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Abstract

In this paper, we develop the first one-pass streaming algorithm for submodular
maximization that does not evaluate the entire stream even once. By carefully sub-
sampling each element of the data stream, our algorithm enjoys the tightest approx-
imation guarantees in various settings while having the smallest memory footprint
and requiring the lowest number of function evaluations. More specifically, for
a monotone submodular function and a p-matchoid constraint, our randomized
algorithm achieves a 4p approximation ratio (in expectation) with O(k) memory
and O(km//p) queries per element (k is the size of the largest feasible solution and
m is the number of matroids used to define the constraint). For the non-monotone
case, our approximation ratio increases only slightly to 4p 4+ 2 — o(1). To the best
or our knowledge, our algorithm is the first that combines the benefits of streaming
and subsampling in a novel way in order to truly scale submodular maximization to
massive machine learning problems. To showcase its practicality, we empirically
evaluated the performance of our algorithm on a video summarization application
and observed that it outperforms the state-of-the-art algorithm by up to fifty-fold
while maintaining practically the same utility. We also evaluated the scalability of
our algorithm on a large dataset of Uber pick up locations.

1 Introduction

Submodularity characterizes a wide variety of discrete optimization problems that naturally occur
in machine learning and artificial intelligence [2]. Of particular interest is submodular maximiza-
tion, which captures many novel instances of data summarization such as active set selection in
non-parametric learning [31], image summarization [40], corpus summarization [28], fMRI parcella-
tion [37], ensuring privacy and fairness [21], two-stage optimization [34] and removing redundant
elements from DNA sequencing [27], to name a few.

Often the collection of elements to be summarized is generated continuously, and it is important
to maintain at real time a summary of the part of the collection generated so far. For example, a
surveillance camera generates a continuous stream of frames, and it is desirable to be able to quickly
get at every given time point a short summary of the frames taken so far. The naive way to handle
such a data summarization task is to store the entire set of generated elements, and then, upon request,
use an appropriate offline submodular maximization algorithm to generate a summary out of the
stored set. Unfortunately, this approach is usually not practical both because it requires the system to
store the entire generated set of elements and because the generation of the summary from such a
large amount of data can be very slow. These issues have motivated previous works to use streaming
submodular maximization algorithms for data summarization tasks [1, 17, 32].

The first works (we are aware of) to consider a one-pass streaming algorithm for submodular max-
imization problems were the work of Badanidiyuru et al. [1], who described a 1/2-approximation
streaming algorithm for maximizing a monotone submodular function subject to a cardinality con-
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Table 1: Streaming algorithms for submodular maximization subject to a p-matchoid constraint.

Queries per

Algorithm Function Approx. Ratio Memory Element Reference
Deterministic =~ Monotone 4p O(k) O(km) [8]
Randomized  Non-monotone w O(Sﬁ2 log f) O( ’“:Zm log g) [8]
Deterministic =~ Non-monotone %&m O(%log %) Ok log ) 8]
Deterministic  Non-monotone ~ 4p+4,/p+1 O(k+/p) O(\/pkm) [33]%
Randomized ~ Monotone 4p O(k) O(km/p) This paper
Randomized ~ Non-monotone dp+2 —o0(1) O(k) O(km/p) This paper

straint, and the work of Chakrabarti and Kale [7] who gave a 4p-approximation streaming algorithm
for maximizing such functions subject to the intersection of p matroid constraints. The last result
was later extended by Chekuri et al. [8] to p-matchoids constraints. For non-monotone submod-
ular objectives, the first streaming result was obtained by Buchbinder et al. [5], who described a
randomized streaming algorithm achieving 11.197-approximation for the problem of maximizing a
non-monotone submodular function subject to a single cardinality constraint. Then, Chekuri et al. [8]
described an algorithm of the same kind achieving (5p + 2 + 1/p)/(1 — €)-approximation for the
problem of maximizing a non-monotone submodular function subject to a p-matchoid constraint, and
a deterministic streaming algorithm achieving (9p + O(,/p))/(1 — ¢)-approximation for the same

problem.! Finally, very recently, Mirzasoleiman et al. [33] came up with a different deterministic
algorithm for the same problem achieving an approximation ratio of 4p + 4,/p + 1.

