
NEON2: Finding Local Minima
via First-Order Oracles

Zeyuan Allen-Zhu∗
Microsoft Research AI
Redmond, WA 98052

zeyuan@csail.mit.edu

Yuanzhi Li∗
Stanford University
Stanford, CA 94305

yuanzhil@stanford.edu

Abstract

We propose a reduction for non-convex optimization that can (1) turn an
stationary-point finding algorithm into an local-minimum finding one, and (2) re-
place the Hessian-vector product computations with only gradient computations.
It works both in the stochastic and the deterministic settings, without hurting the
algorithm’s performance.
As applications, our reduction turns Natasha2 into a first-order method with-
out hurting its theoretical performance. It also converts SGD, GD, SCSG, and
SVRG into algorithms finding approximate local minima, outperforming some
best known results.

1 Introduction
Nonconvex optimization has become increasingly popular due its ability to capture modern machine
learning tasks in large scale. For instance, training neural nets corresponds to minimizing a function

f(x) =
1

n

n∑
i=1

fi(x)

over x ∈ Rd that is non-convex, where each training sample i corresponds to one loss function
fi(·) in the summation. This average structure allows one to perform stochastic gradient descent
(SGD) which uses a random ∇fi(x) —corresponding to computing backpropagation once— to
approximate∇f(x) and performs descent updates.
Motivated by such large-scale machine learning applications, we wish to design faster first-order
non-convex optimization methods that outperform the performance of gradient descent, both in the
online and offline settings. In this paper, we say an algorithm is online if its complexity is indepen-
dent of n (so n can be infinite), and offline otherwise. In recently years, researchers across different
communities have gathered together to tackle this challenging question. By far, known theoretical
approaches mostly fall into one of the following two categories.

First-order methods for stationary points. In analyzing first-order methods, we denote by gra-
dient complexity T the number of computations of∇fi(x). To achieve an ε-approximate stationary
point —namely, a point x with ‖∇f(x)‖ ≤ ε— it is a folklore that gradient descent (GD) is offline
and needs T ∝ O

(
n
ε2

)
, while stochastic gradient decent (SGD) is online and needs T ∝ O

(
1
ε4

)
.

In recent years, the offline complexity has been improved to T ∝ O
(
n2/3

ε2

)
by the SVRG method [4,

24], and the online complexity has been improved to T ∝ O
(

1
ε10/3

)
by the SCSG method [19].

Both of them rely on the so-called variance-reduction technique, originally discovered for convex
problems [12, 17, 27, 29].
∗Authors sorted in alphabetical order. We acknowledge a parallel work of Xu and Yang [31] (which ap-

peared online a few days before us), and have adopted their algorithm name Neon and called our new algorithm
Neon2. Our algorithms are very different from theirs, and give better theoretical performance. The full version
of this paper can be found on https://arxiv.org/abs/1711.06673.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

mailto:zeyuan@csail.mit.edu
mailto:yuanzhil@stanford.edu
https://arxiv.org/abs/1711.06673

T=δ-5

T=δ-3ε-2
T=ε-4

T=δ-7 Neon2+SGD

Neon+SGD

ε ε2/3 ε4/7 ε1/2 ε1/4
δ

ε-4

ε-5

T

(a)

T=δ-5

T=δ-3ε-2

T=ε-3.33

T=δ-6 Neon2+SCSG

Neon+SCSG

ε ε2/3 ε4/9ε1/2 ε1/4
δ

ε-4

ε-5

ε-3.33

T

(b)

T=δ-5

T=δ-1ε-3 T=ε-3.25

T=δ-6 Neon2+Natasha2

Neon+Natasha

ε ε3/4 ε3/5 ε1/2 ε1/4
δ

ε-3.25

ε-3.75

ε-3.6

ε-5

T

(c)

Figure 1: Neon vs Neon2 for finding (ε, δ)-approximate local minima. We emphasize that Neon2 and Neon try
to tackle the same problem, but are different algorithms.

Both algorithms SVRG and SCSG are only capable of finding approximate stationary points, which
may not necessarily be approximate local minima and are arguably bad solutions for deep neural
nets [10, 11, 15]. Thus,

can we turn stationary-point finding algorithms into local-minimum finding ones?

