
Diminishing Returns Shape Constraints for
Interpretability and Regularization

Maya R. Gupta, Dara Bahri, Andrew Cotter, Kevin Canini
Google AI

1600 Charleston Rd
Mountain View, CA 94043

{mayagupta,dbahri,acotter,canini}@google.com

Abstract

We investigate machine learning models that can provide diminishing returns
and accelerating returns guarantees to capture prior knowledge or policies
about how outputs should depend on inputs. We show that one can build
flexible, nonlinear, multi-dimensional models using lattice functions with any
combination of concavity/convexity and monotonicity constraints on any
subsets of features, and compare to new shape-constrained neural networks.
We demonstrate on real-world examples that these shape constrained models
can provide tuning-free regularization and improve model understandability.

1 Introduction

Diminishing returns are common in physical systems, human perception and psychology [1],
and have been recognized in economics [2] and agriculture [3] for centuries. For example,
a model that predicts how much a renter will like an apartment should predict a strong
preference for 60 square meters of living space over 50 square meters, but a smaller preference
for 100 square meters over 90 square meters, if everything else is the same. Similarly, a
model that predicts the time it will take a customer to grocery shop should decrease in the
number of cashiers, but each added cashier reduces average wait time by less. In both cases,
we would like to be able to incorporate this prior knowledge by constraining the machine
learned model’s output to have a diminishing returns response to the size of the apartment
or number of cashiers. Mathematically, we say a function has diminishing returns with
respect to an input if the function is monotonically increasing and concave, or monotonically
decreasing and convex, with respect to that input. Accelerating returns are also common in
the real-world; for example, Adam Smith characterized labor specialization and economies of
scale as causing accelerating returns [4]. Accelerating returns describes functions that are
monotonically increasing and convex, or monotonically decreasing and concave with respect
to an input.
We show how one can train flexible models that capture one’s prior knowledge or preference
that the model should exhibit diminishing or accelerating returns with respect to some inputs.
Such shape constraints are effective regularization, reducing the chance that noisy training
data or adversarial examples produce a model that does not behave as expected, and act as a
machine learning poka-yoke (mistake-proofing) strategy [5] when a model is re-trained with
fresh data. Unlike most regularizers, shape constraints do not require tuning the amount of
regularization (beyond the binary decision of whether to apply a shape constraint), and are
especially useful when there is domain shift between training and test distributions. Shape
constraints have a clear semantic meaning, and thus improve interpretability because the
user knows and understands at a high-level how each of the shape-constrained inputs affects

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



the output. We have found in practice that shape-constrained machine-learned models are
much easier to debug and analyze.
We investigate diminishing returns shape constraints for two flexible, nonlinear function
classes: neural networks and lattices. Real-world experiments illustrate how these shape
constraints can be useful and effective in practice. However, consistent with the past literature
on monotonic neural networks, we found it difficult to control the shape constraints on neural
networks as flexibly as with the lattice models. Specifically, for our shape-constrained neural
networks (SCNNs) we could not produce a monotonic response for an input without also
constraining it to be convex/concave, and we must select either convex or concave constraints
- that is, we cannot impose both for different features. In contrast, we show that one can
shape-constrain lattice models for any mixture of monotonicity and concavity/convexity
constraints on any subsets of the features, and achieve similar (and more stable) test metrics
than with unconstrained deep neural networks on a breadth of real-world problems.
Another difference is joint vs ceterus paribus convexity. Our SCNNs impose joint convex-
ity/concavity over all constrained features, whereas our lattice models’ shape constraints
are ceterus paribus: a constraint holds with respect to changes in a single feature if none
of the other features change, but the convexity/concavity need not hold jointly over all the
constrained features. For example, suppose f(x) estimates the success of a party given two
features: the number of guests and the number of bottles of wine. With the proposed lattice
models, one can constrain f(x) to have a ceterus paribus diminishing returns response in the
number of guests (for any fixed number of bottles) or in the number of bottles of wine (for
any fixed number of guests), but without forcing f(x) to have a diminishing returns response
along the diagonal direction defined as one bottle of wine per guest. In contrast, with
the proposed SCNN, imposing diminishing returns on both wine and guests produces joint
concavity, such that f(x) will be concave and decreasing over any line in the two-dimensional
feature space. We have found it easier to decide when ceterus paribus convexity is warranted
for a problem. Joint convexity is a stronger constraint, and we have found it harder to reason
about when it is warranted for real problems.

