIP) method, which approximates a high-dimensional
product kernel as a Hadamard product of low rank Lanczos decompositions [8]. Both SKI and SKIP
provide fast approximate kernel MVMs, which are a building block to solve linear systems with the
kernel matrix and to approximate log determinants [6].

The specific contributions of this paper are:

• We extend SKI to incorporate derivative information, enabling O(nd) complexity learning
and O(1) prediction per test points, relying only on fast MVM with the kernel matrix.

• We also extend SKIP, which enables scalable Gaussian process regression with derivatives
in high-dimensional spaces without grids. Our approach allows for O(nd) MVMs.

• We illustrate that preconditioning is critical for fast convergence of iterations for kernel ma-
trices with derivatives. A pivoted Cholesky preconditioner cuts the iterations to convergence
by several orders of magnitude when applied to both SKI and SKIP with derivatives.

• We illustrate the scalability of our approach on several examples including implicit surface
fitting of the Stanford bunny, rough terrain reconstruction, and Bayesian optimization.

• We show how our methods, together with active subspace techniques, can be used to extend
Bayesian optimization to high-dimensional problems with large evaluation budgets.

• Code, experiments, and figures may be reproduced at:
https://github.com/ericlee0803/GP_Derivatives.

We start in §2 by introducing GPs with derivatives and kernel approximations. In §3, we extend
SKI and SKIP to handle derivative information. In §4, we show representative experiments; and we
conclude in §5. The supplementary materials provide several additional experiments and details.

2 Background and Challenges

A Gaussian process (GP) is a collection of random variables, any finite number of which are jointly
Gaussian [21]; it also defines a distribution over functions on Rd, f ∼ GP(µ, k), where µ : Rd → R
is a mean field and k : Rd × Rd → R is a symmetric and positive (semi)-definite covariance kernel.
For any set of locations X = {x1, . . . , xn} ⊂ Rd, fX ∼ N (µX ,KXX) where fX and µX represent
the vectors of function values for f and µ evaluated at each of the xi ∈ X , and (KXX)ij = k(xi, xj).
We assume the observed function value vector yX ∈ Rn is contaminated by independent Gaussian
noise with variance σ2. We denote any kernel hyperparameters by the vector θ. To be concise, we
suppress the dependence of k and associated matrices on θ in our notation. Under a Gaussian process
prior depending on the covariance hyperparameters θ, the log marginal likelihood is given by

L(yX | θ) = −1

2

[
(yX − µX)Tα+ log |K̃XX |+ n log 2π

]
(1)

where α = K̃−1
XX(yX − µX) and K̃XX = KXX + σ2I . The standard direct method to evaluate (1)

and its derivatives with respect to the hyperparameters uses the Cholesky factorization of K̃XX ,
leading to O(n3) kernel learning that does not scale beyond a few thousand points.

A popular approach to scalable GPs is to approximate the exact kernel with a structured kernel
that enables fast MVMs [20]. Several methods approximate the kernel via inducing points U =
{uj}mj=1 ⊂ Rd; see, e.g. [20, 16, 13]. Common examples are the subset of regressors (SoR), which
exploits low-rank structure, and fully independent training conditional (FITC), which introduces an
additional diagonal correction [23]. For most inducing point methods, the cost of kernel learning
with n data points and m inducing points scales as O(m2n+m3), which becomes expensive as m

2

https://github.com/ericlee0803/GP_Derivatives

Branin SE no gradient SE with gradients

Figure 1: An example where gradient information pays off; the true function is on the left. Compare
the regular GP without derivatives (middle) to the GP with derivatives (right). Unlike the former, the
latter is able to accurately capture critical points of the function.

grows. As an alternative, Wilson and Nickisch [28] proposed the structured kernel interpolation (SKI)
approximation,

KXX ≈ WKUUW
T (2)

where U is a uniform grid of inducing points and W is an n-by-m matrix of interpolation weights;
the authors of [28] use local cubic interpolation so that W is sparse. If the original kernel is stationary,
each MVM with the SKI kernel may be computed in O(n + m log(m)) time via FFTs, leading
to substantial performance over FITC and SoR. A limitation of SKI when used in combination
with Kronecker inference is that the number of grid points increases exponentially with the dimen-
sion. This exponential scaling has been addressed by structured kernel interpolation for products
(SKIP) [8], which decomposes the kernel matrix for a product kernel in d-dimensions as a Hadamard
(elementwise) product of one-dimensional kernel matrices.