In the field of submodular optimization, it is customary to assume that the algorithm has access to
the objective function and constraint through oracles. In particular, all the above algorithms assume
access to a value oracle that given a set .S returns the value of the objective function for this set, and
to an independence oracle that given a set .S and an input matroid answers whether S is feasible
or not in that matroid. Given access to these oracles, the algorithms of Chakrabarti and Kale [7]
and Chekuri et al. [8] for monotone submodular objective functions are quite efficient, requiring only
O(k) memory (k is the size of the largest feasible set) and using only O(km) value and independence
oracle queries for processing a single element of the stream (m is the number of matroids used to
define the p-matchoid constraint). However, the algorithms developed for non-monotone submodular
objectives are much less efficient (see Table 1 for their exact parameters).

In this paper, we describe a new randomized streaming algorithm for maximizing a submodular
function subject to a p-matchoid constraint. Our algorithm obtains an improved approximation ratio
of 2p+2+/p(p+1)+1=4p+2— o(1), while using only O(k) memory and O(km/p) value and
independence oracle queries (in expectation) per element of the stream, which is even less than the
number of oracle queries used by the state-of-the-art algorithm for monotone submodular objectives.
Moreover, when the objective function is monotone, our algorithm (with slightly different parameter
values) achieves an improved approximation ratio of 4p using the same memory and oracle query
complexities, i.e., it matches the state-of-the-art algorithm for monotone objectives in terms of the
approximation ratio, while improving over it in terms of the number of value and independence oracle
queries used. Additionally, we would like to point out that our algorithm also works in the online
model with preemption suggested by Buchbinder et al. [5] for submodular maximization problems.
Thus, our result for non-monotone submodular objectives represents the first non-trivial result in this
model for such objectives for any constraint other than a single matroid constraint. Furthermore,
despite the generality of our algorithm for a p-matchoid constraint (which includes, in particular,
a cardinality constraint, a single matroid constraint and an intersection of multiple matroids), the

!The algorithms of [8] use an offline algorithm for the same problem in a black box fashion, and their
approximation ratios depend on the offline algorithm used. The approximation ratios stated here assume the
state-of-the-art offline algorithms of [15] which were published only recently, and thus, they are better than the
approximation ratios stated by [8].

>The memory and query complexities of the algorithm of Mirzasoleiman et al. [33] have been calculated
based on the corresponding complexities of the algorithm of [8] for monotone objectives and the properties of
the reduction used by [33]. We note that these complexities do not match the memory and query complexities
stated by [33] for their algorithm.



approximation ratio that it achieves is the state-of-the-art for all the above special cases. For example,
for a single matroid constraint, our algorithm achieves an approximation ratio of 3 + 2v/2 ~ 5.828,
which improves over the previous state-of-the-art 8-approximation algorithm by Chekuri et al. [8].

In addition to mathematically analyzing our algorithm, we also studied its practical performance and
scalability in video summarization and location summarization tasks. We observed that, while our
algorithm preserves the quality of the produced summaries, it outperforms the running time of the
state-of-the-art algorithm by an order of magnitude. We also studied the effect of imposing different
p-matchoid constraints on these applications. Most of the proofs for the theoretical results are
deferred to the Supplementary Material.

1.1 Additional Related Work

The work on (offline) maximizing a monotone submodular function subject to a matroid constraint
goes back to the classical result of Fisher et al. [16], who showed that the natural greedy algorithm
gives an approximation ratio of 2 for this problem. Later, an algorithm with an improved approxima-
tion ratio of e /(e — 1) was found for this problem [6], which is the best that can be done in polynomial
time [35]. In contrast, the corresponding optimization problem for non-monotone submodular ob-
jectives is much less well understood. After a long series of works [11, 13, 25, 36, 43], the current
best approximation ratio for this problem is 2.598 [3], which is still far from the state-of-the-art
inapproximability result of 2.093 for this problem due to [36].

