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Abstract

Let P = {p1,p2,...pn} and Q@ = {q1,G2 - . . gm } be two point sets in an arbitrary
metric space. Let A represent the m X n pairwise distance matrix with A; ; =
d(p;i, gj). Such distance matrices are commonly computed in software packages
and have applications to learning image manifolds, handwriting recognition, and
multi-dimensional unfolding, among other things. In an attempt to reduce their
description size, we study low rank approximation of such matrices. Our main
result is to show that for any underlying distance metric d, it is possible to achieve an
additive error low rank approximation in sublinear time. We note that it is provably
impossible to achieve such a guarantee in sublinear time for arbitrary matrices
A, and our proof exploits special properties of distance matrices. We develop a
recursive algorithm based on additive projection-cost preserving sampling. We then
show that in general, relative error approximation in sublinear time is impossible
for distance matrices, even if one allows for bicriteria solutions. Additionally,
we show that if P = Q and d is the squared Euclidean distance, which is not a
metric but rather the square of a metric, then a relative error bicriteria solution can
be found in sublinear time. Finally, we empirically compare our algorithm with
the singular value decomposition (SVD) and input sparsity time algorithms. Our
algorithm is several hundred times faster than the SVD, and about 8-20 times faster
than input sparsity methods on real-world and and synthetic datasets of size 108.
Accuracy-wise, our algorithm is only slightly worse than that of the SVD (optimal)
and input-sparsity time algorithms.

1 Introduction

We study low rank approximation of matrices A formed by the pairwise distances between two
(possibly equal) sets of points or observations P = {p1,...,pm} and Q = {¢q1,...,¢,} in an
arbitrary underlying metric space. That is, A is an m x n matrix for which A; ; = d(p;, ¢;). Such
distance matrices are the outputs of routines in commonly used software packages such as the pairwise
command in Julia, the pdist2 command in Matlab, or the crossdist command in R.

Distance matrices have found many applications in machine learning, where Weinberger and Sauk
use them to learn image manifolds [18], Tenenbaum, De Silva, and Langford use them for image
understanding and handwriting recognition [17], Jain and Saul use them for speech and music [12],
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and Demaine et al. use them for music and musical rhythms [7]. For an excellent tutorial on Euclidean
distance matrices, we refer the reader to [8], which lists applications to nuclear magnetic resonance
(NMR), crystallagraphy, visualizing protein structure, and multi-dimensional unfolding.

We consider the most general case for which P and Q are not necessarily the same set of points.
For example, one may have two large unordered sets of samples from some distribution, and may
want to determine how similar (or dissimilar) the sample sets are to each other. Such problems
arise in hierarchical clustering and phylogenetic analysis'. Formally, Let P = {py, p2, . .. pm } and
Q ={q1,92...¢n} be two sets of points in an arbitrary metric space. Let A represent the m x n
pairwise distance matrix with A; ; = d(p;, ;). Since the matrix A may be very large, it is often
desirable to reduce the number of parameters needed to describe it. Two standard methods of doing
this are via sparsity and low-rank approximation. In the distance matrix setting, if one first filters P
and Q to contain only distinct points, then each row and column can contain at most a single zero
entry, so typically such matrices A are dense. Low-rank approximation, on the other hand, can be
highly beneficial since if the point sets can be clustered into a small number of clusters, then each
cluster can be used to define an approximately rank-1 component, and so A is an approximately low
rank matrix.

To find a low rank factorization of A, one can compute its singular value decomposition (SVD),
though in practice this takes min(mn?,m?n) time. One can do slightly better with theoretical
algorithms for fast matrix multiplication, though not only are they impractical, but there exist much
faster randomized approximation algorithms. Indeed, one can use Fast Johnson Lindenstrauss
transforms (FJLT) [16], or CountSketch matrices [4, 13, 15, 1, 5], which for dense matrices A, run in
O(mn) + (m + n)poly(k/e) time. At first glance the O(mn) time seems like it could be optimal.
Indeed, for arbitrary m x n matrices A, outputting a rank-% matrix B for which

|A —B|% < |A - All7 + €| All7 (1.1)

can be shown to require 2(mn) time. Here A} denotes the best rank-k approximation to A in
Frobenius norm, and recall for an m x n matrix C, |C||% = 3, . j=1.. ., Cf;- The additive
error guarantee above is common in low-rank approximation literature and appears in [10]. To see
this lower bound, note that if one does not read nearly all the entries of A, then with good probability
one may miss an entry of A which is arbitrarily large, and therefore cannot achieve (1.1).