We use fast MVMs to solve linear systems involving K̃XX by the method of conjugate gradients.
To estimate log |K̃XX | = tr(log(K̃XX)), we apply stochastic trace estimators that require only
products of log(K̃XX) with random probe vectors. Given a probe vector z, several ideas have been
explored to compute log(K̃XX)z via MVMs with K̃XX , such as using a polynomial approximation
of log or using the connection between the Gaussian quadrature rule and the Lanczos method [11, 25].
It was shown in [6] that using Lanczos is superior to the polynomial approximations and that only a
few probe vectors are necessary even for large kernel matrices.

Differentiation is a linear operator, and (assuming a twice-differentiable kernel) we may define a
multi-output GP for the function and (scaled) gradient values with mean and kernel functions

µ∇(x) =

[
µ(x)

∂xµ(x)

]
, k∇(x, x′) =

[
k(x, x′) (∂x′k(x, x′))

T

∂xk(x, x
′) ∂2k(x, x′)

]
,

where ∂xk(x, x
′) and ∂2k(x, x′) represent the column vector of (scaled) partial derivatives in x and

the matrix of (scaled) second partials in x and x′, respectively. Scaling derivatives by a natural length
scale gives the multi-output GP consistent units, and lets us understand approximation error without
weighted norms. As in the scalar GP case, we model measurements of the function as contaminated
by independent Gaussian noise.

Because the kernel matrix for the GP on function values alone is a submatrix of the kernel matrix
for function values and derivatives together, the predictive variance in the presence of derivative
information will be strictly less than the predictive variance without derivatives. Hence, convergence
of regression with derivatives is always superior to convergence of regression without, which is well-
studied in, e.g. [21, Chapter 7]. Figure 1 illustrates the value of derivative information; fitting with
derivatives is evidently much more accurate than fitting function values alone. In higher-dimensional
problems, derivative information is even more valuable, but it comes at a cost: the kernel matrix
K∇

XX is of size n(d+ 1)-by-n(d+ 1). Scalable approximate solvers are therefore vital in order to
use GPs for large datasets with derivative data, particularly in high-dimensional spaces.

3

3 Methods

One standard approach to scaling GPs substitutes the exact kernel with an approximate kernel. When
the GP fits values and gradients, one may attempt to separately approximate the kernel and the kernel
derivatives. Unfortunately, this may lead to indefiniteness, as the resulting approximation is no longer
a valid kernel. Instead, we differentiate the approximate kernel, which preserves positive definiteness.
We do this for the SKI and SKIP kernels below, but our general approach applies to any differentiable
approximate MVM.

3.1 D-SKI

D-SKI (SKI with derivatives) is the standard kernel matrix for GPs with derivatives, but applied to
the SKI kernel. Equivalently, we differentiate the interpolation scheme:

k(x, x′) ≈
∑
i

wi(x)k(xi, x
′) → ∇k(x, x′) ≈

∑
i

∇wi(x)k(xi, x
′).

One can use cubic convolutional interpolation [14], but higher order methods lead to greater accuracy,
and we therefore use quintic interpolation [19]. The resulting D-SKI kernel matrix has the form[

K (∂K)T

∂K ∂2K

]
≈

[
W
∂W

]
KUU

[
W
∂W

]T
=

[
WKUUW

T WKUU (∂W)T

(∂W)KUUW
T (∂W)KUU (∂W)T

]
,

where the elements of sparse matrices W and ∂W are determined by wi(x) and ∇wi(x) — assuming
quintic interpolation, W and ∂W will each have 6d elements per row. As with SKI, we use FFTs
to obtain O(m logm) MVMs with KUU . Because W and ∂W have O(n6d) and O(nd6d) nonzero
elements, respectively, our MVM complexity is O(nd6d +m logm).