Several works have considered (offline) maximization of both monotone and non-monotone submod-
ular functions subject to constraint families generalizing matroid constraints, including intersection
of p-matroid constraints [26], p-exchange system constraints [14, 45], p-extendible system con-
straints [15] and p-systems constraints [15, 16, 19, 30]. We note that the first of these families
is a subset of the p-matchoid constraints studied by the current work, while the last two families
generalize p-matchoid constraints. Moreover, the state-of-the-art approximation ratios for all these
families of constraints are p == O(,/p) both for monotone and non-monotone submodular objectives.

The study of submodular maximization in the streaming setting has been mostly surveyed above.
However, we would like to note that besides the above-mentioned results, there are also a few works
on submodular maximization in the sliding window variant of the streaming setting [9, 12, 44].

1.2 Our Technique

Technically, our algorithm is equivalent to dismissing every element of the stream with an appropriate
probability and then feeding the elements that have not been dismissed into the deterministic algorithm
of [8] for maximizing a monotone submodular function subject to a p-matchoid constraint. The
random dismissal of elements gives the algorithm two advantages. First, it makes it faster because
there is no need to process the dismissed elements. Second, it is well known that such a dismissal
often transforms an algorithm for monotone submodular objectives into an algorithm with some
approximation guarantee also for non-monotone objectives. However, besides the above important
advantages, dismissing elements at random also have an obvious drawback, namely, the dismissed
elements are likely to include a significant fraction of the value of the optimal solution. The crux
of the analysis of our algorithm is its ability to show that the above-mentioned loss of value due
to the random dismissal of elements does not affect the approximation ratio. To do so, we prove a
stronger version of a structural lemma regarding graphs and matroids (see Proposition 10) that was
implicitly proved by [42] and later stated explicitly by [8]. This proposition provides a mapping
from the elements of the optimal solution to elements of the solution .S chosen by our algorithm.
This mapping helps us to show that the value of the elements of the optimal solution that do not
belong to set S is not too large compared to the value of S itself. In this way, the stronger lemma
we prove translates into an improvement in the bound on the performance of the algorithm, which
is not sufficient to improve the guaranteed approximation ratio, but fortunately, is good enough to
counterbalance the loss due to the random dismissal of elements.

We would like to note that the general technique of dismissing elements at random and then running
an algorithm for monotone submodular objectives on the remaining elements, was previously used
by [15] in the context of offline algorithms. However, the method we use in this work to counterbal-
ance the loss of value due to the random dismissal of streaming elements is completely unrelated to
the way this was achieved in [15].



2 Preliminaries

In this section, we introduce some notation and definitions that we later use to formally state our
results. A set function f: 2 — R on a ground set A is non-negative if f (S) > 0 for every
S C N, monotone if f(S) < f(T) forevery S C T C N and submodular if f(S) + f(T) >
F(SUT)+ f(SNT) forevery S,T C N. Intuitively, a submodular function is a function that
obeys the property of diminishing returns, i.e., the marginal contribution of adding an element to a
set diminishes as the set becomes larger and larger. Unfortunately, it is somewhat difficult to relate
this intuition to the above (quite cryptic) definition of submodularity, and therefore, a more friendly
equivalent definition of submodularity is often used. However, to present this equivalent definition
in a simple form, we need some notation. Given a set S and an element u, we denote by S + u
and S — u the union S U {u} and the expression S\ {u}, respectively. Additionally, the marginal
contribution of u to the set S under the set function f is written as f(u | S) = f(S +u) — f(9).
Using this notation, we can now state the above mentioned equivalent definition of submodularity,
which is that a set function f is submodular if and only if

fw|S)>fu|T) YSCTCNandue N\T .

Occasionally, we also refer to the marginal contribution of a set 7" to a set S (under a set function f),
which we write as f(T | S) £ f(SUT) — f(S).