Hessian-vector methods for local minima. Using information about the Hessian, one can find
ε-approximate local minima —namely, a point x with ‖∇f(x)‖ ≤ ε and also ∇2f(x) � −ε1/CI.2
In 2006, Nesterov and Polyak [21] showed that one can find an ε-approximate in O(1

ε1.5) iterations,
but each iteration requires an (offline) computation as heavy as inverting the matrix∇2f(x).
To fix this issue, researchers propose to study the so-called “Hessian-free” methods that, in addition
to gradient computations, also compute Hessian-vector products. That is, instead of using the full
matrix∇2fi(x) or∇2f(x), these methods also compute∇2fi(x)·v for indices i and vectors v.3 For
Hessian-free methods, we denote by gradient complexity T the number of computations of ∇fi(x)
plus that of∇2fi(x) · v. The hope of using Hessian-vector products is to improve the complexity T
as a function of ε.
Such improvement was first shown possible independently by [1, 8] for the offline setting, with
complexity T ∝

(
n
ε1.5 + n3/4

ε1.75

)
so is better than that of gradient descent. In the online setting, the

first improvement was by Natasha2 which gives complexity T ∝
(

1
ε3.25

)
[2].

Unfortunately, it is argued by some researchers that Hessian-vector products are not general enough
and may not be as simple to implement as evaluating gradients [9]. Therefore,

can we turn Hessian-free methods into first-order ones, without hurting their performance?

1.1 From Hessian-Vector Products to First-Order Methods
Recall by definition of derivative we have

∇2fi(x) · v = limq→0{∇fi(x+qv)−∇fi(x)
q } .

Given any Hessian-free method, at least at a high level, can we replace every occurrence of∇2fi(x)·
v with w = ∇fi(x+qv)−∇fi(x)

q for some small q > 0?

Note the error introduced in this approximation is ‖∇2fi(x)·v−w‖ ∝ q‖v‖2. However, the original
algorithm might not be stable to adversarial noise, thus, an (inverse) exponentially small q might be
required. One of our main contributions is to show how to implement these algorithms stably, so we
can convert Hessian-free methods into first-order ones with an (inverse) polynomially small q.
In this paper, we demonstrate this idea by converting negative-curvature-search (NC-search) subrou-
tines into first-order processes. NC-search is a key subroutine used in state-of-the-art Hessian-free
methods that have rigorous proofs [1, 2, 8]. It solves the following simple task:

negative-curvature search (NC-search)
given point x0, decide if∇2f(x0) � −δI or find a unit vector v such that v>∇2f(x0)v ≤ − δ2 .

2We say A � −δI if all the eigenvalues of A are no smaller than −δ. In this high-level introduction, we
focus only on the case when δ = ε1/C for some constant C.

3Hessian-free methods are useful because when fi(·) is explicitly given, computing its gradient is in the
same complexity as computing its Hessian-vector product [23] [28], using backpropagation.

2

Online Setting. In the online setting, NC-search can be solved by Oja’s algorithm [22] which costs
Õ(1/δ2) computations of Hessian-vector products. This is first proved by Allen-Zhu and Li [7] and
first applied to NC-search in Natasha2 [2]).
In this paper, we propose a method Neon2online which solves the NC-search problem via only
stochastic first-order updates. That is, starting from x1 = x0 + ξ where ξ is some random per-
turbation, we keep updating xt+1 = xt − η(∇fi(xt) − ∇fi(x0)). In the end, the vector xT − x0

gives us enough information about the negative curvature.

Theorem 1 (informal). Our Neon2online algorithm solves NC-search using Õ(1/δ2) stochastic
gradients, without Hessian-vector product computations.

This complexity Õ(1/δ2) matches that of Oja’s algorithm, and is information-theoretically optimal
(up to log factors), see the lower bound in [7].
The independent work Neon by Xu and Yang [31] is actually the first recorded theoretical result
that proposed this approach. However, Neon needs Õ(1/δ3) stochastic gradients, because it uses
full gradient descent to find NC (on a sub-sampled objective) inspired by power method and [16];
instead, Neon2online uses stochastic gradients and is based on the recent result of Oja’s algorithm [7].