3.2 D-SKIP

Several common kernels are separable, i.e., they can be expressed as products of one-dimensional
kernels. Assuming a compatible approximation scheme, this structure is inherited by the SKI
approximation for the kernel matrix without derivatives,

K ≈ (W1K1W
T
1)� (W2K2W

T
2)� . . .� (WdKdW

T
d),

where A�B denotes the Hadamard product of matrices A and B with the same dimensions, and Wj

and Kj denote the SKI interpolation and inducing point grid matrices in the jth coordinate direction.
The same Hadamard product structure applies to the kernel matrix with derivatives; for example, for
d = 2,

K∇ ≈

 W1K1W
T
1 W1K1 ∂W

T
1 W1K1W

T
1

∂W1K1W
T
1 ∂W1K1 ∂W

T
1 ∂W1K1W

T
1

W1K1W
T
1 W1K1 ∂W

T
1 W1K1W

T
1

�

 W2K2W
T
2 W2K2W

T
2 W2K2 ∂W

T
2

W2K2W
T
2 W2K2W

T
2 W2K2 ∂W

T
2

∂W2K2W
T
2 ∂W2K2W

T
2 ∂W2K2 ∂W

T
2

. (3)

Equation 3 expresses K∇ as a Hadamard product of one dimensional kernel matrices. Following this
approximation, we apply the SKIP reduction [8] and use Lanczos to further approximate equation
3 as (Q1T1Q

T
1)� (Q2T2Q

T
2). This can be used for fast MVMs with the kernel matrix. Applied to

kernel matrices with derivatives, we call this approach D-SKIP.

Constructing the D-SKIP kernel costs O(d2(n+m logm+r3n log d)), and each MVM costs O(dr2n)
flops where r is the effective rank of the kernel at each step (rank of the Lanczos decomposition). We
achieve high accuracy with r � n.

3.3 Preconditioning

Recent work has explored several preconditioners for exact kernel matrices without derivatives [5].
We have had success with preconditioners of the form M = σ2I + FFT where K∇ ≈ FFT with
F ∈ Rn×p. Solving with the Sherman-Morrison-Woodbury formula (a.k.a the matrix inversion
lemma) is inaccurate for small σ; we use the more stable formula M−1b = σ−2(f − Q1(Q

T
1 b))

where Q1 is computed in O(p2n) time by the economy QR factorization[
F
σI

]
=

[
Q1

Q2

]
R.

4

In our experiments with solvers for D-SKI and D-SKIP, we have found that a truncated pivoted
Cholesky factorization, K∇ ≈ (ΠL)(ΠL)T works well for the low-rank factorization. Computing
the pivoted Cholesky factorization is cheaper than MVM-based preconditioners such as Lanczos
or truncated eigendecompositions as it only requires the diagonal and the ability to form the rows
where pivots are selected. Pivoted Cholesky is a natural choice when inducing point methods are
applied as the pivoting can itself be viewed as an inducing point method where the most important
information is selected to construct a low-rank preconditioner [12]. The D-SKI diagonal can be
formed in O(nd6d) flops while rows cost O(nd6d +m) flops; for D-SKIP both the diagonal and the
rows can be formed in O(nd) flops.

3.4 Dimensionality reduction

In many high-dimensional function approximation problems, only a few directions are relevant. That
is, if f : Rd → R is a function to be approximated, there is often a matrix P with d̃ < d orthonormal
columns spanning an active subspace of Rd such that f(x) ≈ f(PPTx) for all x in some domain Ω
of interest [4]. The optimal subspace is given by the dominant eigenvectors of the covariance matrix
C =

∫
Ω
∇f(x)∇f(x)T dx, generally estimated by Monte Carlo integration. Once the subspace is

determined, the function can be approximated through a GP on the reduced space, i.e., we replace the
original kernel k(x, x′) with a new kernel ǩ(x, x′) = k(PTx, PTx′). Because we assume gradient
information, dimensionality reduction based on active subspaces is a natural pre-processing phase
before applying D-SKI and D-SKIP.

4 Experiments

-10 -8 -6 -4

50 100 150 200 250 300

10-6

10-4

10-2

100

True spectrum
SKI spectrum

200 400 600 800 1000

10-4

10-2

100

True spectrum
SKIP spectrum

-10 -8 -6 -4

Figure 2: (Left two images) log10 error in SKI approximation and comparison to the exact spectrum.
(Right two images) log10 error in SKIP approximation and comparison to the exact spectrum.