Perhaps surprisingly, [14] show that for positive semidefinite (PSD) n x n matrices A, one can
achieve (1.1) in sublinear time, namely, in n - k - poly(1/€) time. Moreover, they achieve the stronger
notion of relative error, that is, they output a rank-k matrix B for which

|A=B[F < (1+e€)|A— A7 (1.2)

The intuition behind their result is that the “large entries” causing the Q(mn) lower bound cannot
hide in a PSD matrix, since they necessarily create large diagonal entries. A natural question is
whether it is possible to obtain low-rank approximation algorithms for distance matrices in sublinear
time as well. A driving intuition that it may be possible is that no matter which metric the underlying
points reside in, they necessarily satisfy the triangle inequality. Therefore, if A; ; = d(p;, g;) is large,
then since d(p;, q;) < d(pi, q1) + d(q1,p1) + d(p1, ;). at least one of d(p;, q1), d(q1, p1), d(p1, 45)
is large, and further, all these distances can be found by reading the first row and column of A. Thus,
large entries cannot hide in the matrix. Are there sublinear time algorithms achieving (1.1)? Are
there sublinear time algorithms achieving (1.2)? These are the questions we put forth and study in
this paper.

1.1 Our Results

Our main result is that we obtain sublinear time algorithms achieving the additive error guarantee
similar to (1.1) for distance matrices, which is impossible for general matrices A. We show that for
every metric d, this is indeed possible. Namely, for an arbitrarily small constant v > 0, we give an
algorithm running in O((m**” +n'*7)poly(ke~!)) time and achieving guarantee ||A — MNT |2, <
| A—Ak||%+e€||A||%, for any distance matrix with metric d. Note that our running time is significantly
sublinear in the description size of A. Indeed, thinking of the shortest path metric on an unweighted
bipartite graph in which P corresponds to the left set of vertices, and Q corresponds to the right set
of vertices, for each pair of points p; € P and ¢; € Q, one can choose d(p;,q;) = 1 or d(p;,q;) > 1
independently of all other distances by deciding whether to include the edge {p;, ¢;}. Consequently,
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there are at least 2°(™") possible distance matrices A, and since our algorithm reads o(mn) entries
of A, cannot learn whether d(p;,q;) = 1 or d(p;,g;) > 1 for each ¢ and j. Nevertheless, it still
learns enough information to compute a low rank approximation to A.

We note that a near matching lower bound holds just to write down the output of a factorization of a
rank-k matrix B into an m x k and a k x n matrix. Thus, up to an (m?” + n?)poly(ke~!) factor, our
algorithm is also optimal among those achieving the additive error guarantee of (1.1).

A natural followup question is to consider achieving relative error (1.2) in sublinear time. Although
large entries in a distance matrix A cannot hide, we show it is still impossible to achieve the relative
error guarantee in less than mn time for distance matrices. That is, we show for the ¢, distance
metric, that there are instances of distance matrices A with unequal P and Q for which even for
k = 2 and any constant accuracy e, must read {2(mn) entries of A. In fact, our lower bound holds
even if the algorithm is allowed to output a rank-%" approximation for any 2 < k&’ = o(min(m, n))
whose cost is at most that of the best rank-2 approximation to A. We call the latter a bicriteria
algorithm, since its output rank k&’ may be larger than the desired rank k. Therefore, in some sense
obtaining additive error (1.1) is the best we can hope for.

We next consider the important class of Euclidean matrices for which the entries correspond to the
square of the Euclidean distance, and for which P = Q. In this case, we are able to show that if
we allow the low rank matrix B output to be of rank k£ + 4, then one can achieve the relative error
guarantee of (1.2) with respect to the best rank-k approximation, namely, that

IA=BJE < 1+ o)A - Aglff.