Plugging Neon2online into Natasha2 [2], we achieve the following corollary (see Figure 1(c)):

Theorem 2 (informal). Neon2online turns Natasha2 into a stochastic first-order method, without
hurting its performance. That is, it finds an (ε, δ)-approximate local minimum in T = Õ

(
1

ε3.25 +
1
ε3δ + 1

δ5

)
stochastic gradient computations, without Hessian-vector product computations.

(We say x is an (ε, δ)-approximate local minimum if ‖∇f(x)‖ ≤ ε and ∇2f(x) � −δI.)

Offline Deterministic Setting. There are a number of ways to solve the NC-search problem in the
offline setting using Hessian-vector products. Most notably, power method uses Õ(n/δ) computa-
tions of Hessian-vector products, and Lanscoz method [18] uses Õ(n/

√
δ) computations.

In this paper, we convert (a variant of) Lanscoz’s method into a first-order one:

Theorem 3 (informal). Our Neon2det algorithm solves NC-search using Õ(1/
√
δ) full gradients

(or equivalently Õ(n/
√
δ) stochastic gradients).

The independent work Neon [31] also applies to the offline setting, and needs Õ(1/δ) full gradients.
Their approach is inspired by [16], but our Neon2det is based on Chebyshev approximation theory.
By putting Neon2det and Neon2finite into the CDHS method of Carmon et al. [8], we have

Theorem 4 (informal). Neon2det turns CDHS into a first-order method without hurting its perfor-
mance: it finds an (ε, δ)-approximate local minimum in Õ

(
1

ε1.75 + 1
δ3.5

)
full gradient computations.

1.1.1 Offline Finite-Sum Setting
Recall one can also solve the NC-search problem in the offline setting by the (finite-sum) shift-and-
invert [13] method, using Õ(n + n3/4/

√
δ) computations of Hessian-vector products. We refer to

this method as “finite-sum SI”, and also convert it into a first-order method.

Theorem 5 (informal). Neon2finite algorithm solves NC-search using Õ(n + n3/4/
√
δ) stochastic

gradients.

Putting Neon2finite into the (finite-sum version of) CDHS method [8], we have4

Theorem 6 (informal). Neon2finite turns CDHS into a first-order method without hurting its perfor-
mance: it finds an (ε, δ)-approximate local minimum in T = Õ

(
n
ε1.5 + n

δ3 + n3/4

ε1.75 + n3/4

δ3.5

)
stochastic

gradient computations.
Remark 1.1. All the cited works in Section 1.1 requires the objective to have (1) Lipschitz-
continuous Hessian and (2) Lipschitz-continuous gradient. One can argue that (1) and (2) are both
necessary for finding approximate local minima, but if only finding approximate stationary points,
then only (2) is necessary. We shall formally discuss our assumptions in Section 2.

4The original paper of CDHS only stated their algorithm in the deterministic setting, but is easily verifiable
to work in the finite-sum setting, see discussions in [1].

3

algorithm gradient complexity T Hessian-vector
products

variance
bound

Lip.
smooth

2nd-order
smooth

stationary SGD (folklore) O
(

1
ε4

)
no needed needed no

local minima

perturbed SGD
[14] Õ

(poly(d)

ε4
+ poly(d)

δ16

)
no needed needed needed

Neon+SGD
[31] Õ

(
1
ε4

+ 1
δ7

)
no needed needed needed

Neon2+SGD Õ
(

1
ε4

+ 1
ε2δ3

+ 1
δ5

)
no needed needed needed

stationary SCSG [19] O
(

1

ε10/3

)
no needed needed no

local minima
Neon+SCSG

[31] O
(

1

ε10/3
+ 1

ε2δ3
+ 1

δ6

)
no needed needed needed

Neon2+SCSG O
(

1

ε10/3
+ 1

ε2δ3
+ 1

δ5

)
no needed needed needed

local minima

Natasha2
[2] Õ

(
1

ε3.25
+ 1

ε3δ
+ 1

δ5

)
needed needed needed needed

Neon+Natasha2
[31] Õ

(
1

ε3.25
+ 1

ε3δ
+ 1

δ6

)
no needed needed needed

Neon2+Natasha2 Õ
(

1
ε3.25

+ 1
ε3δ

+ 1
δ5

)
no needed needed needed

↑ online methods ↑ ↓ offline methods ↓

stationary GD (folklore [20]) O
(
n
ε2

)
no no needed no

local minima
perturbed GD

[16] Õ
(
n
ε2

+ n
δ4

)
no no needed needed

Neon2+GD Õ
(
n
ε2

+ n
δ3.5

)
no no needed needed

stationary SVRG [24]
[4] O

(
n2/3

ε2
+ n

)
no no needed no

local minima
Reddi et al. [25]