A set system is a pair (N, ), where N is the ground set of the set system and Z C 2N is the set of
independent sets of the set system. A matroid is a set system which obeys three properties: (i) the
empty set is independent, (ii) if S € 7' C N and T is independent, then so is S, and finally, (iii) if S
and T are two independent sets obeying |.S| < |T'|, then there exists an element u € 7'\ S such that
S + u is independent. In the following lines we define two matroid related terms that we use often
in our proofs, however, readers who are not familiar with matroid theory should consider reading
a more extensive presentation of matroids, such as the one given by [38, Volume B]. A cycle of a
matroid is an inclusion-wise minimal dependent set, and an element w is spanned by a set S if the
maximum size independent subsets of S and S + w are of the same size. Note that it follows from
these definitions that every element u of a cycle C' is spanned by C' — w.

A set system (N,Z) is a p-matchoid, for some positive integer p, if there exist m matroids
(M, Th), (N2, Ts), ..., (M, Zm) such that every element of A appears in the ground set of at
most p out of these matroids and Z = {S C oN | Vici<m SNN; € Z;}. A simple example for a
2-matchoid is b-matching. Recall that a set F/ of edges of a graph is a b-matching if and only if every
vertex v of the graph is hit by at most b(v) edges of E, where b is a function assigning integer values
to the vertices. The corresponding 2-matchoid M has the set of edges of the graph as its ground
set and a matroid for every vertex of the graph, where the matroid M, of a vertex v of the graph
has in its ground set only the edges hitting v and a set E of edges is independent in M,, if and only
if |[E] < b(v). Since every edge hits only two vertices, it appears in the ground sets of only two
vertex matroids, and thus, M is indeed a 2-matchoid. Moreover, one can verify that a set of edges is
independent in M if and only if it is a valid b-matching.

The problem of maximizing a set function f: 2 — R subject to a p-matchoid constraint M =
(NV,Z) asks us to find an independent set S € Z maximizing f(5). In the streaming setting, we
assume that the elements of A arrive sequentially in some adversarially chosen order, and the
algorithm learns about each element only when it arrives. The objective of an algorithm in this setting
is to maintain a set S € Z which approximately maximizes f, and to do so with as little memory as
possible. In particular, we are interested in algorithms whose memory requirement does not depend
on the size of the ground set A/, which means that they cannot keep in their memory all the elements
that have arrived so far. Our two main results for this setting are given by the following theorems.
Recall that k is the size of the largest independent set and m is the number of matroids used to define
the p-matchoid constraint.

Theorem 1. There is a streaming (2p + 2+/p(p + 1) + 1)-approximation algorithm for the problem
of maximizing a non-negative submodular function f subject to a p-matchoid constraint whose space
complexity is O(k). Moreover, in expectation, this algorithm uses O(km/p) value and independence
oracle queries when processing each arriving element.

Theorem 2. There is a streaming 4p-approximation algorithm for the problem of maximizing a
non-negative monotone submodular function f subject to a p-matchoid constraint whose space
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complexity is O(k). Moreover, in expectation, this algorithm uses O(km/p) value and independence
oracle queries when processing each arriving element.

3 Algorithm

In this section we prove Theorems 1 and 2. Throughout this section we assume that f is a non-
negative submodular function over the ground set A/, and M = (N, Z) is a p-matchoid over the same
ground set which is defined by the matroids (N1,Z1), (N2, Zs), - .., (N, Zm). Additionally, we
denote by uy, us, . . ., u, the elements of A in the order in which they arrive. Finally, for an element
u; € N and sets S, T C N, we use the shorthands f(u; : S) = f(u; | SN {uy,u2,...,u;—1}) and
f(T:8)=>,cr f(u:S). Intuitively, f(u : S) is the marginal contribution of v to the part of S
that arrived before u itself.

Let us now present the algorithm we use to prove our results. This algorithm uses a procedure named
EXCHANGE-CANDIDATE which appeared also in previous works, sometimes under the exact same
name. EXCHANGE-CANDIDATE gets an independent set S and an element u, and its role is to output
aset U C S such that S\ U + w is independent. The pseudocode of EXCHANGE-CANDIDATE is
given as Algorithm 1.