Further, our algorithm runs in a sublinear n - & - poly(1/¢) amount of time. Thus, our lower bound
ruling out sublinear time algorithms achieving (1.2) for bicriteria algorithms cannot hold for this class
of matrices.

Finally, we empirically compare our algorithm with the SVD and input sparsity time algorithms
[4, 13, 15, 1, 5]. Our algorithm is several hundred times faster than the SVD, and about 8-20 times
faster than input sparsity methods on real-world datasets such as MNIST, Gisette and Poker, and a
synthetic clustering dataset of size 108. Accuracy-wise, our algorithm is only slightly worse than that
of the SVD (optimal error) and input-sparsity time algorithms. Due to space constraints, we defer all
of our proofs to the Supplementary Material 2.

2 Row and Column Norm Estimation

We observe that we can obtain a rough estimate for the row or column norms of a distance matrix by
uniformly sampling a small number of elements of each row or column. The only structural property
we need to obtain such an estimate is approximate triangle inequality.

Definition 2.1. (Approximate Triangle Inequality.) Let A be a m X n matrix. Then, matrix A
satisfies approximate triangle inequality if, for any € € [0, 1], for any p € [m), q,r € [n]

|Apr — maXie(m] |[Aig — Al

<Ay <(1+e) (Ap,r + lnel[%(] |Aiq — Az‘,r|) 2.1

(1+¢)
|Ap,g — Apr
% < an[%(] [Aig — A | <(1+4+e€)(Apg+A,,) (2.2)

Further, similar equations hold for AT .

The above definition captures distance matrices if we set € = 0. In order to see this, recall, each
entry in a m X n matrix A is associated with a distance between points sets P and Q, such that
|P| = m and |Q| = n. Then, for points p € P, g € Q, A, , represents d(p, q), where d is an
arbitrary distance metric. Further, for arbitrary point, i € P and r € Q, max; |A;, — A;,| =
max; |d(i,r) —d(, q)|. Intuitively, we would like to highlight that, for the case where A is a distance
matrix, max;e(m) |Ai,q — A .| represents a lower bound on the distance d(g, 7). Since d is a metric, it
follows triangle inequality, and d(p, ¢) < d(p,r) + d(q, r). Further, by reverse triangle inequality, for
alli € [m], d(q,r) > |d(i, q) — d(i,r)|. Therefore, A, ; < A, , + max; |A; ; — A, | and distance
matrices satisfy equation 2.1. Next, max;e[,,] [Ai g — Air| = maxigpm |dig — dir| < d(q,7),
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and d(q,r) < d(p,r) +d(p,q) = A, + A, , therefore, equation 2.2 is satisfied. We note that
approximate triangle inequality is a relaxation of the traditional triangle inequality and is sufficient to
obtain coarse estimates to row and column norms of A in sublinear time.

Algorithm 1 : Row Norm Estimation.

Input: A Distance Matrix A, x,, Sampling parameter b.
L. Let z = argmin, ¢, A; 1.
2. Letd = max;e[n) Az ;-
3. Fori € [m], let 7; be a uniformly random sample of ©(b) indices in [n].

Y. g2 n A2
4. X;=d +Zjen TAL

Output: Set {)?1,)?2, . ..)?m}

Lemma 2.1. (Row Norm Estimation.) Let A be a m x n matrix such that A satisfies approximate
triangle inequality. For i € [m), let A; . be the ith row of A. Algorithm 1 uniformly samples
©(b) elements from A, .. and with probability at least 9/10 outputs an estimator which obtains an

O (n/b)-approximation to || A, . ||§ Further, Algorithm 1 runs in O(bm + n) time.

To obtain an O (n/b) approximation for all the m rows simultaneously with high probability, we can
compute O (log(m)) estimators for each row and take their median. We also observe that Column
and Row Norm Estimation are symmetric operations and a slight modification to Algorithm 1 yields
a Column Norm Estimation algorithm with the following guarantee:

Corollary 2.1. (Column Norm Estimation.) There exists an algorithm that uniformly samples
O(b) elements from A, ; and with probability 9/10, outputs an estimator which is an O (m/b)-

approximation to | A ; ||§ Further, this algorithm runs in O(bn + m) time.