Õ
(
n2/3

ε2
+ n

δ3
+ n3/4

δ3.5

) needed no needed needed

Neon2+SVRG no no needed needed

stationary “convex until guilty”
[9] Õ

(
n

ε1.75

)
no no needed needed

local minima
FastCubic [1]
CDHS [8]

Õ
(
n
ε1.5

+ n
δ3

+ n3/4

ε1.75
+

n3/4

δ3.5

) needed no needed needed

Neon2+CDHS
Õ
(
n
ε1.5

+ n
δ3

+ n3/4

ε1.75
+

n3/4

δ3.5

) no no needed needed

Table 1: Complexity for finding ‖∇f(x)‖ ≤ ε and ∇2f(x) � −δI. Following tradition, in these complexity
bounds, we assume variance and smoothness parameters as constants, and only show the dependency
on n, d, ε.

Remark 1. Variance bounds is needed for online methods (first half of the table).
Remark 2. Lipschitz smoothness is needed for finding even approximate stationary points.
Remark 3. Second-order Lipschitz smoothness is needed for finding approximate local minima.

1.2 From Stationary Points to Local Minima

Given any first-order method that finds stationary points (such as GD, SGD, SVRG or SCSG), we
can hope for using the NC-search routine to identify whether or not its output x satisfies ∇2f(x) �
−δI. If so, then automatically x becomes an (ε, δ)-approximate local minima so we can terminate.
If not, we can go into its negative curvature direction to further decrease the objective.
In the independent work of Xu and Yang [31], they applied their Neon method for NC-search, and
thus turned SGD and SCSG into first-order methods finding approximate local minima. In this paper,
we use Neon2 instead. We show the following theorem:

Theorem 7 (informal). To find an (ε, δ)-approximate local minima,

4

Algorithm 1 Neon2online
weak (f, x0, δ)

1: η ← δ
C2

0L
2 log(100d)

, T ← C2
0 log(100d)

ηδ , � for sufficiently large constant C0

2: ξ ← σ ξ′

‖ξ′‖2 where ξ′ ∼ N (0, I). � ξ is Gaussian random vector with norm σ := (100d)−3C0 η
2δ3

L2

3: x1 ← x0 + ξ.
4: for t← 1 to T do
5: xt+1 ← xt − η (∇fi(xt)−∇fi(x0)) where i ∈R [n].
6: if ‖xt+1 − x0‖2 ≥ r then return v = xs−x0

‖xs−x0‖2 for a uniformly random s ∈ [t].
� r := (100d)C0σ

7: end for
8: return v = ⊥;

(a) Neon2+SGD needs T = Õ
(

1
ε4 + 1

ε2δ3 + 1
δ5

)
stochastic gradients;

(b) Neon2+SCSG needs T = Õ
(

1
ε10/3

+ 1
ε2δ3 + 1

δ5

)
stochastic gradients; and

(c) Neon2+GD needs T = Õ
(
n
ε2 + n

δ3.5

)
(so Õ

(
1
ε2 + 1

δ3.5

)
full gradients).

(d) Neon2+SVRG needs T = Õ
(
n2/3

ε2 + n
δ3 + n3/4

δ3.5

)
stochastic gradients.

1.3 Roadmap

We introduce notions and formalize the problem in Section 2. We introduce Neon2 in the online,
deterministic, and SVRG settings respectively in Section 3, Section 4 and Section 5. We apply
Neon2 to SGD, GD, Natasha2, CDHS, SCSG and SVRG in Section 6. Most of the proofs are in the
appendix.

2 Preliminaries
Throughout this paper, we denote by ‖ · ‖ the Euclidean norm. We use i ∈R [n] to denote that i
is generated from [n] = {1, 2, . . . , n} uniformly at random. We denote by I[event] the indicator
function of probabilistic events.
We denote by ‖A‖2 the spectral norm of matrix A. For symmetric matrices A and B, we write
A � B to indicate that A − B is positive semidefinite (PSD). Therefore, A � −σI if and only if
all eigenvalues of A are no less than −σ. We denote by λmin(A) and λmax(A) the minimum and
maximum eigenvalue of a symmetric matrix A.