2 Related Work

We review the most related literature, categorized by function class. Note the term partial
is used to mean that one can select which of the inputs is shape-constrained. Many of the
function classes discussed below and in our proposals are multi-layer functions such that
f(x) = h(g(x)). Recall from the chain rule that f ′′ = h′′(g′)2 + g′′h′. Thus if h(x) and g(x)
are convex and increasing, then f(x) is convex and increasing, and analogously for concave
and increasing. Also, if g(x) is convex and h(x) is convex and increasing, that is sufficient
for f(x) to be convex.
GAMs: Generalized additive models (GAMs) [6] are a classic function class for imposing
shape constraints [7]. Recall GAMs are a sum of component-wise 1-d nonlinear functions
such that f(x) =

∑D
d=1 fd(x[d]) + b, where x ∈ RD, each fd : R→ R, and b ∈ R is a constant.

Shape constraints are enforced by choosing appropriate parametric forms for each feature’s
function, fd, that obey the desired constraints (e.g., for diminishing returns, use a positively-
scaled log function). Also well-studied are nonparametric shape-constrained GAMs [7]; for
example, the special case of D = 1 with monotonicity regularization is well-known as isotonic
regression [8]. Recently, Chen et al. [9] gave an algorithm for fitting nonparametric GAM
models with diminishing/accelerating returns constraints. Pya and Wood [10] also trained
GAMs with first and second derivative shape constraints (see their paper for additional
earlier work). These two methods for achieving diminishing returns performed similarly on a
real dataset (N = 915 examples, D = 4 features) presented in Chen et al. [9], and both were
notably better than unconstrained GAMs.
Max-Affine (Max-Pooling): Convex piecewise-linear models [11, 12] take advantage of
the fact that any convex piecewise-linear function can be expressed as a max-affine function
[13] (analogously, use min for concavity): f(x) = maxk{ATk x+ bk}. Earlier, Sill [14] used
max-affine functions followed by a min-pooling layer to form a three-layer min-max network to

2



learn monotonic functions, f(x) = minj maxk{ATjkx+ bjk}, with the appropriate components
of A constrained to be positive.
Neural Networks: One can constrain a neural network to be monotonic by restricting the
network weights to all be positive [15, 16, 17, 18, 19]. However, this strategy significantly
reduces expressibility [20]. Specifically, if you constrain a neural net with ReLU activations
to be increasing in x by constraining its weights to be non-negative, then an annoying
side-effect is that f(x) will also be convex in x. Experimentally, monotonic neural nets have
not performed as well as monotonic min-max networks or monotonic deep lattice networks
[21].
Recently, Amos et al. [22] produced neural networks with partial convex shape constraints
(but without fully enabling monotonicity shape constraints), focused on the goal of learn-
ing jointly convex functions that are easy to minimize. To achieve convexity, they add
monotonicity constraints to weights in the later layers of a neural network using standard
convex activation functions. For a single-layer and using max-pooling as the activation, this
reduces to the same function class as convex piecewise-linear fitting [11, 12]. To make their
architecture more flexible, they add an unrestricted linear embedding of the inputs into each
of the later layers.
Dugas et al. [18] proposed an accelerating returns neural network that requires monotonicity
for all inputs, and with partial convexity.
Lattice Models: Recent work in monotonic shape constraints has used multi-layer lat-
tice models [21, 23, 24] (for an open-source implementation see github.com/tensorflow/
lattice). Lattices are interpolated look-up tables where the look-up table parameters
defining the function are learned with empirical risk minimization [25]; lattice models can
also be expressed as multi-dimensional splines with fixed knots [26]. Lattice functions can be
constrained to be partially monotonic by constraining adjacent parameters in the underlying
look-up table to be monotonic for the shape-constrained inputs [24]. Ensembles of lattices
[23] and deep lattice networks (DLN) [21] can similarly be constrained for monotoncity. Ex-
perimental results [21] on 4 real datasets showed monotonic DLNs with 3-4 layers performed
similarly or better than min-max networks and simpler 2-layer ensembles of lattices, and
notably better than monotonic neural networks.