3 Projection-Cost Preserving Sketches

We would like to reduce the dimensionality of the matrix in a way that approximately preserves
low-rank structure. The main insight is that if we can approximately preserve all rank-k subspaces
in the column and row space of the matrix, then we can recursively sample rows and columns to
obtain a much smaller matrix. To this end, we introduce a relaxation of projection-cost preserving
sketches [6] that satisfy an additive error guarantee. We show that sampling columns of A according
to approximate column norms yields a matrix that preserves projection cost for all rank-k projections
up to additive error. We give a similar proof to the relative error guarantees in [6], but need to replace
certain parts with our different distribution which is only based on row and column norms rather than
leverage scores, and consequently we obtain additive error in places instead. As our lower bound
shows, this is necessary in our setting.

Theorem 3.1. (Column Projection-Cost Preservation.) Let A be a m x n matrix such that A
satisfies approximate triangle inequality. For j € [n], let X be an O (m/b)-approximate estimate
for the j'" column of A such that it satisfies the guarantee of Corollary A.1. Then, let ¢ =

{q1,92 - .. qn} be a probability distribution over the columns of A such that q; = )?]/ Zj, X Let

t=0 (’Zg log(%)) for some constant c. Then, construct C using t columns of A and set each

one to A, ;/\/tq; with probability q;. With probability at least 1 — 6, for any rank-k orthogonal
projection X, ||C — XC||% = ||A — XA||%Z £ ¢|Alj%.

We observe that we can also estimate the row norms in sublinear time and immediately obtain a
similar guarantee for row projection-cost preservation. Next, we describe how to apply projection-
cost preserving sketching for low-rank approximation. Let C be a column pcp for A. Then, an
approximate solution for the best rank-k approximation to C is an approximate solution for the best
rank-k approximation to A. Formally,

Lemma 3.1. Let C be a column pcp for A satisfying the guarantee of Theorem A.2. Let P¢ be
the minimizing projection matrix for minx ||C — XC||% and P% be the projection matrix that
minimizes minx |A — XAl|/%. Then, for any projection matrix P such that |C — PC|% <
|C —PLC||% +€||C||%, with probability at least 98/100, ||A —PA||% < ||[A —P4 A[|% +¢€||Al|%.
A similar guarantee holds if C is a row pcp of A.



4 A Sublinear Time Algorithm.

Algorithm 2 : First Sublinear Time Algorithm.

Input: A Distance Matrix A wn, integer k and € > 0.
1. Setby = and by = Set sy = © (78 ) and 5, = @ (24712500 ).

U
log(n) log(m) boe?
2. Let )? be the estimate for ||A., ;||3 returned by ColumnNormEstimation(A,b;).

Recall, X isan O (—) -approximation to A, ;.

3. Let ¢ = {q1,92...q,} denote a distribution over columns of A such that ¢; =

Z):%_] > (&) ”f* 3 12 Construct a column pep for A by sampling s; columns of A

such that each column is set to j‘% with probability ¢;. Let AS be the resulting
m X s1 matrix that follows guarantees of Theorem A.2.

4. To account for the rescaling, consider O (e~ ! log(n)) weight classes for scaling param-
eters of the columns of AS. Let AS)yy, be the columns of AS restricted to the weight
class W, (defined below.) '

5. Run the RowNormEstimation(AS)yy, , bs) estimation algorithm with parameter by
for each weight class independently and sum up the estimates for a given row. Let X i
be the resulting O (— -approximate estimator for AS; ,.

6. Let p = {p1,p2,-- pm} denote a distribution over rows of AS such that p, =

X, IlAS:,.|I3
i > 2
>, X — (n) TAS]Z

that each row is set to

. Construct a row pcp for A'S by sampling so rows of AS such

357]0 with probability p;. Let TAS be the resulting s» x s
matrix that follows guarantees of Corollary A.2.