Algorithm 1: EXCHANGE-CANDIDATE Algorithm 2: SAMPLE-STREAMING

(5,u) 1 Let Sp + @.
LetU + @. 2 for every arriving element u; do
for / = 1 to m do 3 Let S; < S;_1.
if (S +u) NN, € Z, then 4 with probability q do
Let X, + {z €S| 5 Let U; <
(S —z+u)NNg) € Iy} EXCHANGE-CANDIDATE(S;_1, u;).
Let z; « argmingex, f(z : S). 6 if f(u; | Sic1) > (1+¢)- f(U; : Si—1)
Update U < U + zy. then Let S; < S;_1 \ U; + u;.
return U. 7 return S,,.

Our algorithm, which uses the procedure EXCHANGE-CANDIDATE, is given as Algorithm 2. This
algorithm has two parameters, a probability ¢ and a value ¢ > 0. Whenever the algorithm gets a new
element u, it dismisses it with probability 1 — q. Otherwise, it finds using EXCHANGE-CANDIDATE
a set U of elements whose removal from the current solution maintained by the algorithm allows the
addition of u to this solution. If the marginal contribution of adding u to the solution is large enough
compared to the value of the elements of U, then w is added to the solution and the elements of U
are removed. While reading the pseudocode of the algorithm, keep in mind that S; represents the
solution of the algorithm after 7 elements have been processed.

Observation 3. Algorithm 2 can be implemented using O(k) memory and, in expectation, O(gkm)
value and independence oracle queries per arriving element.

The following technical theorem is the main tool that we use to analyze the approximation ratio
of Algorithm 2; its proof can be found in Appendix A. Let OPT be an independent set of M
maximizing f, and let A be the set of elements that ever appeared in the solution maintained by
Algorithm 2—formally, A = |J!'_, S;.

Theorem 4. Assuming ¢~ = (1+ c)p + 1, E[f(S,)] > aro%  Ef(AUOPT)].

Proving our result for monotone functions (Theorem 2) is now straightforward.

Proof of Theorem 2. By plugging ¢ = 1 and ¢~ = 2p + 1 into Algorithm 2, we get an algorithm
which uses O (k) memory and O(km /p) oracle queries by Observation 3. Additionally, by Theorem 4,

this algorithm obeys

c 1 1
E[f(Sn)] > —— -E[f(AUOPT)| = — -E[f(AUOPT)] > — - f(OPT) ,
7S] oy B ) = g, EUC )= 4 HOPT)
where the second inequality follows from the monotonicity of f. Thus, the approximation ratio of the
algorithm we got is at most 4p. O



Proving our result for non-monotone functions is a bit more involved and requires the following
known lemma.

Lemma 5 (Lemma 2.2 of [4]). Let g: oN R>q be a non-negative submodular function, and let B

be a random subset of N containing every element of N with probability at most q (not necessarily
independently), then E[g(B)] > (1 — q) - g(&).

Proof of Theorem 1. By plugging c = \/1+1/pand ¢~! = p+ /p(p + 1) + 1 into Algorithm 2,
we get an algorithm which uses O(k) memory and O(km/p) oracle queries by Observation 3.
Additionally, by Theorem 4, this algorithm obeys

E[f(Sn)] =

c

o, E/AVOPT) .

Let us now define g: 2 — R to be the function g(S) = f(SUOPT). Note that g is non-negative
and submodular. Thus, by Lemma 5 and the fact that A contains every element with probability at
most ¢ (because Algorithm 2 accepts an element into its solution with at most this probability), we
get

_ . _ _ptVpp+1)
E[f(AUOPT)] = E[g(A)] > (1 —q) - 9(@) Y~ f(OPT)

p+/pp+1) _ 1
V1+1/p-(p++/p(p+1)) Jorn) = ¢ JOPL)

Combining the two above inequalities, we get

f(OPT) f(OPT) f(OPT)
E[f(Sn)] = 5 = =
A+ 2+2/1+1/p+1/p)p  20+2¢/pp+1) +1
Thus, the approximation ratio of the algorithm we got is at most 2p + 2+/p(p + 1) + 1. O

4 Experiment

In this section, we investigate the performance of our algorithm on two data summarization applica-
tions. In the first part, we replicate the exact setting of Mirzasoleiman et al. [33] and compare the
performance our algorithm in this setting with the performance of the algorithm of Mirzasoleiman
et al. [33]. Unfortunately, to allow such a comparison we had to resort to the relatively small datasets
that existing algorithms can handle. Interestingly, however, despite the small size of these datasets,
we could still observe the superiority of our method against the state-of-the-art. In the second part,
we investigate the scalability of our algorithm to larger datasets.