3 Shape-Constrained Neural Network

We extend the partial convex neural network of Amos et al. [22] to enable partial diminish-
ing/accelerating returns constraints. Without loss of generality, flip any decreasing features
so that they are increasing before applying the following. Partition the feature vector x into
three subsets according to the desired shape constraints, xu, xc, and xs, where we constrain
the output f(x; θ) to be convex (concave) with respect to xc, both convex (concave) and
increasing with respect to xs, and impose no constraints on xu. Our T -layer SCNN is then
f(x; θ) = zT , where each layer is defined by the following recurrence (illustrated in Figure 1):

ui+1 = hi

(
W

(1)
i ui + b

(1)
i

)
and u0 = xu

zi+1 = gi

(
W

(2)
i

(
zi ◦

⌊
W

(3)
i ui + b

(3)
i

⌋
+

)
+W

(4)
i

(
xs ◦

⌊
W

(5)
i ui + b

(5)
i

⌋
+

)
+W (6)

i

(
xc ◦

(
W

(7)
i ui + b

(7)
i

))
+W

(8)
i ui + b

(8)
i

)
and z0 = 0,

where W
(2)
i ≥ 0,W (4)

i ≥ 0. (1)

where ◦ refers to the Hadamard product and bxc+ = max(x, 0), hi can be any activation
function but gi must be an increasing and convex (concave) activation to get convex (concave)
shape constraints; like Amos et al. [22] we use ReLU(x) for convexity; for concavity
we recommend −ReLU(−x). As is standard, for the last layer there is no activation
function, i.e. gT is the identity function. We augment the architecture proposed in Amos
et al. by adding new terms to support xs and new constraints on gi and W (2)

i to ensure
diminishing/accelerating returns. This architecture works as described by the chain rule

3

github.com/tensorflow/lattice
github.com/tensorflow/lattice


and induction. Note that one cannot ask (1) to be convex with respect to some inputs and
concave in others. Also, partial monotonicity can be imposed, but it comes with a side effect
of convexity/concavity. Lastly, if more than one feature is constrained to be convex/concave,
then (1) exhibits joint convexity/concavity: the function will be convex/concave over any
line in the constrained feature space.

Figure 1: SCNN Architecture

4 Lattice Models with Convex/Concave Shape Constraints

We extend partial monotonic lattice ensemble models [23] [24] to also enable ceterus paribus
partial convexity or concavity constraints, and thus also partial diminishing/accelerating
returns constraints. The proposed lattice models can be individually constrained per-feature
for any mix of these shape constraints. Let x[d] be the dth component of the feature vector
x, and in this section we require that each feature is bounded and has been pre-scaled
per-feature such that x[d] ∈ [0, 1] for all d.

4.1 Calibrated Linear Models with Convex/Concave Shape Constraints

We start with the simplest lattice model, called a calibrated linear model [24], which is a
type of GAM:

fβ,α(x) =
D∑
d=1

αTd cβd
(x[d]), (2)

where the D calibrated inputs cβd
(x[d]) are linearly combined with coefficents αd ∈ R, which

can be individually constrained to be positive or negative if monotonicity is desired. Each
calibrator function cβd

: [0, 1] → [−1, 1] is a piece-wise linear function with K − 1 pieces,
which we express as the linear interpolation of a one-dimensional look-up table with K
key-value pairs (νd[k], βd[k]) for k = 1, . . . ,K, where the keys {νd[k]} are fixed at the centers
of the K − 2 uniform quantiles of the training data, and the choice of K is a hyperparameter.
See Fig. 3 for example calibrators.
To make f(x) monotonic increasing with respect to the dth input, one must constrain the
adjacent look-up table parameters of the dth calibrator cβd

to be increasing [24]:
βd[k] ≥ βd[k − 1] for k = 2, 3, . . . ,K. (3)

To make f(x) concave with respect to the d input, we must constrain the slopes in the
piecewise linear function to be decreasing from the left, which requires that the differences
in the calibrator’s 1-d K-valued look-up table parameters be decreasing from the left:

βd[k − 1]− βd[k − 2]
νd[k − 1]− νd[k − 2] ≥

βd[k]− βd[k − 1]
νd[k]− νd[k − 1] for k = 3, 4, . . . ,K. (4)