Our experiments use the squared exponential (SE) kernel, which has product structure and can be
used with D-SKIP; and the spline kernel, to which D-SKIP does not directly apply. We use these
kernels in tandem with D-SKI and D-SKIP to achieve the fast MVMs derived in §3. We write D-SE
to denote the exact SE kernel with derivatives.

D-SKI and D-SKIP with the SE kernel approximate the original kernel well, both in terms of MVM
accuracy and spectral profile. Comparing D-SKI and D-SKIP to their exact counterparts in Figure 2,
we see their matrix entries are very close (leading to MVM accuracy near 10−5), and their spectral
profiles are indistinguishable. The same is true with the spline kernel. Additionally, scaling tests in
Figure 3 verify the predicted complexity of D-SKI and D-SKIP. We show the relative fitting accuracy
of SE, SKI, D-SE, and D-SKI on some standard test functions in Table 1.

4.1 Dimensionality reduction

We apply active subspace pre-processing to the 20 dimensional Welsh test function in [2]. The top six
eigenvalues of its gradient covariance matrix are well separated from the rest as seen in Figure 4(a).
However, the function is far from smooth when projected onto the leading 1D or 2D active subspace,
as Figure 4(b)-4(d) indicates, where the color shows the function value.

We therefore apply D-SKI and D-SKIP on the 3D and 6D active subspace, respectively, using 5000
training points, and compare the prediction error against D-SE with 190 training points because

5

2500 5000 10000 20000 30000

Matrix Size

10
-4

10
-3

10
-2

10
-1

10
0

M
V

M
 T

im
e

A Comparison of MVM Scalings

 O(n2)

 O(n)

 O(n)

SE Exact

SE SKI (2D)

SE SKIP (11D)

Figure 3: Scaling tests for D-SKI in two dimensions and D-SKIP in 11 dimensions. D-SKIP uses
fewer data points for identical matrix sizes.

Branin Franke Sine Norm Sixhump StyTang Hart3
SE 6.02e-3 8.73e-3 8.64e-3 6.44e-3 4.49e-3 1.30e-2
SKI 3.97e-3 5.51e-3 5.37e-3 5.11e-3 2.25e-3 8.59e-3

D-SE 1.83e-3 1.59e-3 3.33e-3 1.05e-3 1.00e-3 3.17e-3
D-SKI 1.03e-3 4.06e-4 1.32e-3 5.66e-4 5.22e-4 1.67e-3

Table 1: Relative RMSE error on 10000 testing points for test functions from [24], including five 2D
functions (Branin, Franke, Sine Norm, Sixhump, and Styblinski-Tang) and the 3D Hartman function.
We train the SE kernel on 4000 points, the D-SE kernel on 4000/(d+ 1) points, and SKI and D-SKI
with SE kernel on 10000 points to achieve comparable runtimes between methods.

1 2 3 4 5 6 7 8 9 10

-15

-10

-5

0

(a) Log Directional Variation

-1 -0.5 0

-5

0

5

(b) First Active Direction

-0.5 0 0.5

-5

0

5

(c) Second Active Direction

-1 -0.5 0

-0.5

0

0.5

(d) Leading 2D Active Subspace

Figure 4: 4(a) shows the top 10 eigenvalues of the gradient covariance. Welsh is projected onto the
first and second active direction in 4(b) and 4(c). After joining them together, we see in 4(d) that
points of different color are highly mixed, indicating a very spiky surface.

of our scaling advantage. Table 2 reveals that while the 3D active subspace fails to capture all the
variation of the function, the 6D active subspace is able to do so. These properties are demonstrated
by the poor prediction of D-SKI in 3D and the excellent prediction of D-SKIP in 6D.

D-SE D-SKI (3D) D-SKIP (6D)
RMSE 4.900e-02 2.267e-01 3.366e-03
SMAE 4.624e-02 2.073e-01 2.590e-03

Table 2: Relative RMSE and SMAE prediction error for Welsh. The D-SE kernel is trained on
4000/(d + 1) points, with D-SKI and D-SKIP trained on 5000 points. The 6D active subspace is
sufficient to capture the variation of the test function.