4.1 Video Summarization

In this section, we evaluate the performance of our algorithm (SAMPLE-STREAMING) on a video
summarization task and compare it with SEQDPP [18] and LOCAL-SEARCH [33].* For our experi-
ments, we use the Open Video Project (OVP) and the YouTube datasets, which have 50 and 39 videos,
respectively [10].

Determinantal point process (DPP) is a powerful method to capture diversity in datasets [24, 29].
Let NV = {1,2,---,n} be a ground set of n items. A DPP defines a probability distribution
over all subsets of AV, and a random variable Y distributed according to this distribution obeys

Pr[lY = 5] = diit(g'ﬁ-SL)) for every set S C N, where L is a positive semidefinite kernel matrix, Lg
is the principal sub-matrix of L indexed by S and I is the n x n identity matrix. The most diverse
subset of V" is the one with the maximum probability in this distribution. Unfortunately, finding this
set is NP-hard [22], but the function f(S) = logdet(Lg) is a non-monotone submodular function

[24].

*https://github.com/pujols/Video- summarization
*https://github.com/baharanm/non-mon-stream
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Figure 1: Comparing the normalized objective value and running time of SAMPLE-STREAMING and

LocAL-SEARCH for different segment sizes.
ﬂ! 3 ==

Figure 2: Summary generated by SAMPLE-STREAMING for OVP video number 60.

We follow the experimental setup of [18] for extracting frames from videos, finding a linear kernel
matrix L and evaluating the quality of produced summaries based on their F-score. Gong et al. [18]
define a sequential DPP, where each video sequence is partitioned into disjoint segments of equal
sizes. For selecting a subset S; from each segment ¢ (i.e., set P;), a DPP is defined on the union

of the frames in this segment and the selected frames S;_; from the previous segment. Therefore,

the conditional distribution of S; is given by, Pr[S;|S;—1] = %, where L is the kernel

matrix defined over P; U S;_1, and I; is a diagonal matrix of the same size as P, U S;_; in which the
elements corresponding to S;_; are zeros and the elements corresponding to P; are 1. For the detailed
explanation, please refer to [18]. In our experiments, we focus on maximizing the non-monotone
submodular function f(.S;) = logdet(Ls,us,_, ). We would like to point out that this function can
take negative values, which is slightly different from the non-negativity condition we need for our
theoretical guarantees.

We first compare the objective values (F-scores) of SAMPLE-STREAMING and LOCAL-SEARCH for
different segment sizes over YouTube and OVP datasets. In each experiment, the values are normalized
to the F-score of summaries generated by SEQDPP. While SEQDPP has the best performance in
terms of maximizing the objective value, in Figures 1(a) and 1(b), we observe that both SAMPLE-
STREAMING and LOCAL-SEARCH produce summaries with very high qualities. Figure 2 shows the
summary produced by our algorithm for OVP video number 60. Mirzasoleiman et al. [33] showed
that their algorithm (LOCAL-SEARCH) runs three orders of magnitude faster than SEQDPP [18].
In our experiments (see Figure 1(c)), we observed that SAMPLE-STREAMING is 40 and 50 times
faster than LOCAL-SEARCH for the YouTube and OVP datasets, respectively. Note that for different
segment sizes the number of frames remains constant; therefore, the time complexities for both
SAMPLE-STREAMING and LOCAL-SEARCH do not change.