7. Run the input-sparsity time low-rank approximation algorithm (corresponding to
Theorem 4.2) on TAS with rank parameter & to obtain a rank-%k approximation to
TAS, output in factored form: L, D, WT. Note, LD is an so x k matrix and W7 is
a k X s; matrix.

8. Consider the regression problem minx ||AS — XW7||2. Sketch the problem using
the leverage scores of W7 as shown in Theorem 4.3 to obtain a sampling matrix
E with poly(£) columns. Compute Xas = argming |[ASE — XWTE||%.. Let
XasWT = P'N'T be such that P’ has orthonormal columns.

9. Consider the regression problem minx || A — P’X||2. Sketch the problem using the
the leverage scores of P’ following Theorem 4.3 to obtain a sampling matrix E’ with
poly(%) rows. Compute X5 = argminy | E'A — E'P’'X||4.

Output: M = P/, N7 = X

In this section, we give a sublinear time algorithm which relies on constructing column and row pcps,
which in turn rely on our column and row norm estimators. Intuitively, we begin with obtaining
coarse estimates to column norms. Next, we sample a subset of the columns of A with probability
proportional to their column norm estimates to obtain a column pcp for A. We show that the rescaled
matrix still has enough structure to get a coarse estimate to its row norms. Then, we compute the row
norm estimates of the sampled rescaled matrix, and subsample its rows to obtain a small matrix that
is a row pcp. We run an input-sparsity time algorithm ([4]) on the small matrix to obtain a low-rank
approximation. The main theorem we prove is as follows:

Theorem 4.1. (Sublinear Low-Rank Approximation.) Let A € R™*"™ be a matrix that satisfies
approximate triangle inequality. Then, for any € > 0 and integer k, Algorithm 2 runs in time
0] (( L34 4 pl 34) poly(% ) and outputs matrices M € R™** N € R™*¥ such that with probabil-
ity at least 9/10,

|A = MNT||% < [|A = Ayl + || Al



Column Sampling. We observe that constructing a column and row projection-cost preserving
sketches require sampling columns proportional to their relative norms and subsequently subsample
columns proportional to the relative row norms of the sampled, rescaled matrix. In the previous
section, we obtain coarse approximations to these norms and thus use our estimates to serve as a

proxy for the real distribution. For j € [n], let X ;j be our estimate for the column A, ;. We define

X, . .
2 _—— . Given that we can estimate

25 ey Xy

a probability distribution over the columns of A as ¢; =

h) 1A ;12
m) A%

Therefore, we oversample columns of A by a © (m/by)-factor to construct a column pcp for A. Let

mk? log(m) H A
C) e columns of A such that each column is set to NG

with probability ¢;. Then, by Theorem A.2 for any € > 0, with probability at least 99/100, for all
rank-k projection matrices X, ||AS — XAS||% < [|A — XA|% + ¢ ||A[%.

column norms up to an O (m /by )-factor, ¢; > ( where b; is a parameter to be set later.

AS be a scaled sample of s; =

Handling Rescaled Columns. We note that during the construction of the column pcp, the jt*
column, if sampled, is rescaled by \/:17 Therefore, the resulting matrix, AS may no longer be
J
a distance matrix. To address this issue, we partition the columns of AS into weight classes such
that the g*" weight class contains column index j if the corresponding scaling factor % lies in the
J

o
interval [(1 4 €)9, (1 + €)9"!). Note, we can ignore the (\/lsfl)—factor since every entry is rescaled

by the same constant. Formally, W, = {z € [s1] ‘ \/% € [(1+€)9,(1+e)9Y) } Next, with high
probability, for all j € [n], if column j is sampled, 1/q; < n° for a large constant c. If instead,
g; < n%, the probability that the j*" is sampled would be at most 1/ n¢, for some ¢ > c. Union
bounding over such events for n columns, the number of weight classes is at most log; , (n¢) =
0 (e‘l log(n)). Let AS)yy, denote the columns of AS restricted to the set of indices in W,. Observe
that all entries in AS)yy, are scaled to within a (1 + €)-factor of each other and therefore, satisfy
approximate triangle inequality (equation 2.1).