4.2 Rough terrain reconstruction

Rough terrain reconstruction is a key application in robotics [9, 15], autonomous navigation [10],
and geostatistics. Through a set of terrain measurements, the problem is to predict the underlying
topography of some region. In the following experiment, we consider roughly 23 million non-
uniformly sampled elevation measurements of Mount St. Helens obtained via LiDAR [3]. We bin
the measurements into a 970 × 950 grid, and downsample to a 120 × 117 grid. Derivatives are
approximated using a finite difference scheme.

6

Figure 5: On the left is the true elevation map of Mount St. Helens. In the middle is the elevation
map calculated with the SKI. On the right is the elevation map calculated with D-SKI.

We randomly select 90% of the grid for training and the remainder for testing. We do not include
results for D-SE, as its kernel matrix has dimension roughly 4 · 104. We plot contour maps predicted
by SKI and D-SKI in Figure 5 — the latter looks far closer to the ground truth than the former. This
is quantified in the following table:

` s σ σ2 Testing SMAE Overall SMAE Time[s]
SKI 35.196 207.689 12.865 n.a. 0.0308 0.0357 37.67

D-SKI 12.630 317.825 6.446 2.799 0.0165 0.0254 131.70

Table 3: The hyperparameters of SKI and D-SKI are listed. Note that there are two different noise
parameters σ1 and σ2 in D-SKI, for the value and gradient respectively.

4.3 Implicit surface reconstruction

Reconstructing surfaces from point cloud data and surface normals is a standard problem in computer
vision and graphics. One popular approach is to fit an implicit function that is zero on the surface
with gradients equal to the surface normal. Local Hermite RBF interpolation has been considered
in prior work [17], but this approach is sensitive to noise. In our experiments, using a GP instead
of splining reproduces implicit surfaces with very high accuracy. In this case, a GP with derivative
information is required, as the function values are all zero.

Figure 6: (Left) Original surface (Middle) Noisy surface (Right) SKI reconstruction from noisy
surface (s = 0.4, σ = 0.12)

7

In Figure 6, we fit the Stanford bunny using 25000 points and associated normals, leading to a K∇

matrix of dimension 105, clearly far too large for exact training. We therefore use SKI with the
thin-plate spline kernel, with a total of 30 grid points in each dimension. The left image is a ground
truth mesh of the underlying point cloud and normals. The middle image shows the same mesh, but
with heavily noised points and normals. Using this noisy data, we fit a GP and reconstruct a surface
shown in the right image, which looks very close to the original.

4.4 Bayesian optimization with derivatives

Prior work examines Bayesian optimization (BO) with derivative information in low-dimensional
spaces to optimize model hyperparameters [29]. Wang et al. consider high-dimensional BO (without
gradients) with random projections uncovering low-dimensional structure [26]. We propose BO with
derivatives and dimensionality reduction via active subspaces, detailed in Algorithm 1.

Algorithm 1: BO with derivatives and active subspace learning

1: while Budget not exhausted do
2: Calculate active subspace projection P ∈ Rd×d̃ using sampled gradients
3: Optimize acquisition function, un+1 = arg max A(u) with xn+1 = Pun+1

4: Sample point xn+1, value fn+1, and gradient ∇fn+1

5: Update data Di+1 = Di ∪ {xn+1, fn+1,∇fn+1}
6: Update hyperparameters of GP with gradient defined by kernel k(PTx, PTx′)

7: end

Algorithm 1 estimates the active subspace and fits a GP with derivatives in the reduced space. Kernel
learning, fitting, and optimization of the acquisition function all occur in this low-dimensional
subspace. In our tests, we use the expected improvement (EI) acquisition function, which involves
both the mean and predictive variance. We consider two approaches to rapidly evaluate the predictive
variance v(x) = k(x, x)−KxXK̃−1KXx at a test point x. In the first approach, which provides a
biased estimate of the predictive variance, we replace K̃−1 with the preconditioner solve computed
by pivoted Cholesky; using the stable QR-based evaluation algorithm, we have

v(x) ≈ v̂(x) ≡ k(x, x)− σ−2(‖KXx‖2 − ‖QT
1 KXx‖2).