4



We fix the calibrator keys ν at the quantiles of the training data, so (4) is simply a
linear inequality constraint on the three model parameters βd[k], βd[k − 1], βd[k − 2], for
k = K,K − 1, . . . , 3.
For diminishing returns with respect to the dth input, one constrains the dth calibrator to
be both increasing and concave by applying both (3) and (4) during training. Analogous
constraints are needed to guarantee f(x) convexity and accelerating returns. The model will
guarantee the requested convex/concave response within the input bounds, but for input
values outside the input’s specified range, the model will clip the input value to the specified
range, which makes the function implicitly flat outside the range, thus the accelerating
returns guarantee only holds for inputs less than the input’s specified maximum, and the
diminishing returns only holds for inputs greater than the input’s specified minimum.
Calibrated linear models are GAMs, with the special case of setting K = N corresponds
to a nonparametric model, though in practice we find the validated choice of K is usually
5− 50, making calibrated linear models much more efficient to evaluate than non-parametric
models. Thus, we expect shape-constrained calibrated linear models to perform similarly to
the shape-constrained nonparametric GAMs of Chen et al. [9] and Pya and Wood [10].

4.2 Two Layer Lattice Models with Convex/Concave Shape Constraints

Next, we show that how to shape-constrain models with multi-dimensional lattices. While
our proposal can be extended to deep lattice networks (see Appendix B), we focus on the
two-layer lattice network formed by an ensemble of L calibrated lattices [23]:

fβ,θ,W (x) =
L∑
`=1

θT` φ
(
W`[cβ`1(x[1]) cβ`2(x[2]) . . . cβ`D

(x[D])]T
)
, (5)

with definitions as follows. The `th base model calibrates the dth input using cβ`d
: [0, 1]→

[0, 1] as defined in Sec. 4.1, except here we bound its output to [0, 1] so that the 2nd
layer inputs lie in the unit hypercube. Next, each linear embedding W` ∈ RS×D outputs S
values. The function φ : [0, 1]S → [0, 1]2S is a fixed kernel that transforms its S-dimensional
input into the appropriate linear interpolation weights on the 2S look-up table parameters
for the `th lattice: θ` ∈ R2S , for each of the L lattices in the ensemble. The formula φ
depends on which linear interpolation rule one uses [24]: (i) standard multilinear interpolation
produces a multilinear polynomial on z` but is O(2S), (ii) the Lovász extension (aka simplex
interpolation) produces a locally linear interpolation with S! pieces and is O(S logS). We
restrict attention to 2S parameter look-up tables (see Appendix A for details on handling
finer-grained look-up tables). We use the random tiny lattices (RTL) strategy to architect
the ensemble of lattices [23], which means that before training we randomly select a fixed
random subset of S of the D features for the `th lattice and fix the coefficients of W` to be
{0, 1} to select the chosen S ≤ D features, where S is a hyperparameter.
To produce convex/concave f(x), by linearity it is sufficient to constrain each base model
in the ensemble (5) to be convex/concave. If one interpolates the look-up table with the
standard multilinear interpolation (by choosing the multilinear interpolation kernel φ), then
the fitted surface forms a multilinear polynomial over [0, 1]S , and is thus ceterus paribus
linear in each feature (but nonlinear overall), and thus the lattice layer does not affect
convexity/concavity (note this only holds becauseW acts as a feature selector, (see Appendix
B) for more on that). Thus, what is needed to guarantee that f(x;β, θ) is convex/concave
with respect to the dth input is that each of the calibrators {cβ`d

(x[d])} is convex/concave,
and each of the T look-up tables is monotonically increasing with respect to x[d]. For the
monotonicity constraints, adjacent parameters in the look-up tables need to be constrained
to be monotonically increasing, which is done by adding the appropriate linear inequality
constraints on pairs of parameters (see [24]). What remains is to constrain the 1-d piecewise
linear calibrators {cβ`d

(x[d])} to be convex/concave, which requires constraining the calibrator
values as per (4). If simplex interpolation is used for φ instead of multilinear interpolation,
constraining for convexity/concavity requires additional constraints on the lattice parameters;
see Appendix C for details.