Definition 2.1. For a function f : Rd → R,
• f is L-Lipschitz smooth (or L-smooth for short) if ∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.
• f is second-order L2-Lipschitz smooth (or L2-second-order smooth for short) if

∀x, y ∈ Rd, ‖∇2f(x)−∇2f(y)‖2 ≤ L2‖x− y‖.

2.1 Problem and Assumptions

Throughout the paper we study

minx∈Rd
{
f(x) := 1

n

∑n
i=1 fi(x)

}
(2.1)

where both f(·) and each fi(·) can be nonconvex. We wish to find (ε, δ)-approximate local minima
which are points x satisfying

‖∇f(x)‖ ≤ ε and ∇2f(x) � −δI .
We need the following three assumptions
• Each fi(x) is L-Lipschitz smooth.

• Each fi(x) is second-order L2-Lipschitz smooth.

• Stochastic gradients have bounded variance: ∀x ∈ Rd : Ei∈R[n] ‖∇f(x)−∇fi(x)‖2 ≤ V .

(This assumption is needed only for online algorithms.)

5

Algorithm 2 Neon2online(f, x0, δ, p) � for boosting confidence of Neon2online
weak

Input: Function f(x) = 1
n

∑n
i=1 fi(x), vector x0, negative curvature δ > 0, confidence p ∈ (0, 1].

1: for j = 1, 2, · · ·Θ(log 1/p) do � boost the confidence
2: vj ← Neon2online

weak (f, x0, δ);
3: if vj 6= ⊥ then
4: m← Θ(L

2 log 1/p
δ2), v′ ← Θ(δ

L2
)v.

5: Draw i1, . . . , im ∈R [n].
6: zj = 1

m‖v′‖22

∑m
j=1(v′)>

(
∇fij (x0 + v′)−∇fij (x0)

)
7: if zj ≤ −3δ/4 return v = vj
8: end if
9: end for

10: return v = ⊥.

3 Neon2 in the Online Setting
We propose Neon2online as the online version of Neon2. It repeatedly invokes Neon2online

weak in
Algorithm 1, whose goal is to solve the NC-search problem with confidence 2/3 only; then
Neon2online invokes Neon2online

weak repeatedly for log(1/p) times to boost the confidence to 1− p.
We prove the following theorem:

Theorem 1 (Neon2online). Let f(x) = 1
n

∑n
i=1 fi(x) where each fi is L-smooth and L2-second-

order smooth. For every point x0 ∈ Rd, every δ ∈ (0, L], every p ∈ (0, 1), the output

v = Neon2online(f, x0, δ, p)

satisfies that, with probability at least 1− p:
1. If v = ⊥, then∇2f(x0) � −δI.
2. If v 6= ⊥, then ‖v‖2 = 1 and v>∇2f(x0)v ≤ − δ2 .

Moreover, the total number of stochastic gradient evaluations O
(log2(d/p)L2

δ2

)
.

The proof of Theorem 1 immediately follows from Lemma 3.1 and Lemma 3.2 below.

Lemma 3.1 (Neon2online
weak). In the same setting as Theorem 1, the output v = Neon2online

weak (f, x0, δ)
satisfies If λmin(∇2f(x0)) ≤ −δ, then with probability at least 2/3, v 6= ⊥ and v>∇2f(x0)v ≤
− 3

4δ.

Proof sketch of Lemma 3.1. We explain why Neon2online
weak works as follows. Starting from a ran-

domly perturbed point x1 = x0 + ξ, it keeps updating xt+1 ← xt − η (∇fi(xt)−∇fi(x0)) for
some random index i ∈ [n], and stops either when T iterations are reached, or when ‖xt+1−x0‖2 >
r. Therefore, we have ‖xt − x0‖2 ≤ r throughout the iterations, and thus can approximate
∇2fi(x0)(xt − x0) using ∇fi(xt) − ∇fi(x0), up to error O(r2). This is a small term based on
our choice of r.
Ignoring the error term, our updates look like xt+1 − x0 =

(
I − η∇2fi(x0)