Therefore, row norms of ASy, can be computed using Algorithm 1 and the estimator is an O (n/b2)-
approximation (for some parameter b3), since Lemma 2.1 blows up by a factor of at most (1 + ¢).
Summing over the estimates from each partition above, with probability at least 99/100, we obtain
an O (n/by)-approximate estimate to ||AS; . ||3, simultaneously for all i € [m]. However, we note
that each iteration of Algorithm 1 reads bym + n entries of A and there are at most O (e~ ! log(n))
iterations.

Row Sampling. Next, we construct a row pcp for AS. For i € [m], let X; be an O (n/bs)-
approximate estimate for ||AS; .||3. Let p = {p1,p2,...,pm} be a distribution over the rows of

AS such that p; = ZX)N( > (%2 ”f:'s“u*g 2 ) Therefore, we oversample rows by a © (n/bz) factor to

obtain a row pcp for AS. Let TAS be a scaled sample of s; = © (%) rows of AS such that

each row is set to \A;SSJT'; with probability p;. By the row analogue of Theorem A.2, with probability at

least 99/100, for all rank-k projection matrices X, | TAS—TASX|% < [|[AS—ASX]||%Z+¢||AS||%.

Input-sparsity Time Low-Rank Approximation. Next, we compute a low-rank approximation
for the smaller matrix, TA S, in input-sparsity time. To this end we use the following theorem from

[4]:

Theorem 4.2. (Clarkson-Woodruff LRA.) For A € R™*™, there is an algorithm that with failure
probability at most 1/10 finds L € R™*F, W € R™** and a diagonal matrix D € R***, such that
|A - LDWT||2F <(1+e)l|A- Ak||§7 and runs in time O (nnz(A) + (n + m)poly(%)), where
nnz(A) is the number of non-zero entries in A.

Running the input-sparsity time algorithm with the above guarantee on the matrix TAS, we obtain
a rank-k matrix LDW7, such that [ TAS — LDWT |2 < (1 + ¢)|TAS — (TAS)||%2 where

(TAS)y, is the best rank-k approximation to TAS under the Frobenius norm. Since TAS is a small
matrix, we can afford to read all of it by querying at most O (%poly(f)) entries of A

and the algorithm runs in time O (5152 + (51 + s2)poly(%)).
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Constructing a solution for A. Note, while LDWT is an approximate rank-k solution for TAS,
it does not have the right dimensions as A. If we do not consider running time, we could construct a
low-rank approximation to A as follows: since projecting TAS onto W7 is approximately optimal,
it follows from Lemma A.1 that with probability 98 /100,

IAS — ASWW|[5 = ||AS — (AS); || + | AS|[3 4.1

Let (AS);, = PN be such that P has orthonormal columns. Then, |AS — PPTAS|% =
|AS — (AS)k||% and by Lemma A.1 it follows that with probability 98/100, ||A — PPTA||% <
|A — Ag||% + €||A|| p. However, even approximately computing a column space P for (AS)y, using
an input-sparsity time algorithm is no longer sublinear. To get around this issue, we observe that an
approximate solution for TAS lies in the row space of W7 and therefore, an approximately optimal

solution for AS lies in the row space of W”. We then set up the following regression problem:
minx ||AS — XW7T|Z.

Note, this regression problem is still too big to be solved in sublinear time. Therefore, we sketch it
by sampling columns of AS according to the leverage scores of W to set up a smaller regression
problem. Formally, we use a theorem of [4] (Theorem 38) to approximately solve this regression
problem (also see [9] for previous work.)

Theorem 4.3. (Fast Regression.) Given a matrix A € R™*"™ and a rank-k matrix B € R™*¥,
such that B has orthonormal columns, the regression problem minx ||A — BX||2% can be solved
up to (1 + €) relative error, with probability at least 2/3 in time O ((mlog(m) + n)poly(£)) by
constructing a sketch E with paly(%) rows and solving minx |EA — EBX]||%. Note, a similar
guarantee holds for solving minx ||A — XB||%.