We note that the approximation v̂(x) is always a (small) overestimate of the true predictive variance
v(x). In the second approach, we use a randomized estimator as in [1] to compute the predictive
variance at many points X ′ simultaneously, and use the pivoted Cholesky approximation as a control
variate to reduce the estimator variance:

vX′ = diag(KX′X′)− Ez

[
z � (KX′XK̃−1KXX′z −KX′XM−1KXX′z)

]
− v̂X′ .

The latter approach is unbiased, but gives very noisy estimates unless many probe vectors z are used.
Both the pivoted Cholesky approximation to the predictive variance and the randomized estimator
resulted in similar optimizer performance in our experiments.

To test Algorithm 1, we mimic the experimental set up in [26]: we minimize the 5D Ackley and 5D
Rastrigin test functions [24], randomly embedded respectively in [−10, 15]50 and [−4, 5]50. We fix
d̃ = 2, and at each iteration pick two directions in the estimated active subspace at random to be
our active subspace projection P . We use D-SKI as the kernel and EI as the acquisition function.
The results of these experiments are shown in Figure 7(a) and Figure 7(b), in which we compare
Algorithm 1 to three other baseline methods: BO with EI and no gradients in the original space;
multi-start BFGS with full gradients; and random search. In both experiments, the BO variants
perform better than the alternatives, and our method outperforms standard BO.

5 Discussion

When gradients are available, they are a valuable source of information for Gaussian process regres-
sion; but inclusion of d extra pieces of information per point naturally leads to new scaling issues.
We introduce two methods to deal with these scaling issues: D-SKI and D-SKIP. Both are structured

8

0 100 200 300 400 500

-20

-15

-10

-5 BO exact

BO D-SKI

BFGS

Random sampling

(a) BO on Ackley

0 100 200 300 400 500

-40

-20

0

20
BO exact
BO SKI
BFGS
Random sampling

(b) BO on Rastrigin

Figure 7: In the following experiments, 5D Ackley and 5D Rastrigin are embedded into 50 a
dimensional space. We run Algorithm 1, comparing it with BO exact, multi-start BFGS, and random
sampling. D-SKI with active subspace learning clearly outperforms the other methods.

interpolation methods, and the latter also uses kernel product structure. We have also discussed
practical details —preconditioning is necessary to guarantee convergence of iterative methods and
active subspace calculation reveals low-dimensional structure when gradients are available. We
present several experiments with kernel learning, dimensionality reduction, terrain reconstruction,
implicit surface fitting, and scalable Bayesian optimization with gradients. For simplicity, these
examples all possessed full gradient information; however, our methods trivially extend if only partial
gradient information is available.

There are several possible avenues for future work. D-SKIP shows promising scalability, but it also
has large overheads, and is expensive for Bayesian optimization as it must be recomputed from scratch
with each new data point. We believe kernel function approximation via Chebyshev interpolation
and tensor approximation will likely provide similar accuracy with greater efficiency. Extracting
low-dimensional structure is highly effective in our experiments and deserves an independent, more
thorough treatment. Finally, our work in scalable Bayesian optimization with gradients represents
a step towards the unified view of global optimization methods (i.e. Bayesian optimization) and
gradient-based local optimization methods (i.e. BFGS).

Acknowledgements. We thank NSF DMS-1620038, NSF IIS-1563887, and Facebook Research
for support.

References
[1] Costas Bekas, Efi Kokiopoulou, and Yousef Saad. An estimator for the diagonal of a matrix.

Applied Numerical Mathematics, 57(11-12):1214–1229, November 2007.

[2] Einat Neumann Ben-Ari and David M Steinberg. Modeling data from computer experiments:
an empirical comparison of kriging with MARS and projection pursuit regression. Quality
Engineering, 19(4):327–338, 2007.

[3] Puget Sound LiDAR Consortium. Mount Saint Helens LiDAR data. University of Washington,
2002.

[4] Paul G. Constantine. Active subspaces: Emerging ideas for dimension reduction in parameter
studies. SIAM, 2015.

[5] Kurt Cutajar, Michael Osborne, John Cunningham, and Maurizio Filippone. Preconditioning
kernel matrices. In Proceedings of the International Conference on Machine Learning (ICML),
pages 2529–2538, 2016.

[6] Kun Dong, David Eriksson, Hannes Nickisch, David Bindel, and Andrew G. Wilson. Scalable
log determinants for Gaussian process kernel learning. In Advances in Neural Information
Processing Systems (NIPS), pages 6330–6340, 2017.