)
(xt − x0). This

is exactly the same as Oja’s algorithm [22] which is known to approximately compute the min-
imum eigenvector of ∇2f(x0) = 1

n

∑n
i=1 fi(x0). Using the recent optimal convergence anal-

ysis of Oja’s algorithm [7], one can conclude that after T1 = Θ
(log r

σ

ηλ

)
iterations, where λ =

max{0,−λmin(∇2f(x0))}, then we not only have that ‖xt+1 − x0‖2 is blown up, but also it aligns
well with the minimum eigenvector of ∇2f(x0). In other words, if λ ≥ δ, then the algorithm must
stop before T .
Finally, one has to carefully argue that the error does not blow up in this iterative process. We defer
the proof details to Appendix B.3. �

Our Lemma 3.2 below tells us we can verify if the output v of Neon2online
weak is indeed correct (up to

additive δ
4), so we can boost the success probability to 1−p. For completeness’ sake, we summarize

this procedure as Neon2online in Algorithm 2.

6

Lemma 3.2 (verification). In the same setting as Theorem 1, let vectors x, v ∈ Rd. If i1, . . . , im ∈R
[n] and define

z = 1
m

∑m
j=1 v

>(∇fij (x+ v)−∇fij (x))

Then, if ‖v‖ ≤ δ
8L2

and m = Θ(L
2 log 1/p
δ2), with probability at least 1− p,∣∣∣ z
‖v‖22
− v>∇2f(x)v

‖v‖22

∣∣∣ ≤ δ
4 .

The simple proof of Lemma 3.2 can be found in Section B.4.

4 Neon2 in the Deterministic Setting

Algorithm 3 Neon2det(f, x0, δ, p)

Input: A function f , vector x0, negative curvature target δ > 0, failure probability p ∈ (0, 1].

1: T ← C2
1 log(d/p)

√
L√

δ
. � for sufficiently large constant C1.

2: ξ ← Gaussian random vector with norm σ; � σ := (d/p)−2C1 δ
T4L2

3: x1 ← x0 + ξ. y1 ← ξ, y0 ← 0
4: for t← 1 to T do
5: yt+1 = 2M(yt)− yt−1; � M(y) := − 1

L
(∇f(x0 + y)−∇f(x0)) +

(
1− 3δ

4L

)
y

6: xt+1 = x0 + yt+1 −M(yt).
7: if ‖xt+1 − x0‖2 ≥ r then return xt+1−x0

‖xt+1−x0‖2 . � r := (d/p)C1σ

8: end for
9: return ⊥.

We propose Neon2det formally in Algorithm 3 and prove:

Theorem 3 (Neon2det). Let f(x) be a function that is L-smooth and L2-second-order smooth. For
every point x0 ∈ Rd, every δ > 0, every p ∈ (0, 1], the output v = Neon2det(f, x0, δ, p) satisfies
that, with probability at least 1− p:
1. If v = ⊥, then∇2f(x0) � −δI.
2. If v 6= ⊥, then ‖v‖2 = 1 and v>∇2f(x0)v ≤ − δ2 .

Moreover, the total number full gradient evaluations is O
(log2(d/p)

√
L√

δ

)
.

Proof sketch of Theorem 3. We explain the high-level intuition of Neon2det and the proof of
Theorem 3 as follows. Define M = − 1

L∇
2f(x0) +

(
1− 3δ

4L

)
I. We immediately notice that

• all eigenvalues of∇2f(x0) in
[−3δ

4 , L
]

are mapped to the eigenvalues of M in [−1, 1], and

• any eigenvalue of∇2f(x0) smaller than −δ is mapped to eigenvalue of M greater than 1 + δ
4L .

Therefore, as long as T ≥ Ω̃
(
L
δ

)
, if we compute xT+1 = x0 + MT ξ for some random vector ξ,

by the theory of power method, xT+1 − x0 must be a negative-curvature direction of∇2f(x0) with
value ≤ 1

2δ. There are two issues with this approach.

The first issue is that, the degree T of this matrix polynomial MT can be reduced to T = Ω̃
(√

L√
δ

)
if

the so-called Chebyshev polynomial is used.
Claim 4.1. Let Tt(x) be the t-th Chebyshev polynomial of the first kind, defined as:

T0(x) := 1, T1(x) := x, Tn+1(x) := 2x · Tn(x)− Tn−1(x)

then Tt(x) satisfies (see Trefethen [30]):

Tt(x) =

{
cos(n arccos(x)) ∈ [−1, 1] if x ∈ [−1, 1];
1
2

[(
x−
√
x2 − 1

)n
+
(
x+
√
x2 − 1

)n]
if x > 1.