Since W7 has orthonomal rows, the leverage scores are precomputed. With probability at least
99/100, we can compute Xas = argming||[ASE — XW7TE||%,, where E is a leverage score
sketching matrix with poly(%) columns, as shown in Theorem 4.3.

148~ Xas W} < (1-+ Omin|AS - XWTI < (1 +JAS - ASWWTIE
= ||AS — (AS)|[7 =+ e[| AS|I7:

where the last two inequalities follow from equation 4.1. Recall, AS is an m x s; matrix and thus

the running time is O ((m + s1) log(m)poly (£)). Let XasWT = P’N? be such that P’ has

orthonormal columns. Then, the column space of P’ contains an approximately optimal solution

for A, since ||AS — P'N'T||2, = ||AS — (AS).||% + €||AS||% and AS is a column pcp for A. It

follows from Lemma A.1 that with probability at least 98,/100,

IA —P'PTA|G < A~ Agllr + e AlF (4.3)

Therefore, there exists a good solution for A in the column space of P’. Since we cannot compute
this explicitly, we set up the following regression problem: minx ||A — P’'X||%. Again, we sketch
the regression problem above by sampling columns of A according to the leverage scores of P’. We
can then compute X o = argminy | E’A — E'P’X]||% with probability at least 99/100, where E’ is
a leverage score sketching matrix with poly(%) rows. Then, using the properties of leverage score
sampling from Theorem 4.3,

1A =P X4f < (1+€)min A - P'X|% < (1+6)]|A-PPTA|L 4
< [IA = AgllE + O(e)IA|I%

where the second inequality follows from X being the minimizer and P'7 A being some other
matrix, and the last inequality follows from equation 4.3. Recall, P’ is an m X k matrix and by
Theorem 38 of CW, the time taken to solve the regression problem is O ((m log(m) + n)poly (%))
Therefore, we observe that P’X 5 suffices and we output it in factored form by setting M = P’ and
N = Xz;. Union bounding over the probabilistic events, and rescaling €, with probability at least
9/10, Algorithm 2 outputs M € R™** and N € R"** such that the guarantees of Theorem 4.1 are
satisfied.

Finally, we analyze the overall running time of Algorithm 2. Computing the estimates for the column

norms and constructing the column pcp for A has running time O (ml%(m)poly(f) +bin+ m)



Metric SVD IS Sublinear Metric SVD IS Sublinear

Lo 398.76  8.94 1.69 Lo 398.50 34.32 4.16

Ly 410.60 8.15 1.81 Ly 560.9  39.51 3.72

Lo 42790 9.18 1.63 Lo 418.01 39.32 3.99

L. 452.16 8.49 1.76 L. 390.07 38.33 391
Table 1: Running Time (in seconds) on the Table 2: Running Time (in seconds) on the
Clustering Dataset for Rank = 20 MNIST Dataset for Rank = 40

A similar guarantee holds for the rows. The input-sparsity time algorithm low-rank approxi-
mation runs in O (51 S2+ (s1+ 32)poly(k)) and constructmg a solution for A is dominated by

O ((mlog(m) + n)poly (£)). Setting by = £ g(n) > and by = log( ), we note that the overall running

time is O ((m"3* + n'3*)poly (£)) where O hides log(m) and log(n) factors. This completes the
proof of Theorem 4.1.

We extend the above result to obtain a better exponent in the running time. The critical observation
here is that we can recursively sketch rows and columns of A such that all the rank-k projections are
preserved. Intuitively, it is important to preserve all rank-% subspaces since we do not know which
projection will be approximately optimal when we recurse back up. At a high level, the algorithm is
then to recursively sub-sample columns and rows of A such that we obtain projection-cost preserving
sketches at each step. We defer the details to the Supplementary Material.

Theorem 4.4. Let A € R"™*™ be a matrix such that it satisfies approximate triangle inequality.
Then, for any € > 0, integer k and a small constant v > 0, there exists an algorithm that runs in
time O ((m*7 + n'*7) poly(£)) to output matrices M € R™** and N € R™** such that with
NT|2 < [[A — A2 + c|AZ.