9

[7] Alexander Forrester, Andy Keane, et al. Engineering design via surrogate modelling: a practical
guide. John Wiley & Sons, 2008.

[8] Jacob R Gardner, Geoff Pleiss, Ruihan Wu, Kilian Q Weinberger, and Andrew Gordon Wilson.
Product kernel interpolation for scalable Gaussian processes. In Artificial Intelligence and
Statistics (AISTATS), 2018.

[9] David Gingras, Tom Lamarche, Jean-Luc Bedwani, and Érick Dupuis. Rough terrain recon-
struction for rover motion planning. In Proceedings of the Canadian Conference on Computer
and Robot Vision (CRV), pages 191–198. IEEE, 2010.

[10] Raia Hadsell, J. Andrew Bagnell, Daniel F. Huber, and Martial Hebert. Space-carving kernels
for accurate rough terrain estimation. International Journal of Robotics Research, 29:981–996,
July 2010.

[11] Insu Han, Dmitry Malioutov, and Jinwoo Shin. Large-scale log-determinant computation
through stochastic Chebyshev expansions. In Proceedings of the International Conference on
Machine Learning (ICML), pages 908–917, 2015.

[12] Helmut Harbrecht, Michael Peters, and Reinhold Schneider. On the low-rank approximation by
the pivoted Cholesky decomposition. Applied Numerical Mathematics, 62(4):428–440, 2012.

[13] James Hensman, Nicoló Fusi, and Neil D. Lawrence. Gaussian processes for big data. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), 2013.

[14] Robert Keys. Cubic convolution interpolation for digital image processing. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 29(6):1153–1160, 1981.

[15] Kurt Konolige, Motilal Agrawal, and Joan Sola. Large-scale visual odometry for rough terrain.
In Robotics Research, pages 201–212. Springer, 2010.

[16] Quoc Le, Tamas Sarlos, and Alexander Smola. Fastfood – computing Hilbert space expansions
in loglinear time. In Proceedings of the 30th International Conference on Machine Learning,
pages 244–252, 2013.

[17] Ives Macedo, Joao Paulo Gois, and Luiz Velho. Hermite radial basis functions implicits.
Computer Graphics Forum, 30(1):27–42, 2011.

[18] David J. C. MacKay. Information theory, inference and learning algorithms. Cambridge
University Press, 2003.

[19] Erik H. W. Meijering, Karel J. Zuiderveld, and Max A. Viergever. Image reconstruction by
convolution with symmetrical piecewise nth-order polynomial kernels. IEEE Transactions on
Image Processing, 8(2):192–201, 1999.

[20] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approxi-
mate Gaussian process regression. Journal of Machine Learning Research, 6(Dec):1939–1959,
2005.

[21] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. The MIT
Press, 2006.

[22] Carl Edward Rasmussen and Zoubin Ghahramani. Occam’s razor. In Advances in Neural
Information Processing Systems (NIPS), pages 294–300, 2001.

[23] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In
Advances in Neural Information Processing Systems (NIPS), pages 1257–1264, 2005.

[24] S. Surjanovic and D. Bingham. Virtual library of simulation experiments: Test functions and
datasets. http://www.sfu.ca/ ssurjano, 2018.

[25] Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(F (A)) via stochastic
Lanczos quadrature. SIAM Journal on Matrix Analysis and Applications, 38(4):1075–1099,
2017.

10

[26] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando De Freitas, et al. Bayesian
optimization in high dimensions via random embeddings. In Proceedings of the International
Joint Conferences on Artificial Intelligence, pages 1778–1784, 2013.

[27] Andrew G Wilson, Christoph Dann, Chris Lucas, and Eric P Xing. The human kernel. In
Advances in neural information processing systems, pages 2854–2862, 2015.

[28] Andrew G. Wilson and Hannes Nickisch. Kernel interpolation for scalable structured Gaussian
processes (KISS-GP). Proceedings of the International Conference on Machine Learning
(ICML), pages 1775–1784, 2015.

[29] Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier. Bayesian optimization with
gradients. In Advances in Neural Information Processing Systems (NIPS), pages 5273–5284,
2017.

11