In a second experiment, we study the effect of imposing different constraints on video summarization
task for YouTube video number 106, which is a part of the America’s Got Talent series. In the first set
of constraints, we consider 6 (for 6 different faces in the frames) partition matroids to limit the number
of frames containing each face i, i.e., a 6-matchoid constraint® Z = {S C N : [SNN;| < k;},
where N; C N is the set of frames containing face i for 1 < ¢ < 6. For all the ¢ values, we set
k; = 3. In this experiment, we use the same methods as described by Mirzasoleiman et al. [33] for
face recognition. Figure 3(a) shows the summary produced for this task. The second set of constraints
is a 3-matchoid, where matroids limit the number of frames containing each one of the three judges.
The summary for this constraint is shown in Figure 3(b). Finally, Figure 3(c) shows a summary with
a single partition matroid constraint on the singer.

SNote that a frame may contain more than one face.
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Figure 3: Summaries generated by SAMPLE-STREAMING for YouTube video number 106: (a) a
6-matchoid constraint, (b) a 3-matchoid constraint and (c) a partition matroid constraint.

4.2 Location Summarization

In this section, given a dataset of 504,247 Uber pick ups in Manhattan, New York in April 2014 [41],
our goal is to find a set of the most representative locations. This dataset allows us to study the effect
of p and k (the size of the largest feasible solution) on the performance of our algorithm.

To do so, the entire area of the given pick ups is covered by m = 166 overlapping circular regions
of radius r (the centers of these regions provided a 1km-cover of all the area, i.e., for each location
in the dataset there was at least one center within a distance of 1km from it), and the algorithm was
allowed to choose at most ¢ locations out of each one of these regions. One can observe that by
using a single matroid for limiting the number of locations chosen within each one of the regions, the
above constraint can be expressed as a p-matchoid constraint, where p is the maximum number of
regions a single location can belong to (notice that p could be much smaller than the total number m
of regions).

In order to find a representative set .S, we use the following monotone submodular objective function:
f(S) =logdet(I + aKg g), where the matrix K encodes the similarities between data points, Kg g
is the principal sub-matrix of K indexed by S and o > 0 is a regularization parameter [20, 23, 39].
The similarity of two location samples ¢ and j is defined by a Gaussian kernel K; ; = exp (—d ;/h?),
where the distance d; ; (in meters) is calculated from the coordinates and A is set to 5000.

In the first experiment, we set the radius of regions to » = 1.5km. In this setting, we observed
that a point belongs to at most 7 regions; hence, the constraint is a 7-matchoid. For ¢/ = 5, it
took 116 seconds® (and 693,717 oracle calls) for our algorithm to find a summary of size k = 153.
Additionally, for ¢ = 10 and £ = 20 it took 294 seconds (and 1,306,957 oracle calls) and 1004
seconds (and 2,367,389 oracle calls), respectively, for the algorlthm to produce summaries of sizes
301 and 541, respectively.

In the second experiment, we set the radius of regions to r» = 2.5km to investigate the performance of
our algorithm on p-matchoids with larger values of p. In this setting, we observed that a point belongs
to at most 17 regions, which made the constraint a 17-matchoid. This time, for £ = 5, it took only 35
seconds (and 296,023 oracle calls) for our algorithm to find a summary of size £ = 54. Additionally,
for £ = 10 and ¢ = 20 it took 80 seconds (and 526,839 oracle calls) and 176 seconds (and 958,549
oracle calls), respectively, for the algorithm to produce summaries of sizes 106 and 198, respectively.
As one can observe, our algorithm scales very well to larger datasets. Also, for p-matchoids with
larger p (which results in a smaller sampling probability g) the performance gets even better.

5 Conclusion

We developed a streaming algorithm for submodular maximization by carefully subsampling elements
of the data stream. Our algorithm provides the best of three worlds: (i) the tightest approximation
guarantees in various settings, including p-matchoid and matroid constraints for non-monotone

®In these experiments, we used a machine powered by Intel i5, 3.2 GHz processor and 16 GB of RAM.



submodular functions, (ii) minimum memory requirement, and (iii) fewest queries per element. We
also experimentally studied the effectiveness of our algorithm.
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