5 Relative Error Guarantees

In this section, we consider the relative error guarantee 1.2 for distance matrices. We begin by
showing a lower bound for any relative error approximation for distance matrices and also preclude
the possibility of a sublinear bi-criteria algorithm outputting a rank-poly(k) matrix satisfying the
rank-k relative error guarantee.

Theorem 5.1. Let A be an n x n distance matrix. Let B be a rank-poly(k) matrix such that
|A — B||% < ¢||A — Ag|| for any constant ¢ > 1. Then, any algorithm that outputs such a B
requires Q(nnz(A)) time.

Euclidean Distance Matrices. We show that in the special case of Euclidean distances, when the
entries correspond to squared distances, there exists a bi-criteria algorithm that outputs a rank-(k + 4)
matrix satisfying the relative error rank-% low-rank approximation guarantee. Note, here the point sets
P and Q) are identical. Let A be such a matrix s.t. A; ; = ||z; — x;[|3 = ||:177 12 + |25 13 — 2(@i, ;).
Then, we can erte A as A; + A, — 2B such that each entry in the i*" row of A; is ||z;]|2, each
entry in the 5" column of As is ||z;||3 and B is a PSD matrix, where B, ; = (x;, z;). The main
ingredient we use is the sublinear low-rank approximation of PSD matrices from [14]. We show that
there exists an algorithm (see Supplementary Material) that outputs the description of a rank-(k + 4)
matrix AWWT7 in sublinear time such it satisfies the relative-error rank-k low rank approximation
guarantee.

Theorem 5.2. Let A be a Euclidean Distance matrix. Then, for any e > 0 and integer k, there exists
an algorithm that with probability at least 9/10, outputs a rank (k + 4) matrix WW?' such that
|A - AWWT | < (1+4¢€)||A — Ay||r, where Ay, is the best rank-k approximation to A and runs

in O(npoly(%)).

6 Experiments

In this section, we benchmark the performance of our sublinear time algorithm with the conventional
SVD Algorithm (optimal error), iterative SVD methods and the input-sparsity time algorithm from [4].
We use the built-in svd function in numpy’s linear algebra package to compute the truncated SVD.
We also consider the iterative SVD algorithm implemented by the svds function in scipy’s sparse
linear algebra package, however, the error achieved is typically 3 orders of magnitude worse than
computing the SVD and thus we defer the results to the Supplementary Material. We implement
the input-sparsity time low-rank approximation algorithm from [4] using a count-sketch matrix [3].
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Figure 6.1: We plot error on a synthetic dataset with 20 clusters and the MNIST dataset. The distance
matrix is created using /o, {1, {~, and ¢, metrics. We compare the error achieved by SVD (optimal),
our Sublinear Algorithm and the Input Sparsity Algorithm from [4].

Finally, we implement Algorithm 2, as this has small recursive overhead. The experiments are run on
a Macbook Pro 2017 with 16GB RAM, 2.8GHz quad-core 7th-generation Intel Core i7 processor.
The first dataset is a synthetic clustering dataset generated in scikit-learn using the make blobs
function. We generate 10000 points with 200 features split up into 20 clusters. We note that given
the clustered structure, this dataset is expected to have a good rank-20 approximation, as observed in
our experiments. The second dataset we use is the popular MNIST dataset which is a collection of
70000 handwritten characters but sample 10000 points from it. In the Supplementary Material we
also consider the Gisette and Poker datasets. Given n points, {p1,pa, . ..DPn}, in RY, we compute
an x n distance matrix A, such that A; ; = d(p;, p;), where d is Manhattan (¢,), Euclidean (¢5),
Chebyshev (/) or Canberra® (¢.) distance. We compare the Frobenius norm error of the algorithms
in Figure 6.1 and their corresponding running time in Table 1 and 2. We note that our sublinear time
algorithm is only marginally worse in terms of absolute error, but runs 100-250 times faster than SVD
and 8-20 times faster than the input-sparsity time algorithm.

Acknowledgments: The authors thank partial support from the National Science Foundation under
Grant No. CCF-1815840. Part of this work was done while the author was visiting the Simons
Institute for the Theory of Computing.

3See https://en.wikipedia.org/wiki/Canberra_distance
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