5



4.3 Training the Constrained Optimization

The lattice models are trained using constrained empirical risk minimization, with the
necessary constraints defined above to impose the selected shape constraints. Each of those
constraints is a linear inequality constraint on two or three model parameters. For the
calibrators, there are not very many shape constraints and we simply use projected SGD,
where the Euclidean projection is performed by solving the resulting quadratic program, and
we project onto all the calibrator shape constraints after each minibatch of 1000 stochastic
gradients.
For the RTL models, to constrain the lattices for monotonicity, we must potentially satisfy a
very large number of linear inequality constraints on pairs of adjacent lattice parameters,
so solving the QP is less practical. Instead, we use the Light Touch algorithm [27] to
stochastically sample the constraints, on top of Adagrad [28].

5 Experiments

We demonstrate the applicability and effectiveness of diminishing returns and accelerating
returns regularization on five real-world regression problems (three of the five datasets
are publicly available) with squared error loss (see also Appendix D for simulations). We
compare: (i) a standard unconstrained DNN, (ii) the partial convex neural network [22],
(iii) our shape-constrained neural network as per (1), (iv) calibrated linear models [24],
(v) calibrated linear models with the proposed added convexity/concavity constraints, (vi)
random tiny lattices (RTLs) [23] which in all cases used monotonic calibrators, (vii) RTLs
with the proposed added convexity/concavity constraints.
Our TensorFlow code used for the SCNN is given in Appendix F. For the lattice models, we
used proprietary C++ code to train, as described in Sec. 4.3. Similar results can be achieved
by using the open-source Tensor Flow Lattice package (github.com/tensorflow/lattice), which
already handles monotonicity constraints, and then adding an additive regularizer to penalize
violations of (4).
For all model types and each set of constraints, the number of epochs and step sizes
hyperparameters were optimized based on the validation set. All neural net models were
run with TensorFlow using the Adam optimizer; see Sec. 4.3 for lattice model optimization.
For all neural network models, the number of layers and number of units per layer were also
validated from 1-9 and 3-1000 respectively. For all the lattice models, the number of keypoints
in each of the calibrators was validated with one hyperparameter for all calibrators, from
K = 10, 20, 40, . . .. For the RTLs, the number of lattices in the ensemble L, and the number
of features per lattice S, were validated. Because the number of different validation options
across model types was different, there was a risk that the best validated model was simply
a particularly good random model. To control for that risk, after the hyperparameters were
validated, each model type was freshly re-trained once with the validated hyperparameters,
and the test error reported.

5.1 Car Sales

For this tiny 1-d problem with 109 training, 14 validation, and 32 test examples (www.kaggle.
com/hsinha53/car-sales/data), we predict monthly car sales (in thousands) from the price
(in thousands). Because it is a 1-d problem, the RTL model is the same as a calibrated
linear model, and so was not separately run. Figure 2 shows the more constrained models
are smoother and more interpretable, because a human can summarize the machine learned
as, “Higher price cars decrease sales, but absolute price differences matter less the higher the
price.” Table 1 shows the Test MSE is slightly better for the calibrated linear model with
the added convexity constraint. The convex SCNN was already decreasing in this case; the
extra decreasing monotonicity constraint did not hurt.

6

www.kaggle.com/hsinha53/car-sales/data
www.kaggle.com/hsinha53/car-sales/data


Table 1: Experimental Results: Car Sales and Puzzle Sales

Car Sales Puzzles Sales
Model Val. Test Model Val. Test

MSE MSE MSE MSE
DNN 2035 10931 DNN 2189 5652
SCNN conv. 2262 10613 SCNN conc. 2632 7931
SCNN conv. decr. 2442 10590 SCNN conc. incr. 2437 6927
Cal Lin. decr. 2271 10727 RTL incr. 4457 8838
Cal Lin. conv. decr. 2304 10593 RTL all 3543 8315

Cal Lin. incr. 3589 8270
Cal Lin. all 3617 8189

25 50 75
price (thousands)

0

100

200

300

sa
le

s (
th

ou
sa

nd
s)

25 50 75
price (thousands)

0

20

40

60

80

100
pr

ed
ic

te
d 

sa
le

s (
th

ou
sa

nd
s) DNN

convex SCNN
convex, dec. SCNN

25 50 75
price (thousands)

0

20

40

60

80

pr
ed

ic
te

d 
sa

le
s (

th
ou

sa
nd

s) dec. Cal Lin.
convex, dec. Cal Lin.

Figure 2: Car sales prediction task. Left: Training dataset. Center: Predictions for neural
nets; y-axis zoomed-in. Right: Predictions for calibrated linear models; y-axis zoomed-in.

5.2 Puzzle Sales from Reviews

For this small problem (3 features, 156 training, 169 validation, and 200 non-IID test examples,
dataset courtesy of Artifact Puzzles and available at www.kaggle.com/dbahri/puzzles),
we predict the 6-month sales of different wooden jigsaw puzzles from three features based on
its Amazon reviews: its average star rating, the number of reviews, and the average word
count of its reviews. Business experts expect star rating to have a positive effect on sales,
the number of reviews to have a diminishing returns effect on sales, and word count to have
a diminishing returns shape (the 100th word is not as important as the 10th word). The
train/val/test data is non-IID in that it is split by time over the past 18 months, and the
set of puzzles is the same across the datasets, with some new puzzles added over time. Fig.
3 shows the number of reviews calibrator learned for the RTL models. Table 1 shows the
Test MSE is slightly better with the added shape constraint for all three models (SCNN,
RTL, Cal. Linear). The SCNN concave increasing model is constrained to be concave in
both word count and number of reviews and increasing in number of reviews (but does
not shape-constrain the star rating feature because we cannot use the SCNN to constrain
features positively unless we constrain them to also be concave). The lattice models either
imposed just the monotonicity constraints, or all the expected constraints.

5.3 Domain Name Pricing

In this experiment (18 features, 1,522 training, 435 validation, and 217 test examples), we
illustrate the use of concavity/convexity constraints without any monotonicity constraints.
The goal is to learn a model that can automatically price domain names for Google’s .app
domain. The label is the percent of humans who rated each example domain name as
“premium,” vs “non-premium.” Estimates for new domains were then quantized into pricing
tiers. One feature is the number of characters in the domain name, and our experts believe
that f(x) should be concave and non-monotonic in this feature. The other features measure
the popularity of the ngrams in the domain name according to different internet services.

7

www.kaggle.com/dbahri/puzzles


Figure 3: Example calibrator curves learned by the lattice models. The diminishing returns
calibrators (blue) are easier to interpret and summarize, and appears less over-fit than
the monotonic calibrators (red). Left: Calibrated linear model’s calibrators for number of
reviews for the Puzzles Sales problem. Most of the training examples are in the [1,15] input
range, where the curves for the two trained lattice models are very similar. Right: RTL
model’s calibrators for the relatedness feature for the Query Result Matching problem.

Table 2: Experimental Results: Domain Pricing and Wine Quality

Domain Pricing Wine Quality
Model Val. MSE Test MSE Model Val. MSE Test MSE
DNN 0.00301 2.00 DNN 4.91 4.79
SCNN conc. 0.00220 0.00219 SCNN conc. 5.96 7.22
RTL unc. 0.1014 0.1109 SCNN conc. incr. 6.13 6.21
RTL conc. 0.0978 0.1078 RTL incr. 4.96 4.85
Cal Lin. unc. 0.1101 0.1150 RTL conc. incr. 4.96 4.83
Cal Lin. conc. 0.1091 0.1120 Cal Lin. incr. 5.25 5.10

Cal Lin. conc. incr. 5.23 5.10

The results in Table 2 show the extra concavity constraint slightly improves both the validation
error and the test error for the RTL and Calibrated Linear model. The DNN’s 2.00 test
MSE was an unlucky run; we re-trained the DNN with the same validated hyperparameters
100 times, and only saw test MSE that high 6 times. Similarly, the SCNN got very lucky,
when we re-trained it 100 times with the same validated hyperparameters, its test MSE was
only as low as shown in Table 2 for 5 of the 100 times. For more data on re-training churn
for these models, see Appendix E.

5.4 Wine Enthusiast Magazine Reviews

The goal is to predict a wine’s quality measured in points [80, 100] based on price (the most
important feature), country (21 Bools), and 39 Bool features based on the wine description
from Wine Enthusiast Magazine (61 features, 84,642 training, 12,092 validation, and 24,185
test examples; www.kaggle.com/dbahri/wine-ratings). Table 2 shows that constraining
the price feature does not have much effect on the Test MSE for the RTL and Calibrated
Linear models; visual inspection of the learned calibrators (not shown) showed they both
picked up the correct shape with or without the shape constraint. The SCNN models had a
difficult time fitting this dataset.

5.5 Query-Result Matching

The goal of this problem is to learn how well a candidate result matches a query, for a
particular category of queries. The dataset (1,282,532 training, 183,219 validation, 366,440
IID test, with 15 features) is proprietary. The 15 features are derived for each {query, result}
example, and the label is an averaged human rating of the match quality, from [0, 4].

8

www.kaggle.com/dbahri/wine-ratings


We give results in Table 3 using the full data for train/validation, and using only 1/10 of the
train/validation data; the test set is the same throughout. We would like to constrain 14 of
the D = 15 features to be monotonic, based on prior knowledge and policies about how the
features should impact the output. We constrain the most important feature, relatedness to
be concave, based on observing that the shape of its calibrator in an unconstrained calibrated
linear model appears to exhibit noisy diminishing returns, as shown in Figure 2. For the
SCNN with diminishing returns, only the concave feature is constrained to be monotonic.
The biggest effect of the shape constraints is for the calibrated linear models with the smaller
training set. The RTL test MSE is hurt a little by the shape constraints on the full training
set (recall that even the unconstrained RTL model does constrain its calibrators to be
monotonic, so all the RTL models get the effect of the monotonic calibrated linear model).
We believe this is because there are some parts of the feature space that are very sparse,
and satisfying the monotonicity constraints everywhere reduces the RTL’s ability to use all
its flexibility to do better on average by better fitting the denser parts of the feature space.
In practice the test distribution is not IID with the train distribution, and we consider it
a worthwhile trade-off to have the model constrained to behave sensibly throughout the
potential feature space to protect against embarrassing errors and improve debuggability.
As in our other experiments, the lattice models were more stable across re-trainings than
the neural nets: the test MSE standard deviation with the 1/10 train set and each model’s
validated hyperparameters over five re-trainings was .002 for the RTL models, .084 for the
SCNN concave, .047 for the SCNN dim. ret., and 1.69 for the DNN. Surprisingly, the dim.
ret SCNN actually does worse than the concave SCNN, even though the constrained feature
is definitely a strongly positive signal, but we believe the SCNN MSE differences merely
reflect the randomness in training and hyperparameter choices.

Table 3: Experimental Results: Query Result Matching

1/10 Train Data Full Train Data
Model Val. MSE Test MSE Val. MSE Test MSE
DNN 0.668 0.668 0.655 0.656
SCNN conc. 0.667 0.673 0.652 0.658
SCNN dim. ret. 0.673 0.680 0.659 0.667
RTL unc. 0.661 0.658 0.639 0.639
RTL mono 0.663 0.662 0.655 0.654
RTL all 0.663 0.661 0.655 0.654
Cal. Lin. unc. 0.718 0.756 0.715 0.743
Cal. Lin. mono 0.699 0.710 0.701 0.701
Cal. Lin. all 0.696 0.702 0.724 0.722

6 Conclusions

We specified the additional constraints needed to learn flexible lattice models that can impose
any mixture of convexity/concavity/monotonicity constraints over subsets of features, ceterus
paribus, and showed we can stably train models with these extra linear inequality constraints.
The additional shape constraints produce smoother models that are easier to summarize,
explain and debug, because their behavior is more predictable and is known to satisfy the
specified global properties. Experimental results on real-world problems showed the extra
convexity/concaveity shape constraints either reduced or did not affect test MSE on IID
test sets, and provided the most value for the non-IID Puzzles experiment, where shape
constraint regularization is expected to be most valuable. We also extended neural networks
to handle partial diminishing returns constraints. The resulting SCNNs enable a less flexible
menu of shape constraint choices, and their experimental results were more sensitive to
hyperparameter choices and stochasticity in mini-batch sampling.

9



References
[1] D. Kahneman and A. Tversky. Choices, Values and Frames. Cambridge University

Press, 2000.

[2] A. Smith. On the Principles of Political Economy and Taxation. 1817.

[3] F. L. Patton. Diminishing Returns in Agriculture. 1926.

[4] A. Smith. An Inquiry into the Nature and Causes of the Wealth of Nations. 1776.

[5] S. Shingo. Zero quality control: source inspection and the poka-yoke system. Productivity
Press, Portland, USA, 1986.

[6] T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman Hall, New York,
1990.

[7] P. Groeneboom and G. Jongbloed. Nonparametric estimation under shape constraints.
Cambridge Press, New York, USA, 2014.

[8] R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical inference
under order restrictions; the theory and application of isotonic regression. Wiley, New
York, USA, 1972.

[9] Y. Chen and R. J. Samworth. Generalized additive and index models with shape
constraints. Journal Royal Statistical Society B, 2016.

[10] N. Pya and S. N. Wood. Shape constrained additive models. Statistics and Computing,
2015.

[11] J. Kim, J. Lee, L. Vandenberghe, and C.-K. Yang. Techniques for improving the
accuracy of geometric-programming based analog circuit design optimization. Proc.
IEEE International Conference on Computer-aided Design, 2004.

[12] A. Magnani and S. P. Boyd. Convex piecewise-linear fitting. Optimization and Engi-
neering, 2009.

[13] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, 2008.

[14] J. Sill. Monotonic networks. Advances in Neural Information Processing Systems
(NIPS), 1998.

[15] N. P. Archer and S. Wang. Application of the back propagation neural network algorithm
with monotonicity constraints for two-group classification problems. Decision Sciences,
24(1):60–75, 1993.

[16] H. Kay and L. H. Ungar. Estimating monotonic functions and their bounds. AIChE
Journal, 46(12):2426–2434, 2000.

[17] A. Minin, M. Velikova, B. Lang, and H. Daniels. Comparison of universal approximators
incorporating partial monotonicity by structure. Neural Networks, 23(4):471–475, 2010.

[18] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. Incorporating functional
knowledge in neural networks. Journal Machine Learning Research, 2009.

[19] Y.-J. Qu and B.-G. Hu. Generalized constraint neural network regression model subject
to linear priors. IEEE Trans. on Neural Networks, 22(11):2447–2459, 2011.

[20] H. Daniels and M. Velikova. Monotone and partially monotone neural networks. IEEE
Trans. Neural Networks, 21(6):906–917, 2010.

[21] S. You, D. Ding, K. Canini, J. Pfeifer, and M. R. Gupta. Deep lattice networks
and partial monotonic functions. Advances in Neural Information Processing Systems
(NIPS), 2017.

10



[22] B. Amos, L. Xu, and J. Z. Kolter. Input convex neural networks. Proc. ICML, 2017.

[23] K. Canini, A. Cotter, M. M. Fard, M. R. Gupta, and J. Pfeifer. Fast and flexible mono-
tonic functions with ensembles of lattices. Advances in Neural Information Processing
Systems (NIPS), 2016.

[24] M. R. Gupta, A. Cotter, J. Pfeifer, K. Voevodski, K. Canini, A. Mangylov, W. Moczyd-
lowski, and A. Van Esbroeck. Monotonic calibrated interpolated look-up tables. Journal
of Machine Learning Research, 17(109):1–47, 2016.

[25] E. K. Garcia and M. R. Gupta. Lattice regression. In Advances in Neural Information
Processing Systems (NIPS), 2009.

[26] E. K. Garcia, R. Arora, and M. R. Gupta. Optimized regression for efficient function
evaluation. IEEE Trans. Image Processing, 21(9):4128–4140, Sept. 2012.

[27] A. Cotter, M. R. Gupta, and J. Pfeifer. A light touch for heavily constrained SGD. In
29th Annual Conference on Learning Theory, pages 729–771, 2016.

[28] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal Machine Learning Research, 12:2121–2159, 2011.

[29] L. Lovász. Submodular functions and convexity. In Mathematical Programming The
State of the Art, pages 235–257. Springer, 1983.

[30] M. Milani Fard, Q. Cormier, K. Canini, and M. R. Gupta. Launch and iterate: Reducing
prediction churn. Advances in Neural Information Processing Systems (NIPS), 2016.

11