Since Tt(x) stays between [−1, 1] when x ∈ [−1, 1], and grows to ≈ (1 +
√
x2 − 1)t for x ≥ 1, we

can use TT (M) in replacement of MT . Then, any eigenvalue of M that is above 1 + δ
4L shall grow

7

in a speed like (1 +
√
δ/L)T , so it suffices to choose T ≥ Ω̃

(√
L√
σ

)
. This is quadratically faster than

applying the power method, so in Neon2det we wish to compute xt+1 ≈ x0 + Tt (M) ξ.
The second issue is that, since we cannot compute Hessian-vector products, we have to use the
gradient difference to approximate it; that is, we can only useM(y) to approximate My where

M(y) := − 1

L
(∇f(x0 + y)−∇f(x0)) +

(
1− 3δ

4L

)
y .

How does error propagate if we compute Tt (M) ξ by replacing M withM? Note that this is a very
non-trivial question, because the coefficients of the polynomial Tt(x) is as large as 2O(t).
It turns out, the way that error propagates depends on how the Chebyshev polynomial is calculated.
If the so-called backward recurrence formula is used, namely,

y0 = 0, y1 = ξ, yt = 2M(yt−1)− yt−2

and setting xT+1 = x0 + yT+1 −M(yT), then this xT+1 is sufficiently close to the exact value
x0 + Tt (M) ξ. This is known as the stability theory of computing Chebyshev polynomials, and is
proved in [6]. We defer all the proof details to Appendix C.2. �

5 Neon2 in the Finite-Sum Setting
Let us recall how the shift-and-invert (SI) approach [26] solves the minimum eigenvector problem.
Given matrix A = ∇2f(x0) ∈ Rd×d and suppose its eigenvalues are −L ≤ λ1 ≤ · · · ≤ λd ≤ L.
At a high level, the SI approach
• chooses λ = δ − λ1 ,5

• defines positive definite matrix B = (λI + A)−1, and
• applies power method for a logarithmic number of rounds to B to find its approximate maximum

eigenvector v.6

One can show that this unit vector v satisfies λ1 ≤ v>Av ≤ λ1 +O(δ) [13].
To apply power method to B, one needs to compute matrix inversion By = (λI + A)−1y for arbi-
trary vectors y ∈ Rd. The stability of SI ensures that it suffices to compute By to some sufficiently
high accuracy.7

One efficient way to compute By to such high accuracy is by expressing A in a finite-sum form
and then adopt convex optimization [13]. We call this approach finite-sum SI. Consider a convex
quadratic function that is of a finite sum of non-convex functions:

g(z) :=
1

2
z>(λI + A)z + y>z =

1

n

n∑
i=1

(1

2
z>(λI +∇2fi(x0))z + y>z

)
=:

1

n

n∑
i=1

gi(z) .

Now, computing By is equivalent to minimizing g(z), and one can use a stochastic first-order
method to minimize it.
One such method is KatyushaX, which directly accelerates the so-called SVRG method using
momentum, and finds z using Õ(n+ n3/4

√
L/δ) computations of stochastic gradients.8 Whenever

a stochastic gradient ∇gi(z) = (λI + ∇2fi(x0))z + y is needed at some point z ∈ Rd for some
random i ∈ [n], instead of evaluating it exactly (which require a Hessian-vector product), we use
∇fi(x0 + z)−∇fi(x0) to approximate∇2fi(x0) · z. We call this method Neon2finite.

5The precise SI approach needs to binary search λ because λ1 is unknown.
6More precisely, applying power method for O(log(d/p)) rounds, one can find a unit vector v such that

v>Bv ≥ 9
10
λmax(B) with probability at least 1 − p. One can also prove that this vector v satisfies λ1 ≤

v>Av ≤ λ1 +O(δ).
7More precisely, if suffices to compute w ∈ Rd so that ‖w − By‖ ≤ ε‖y‖, in a time complexity that

polynomially depends on log 1
ε

[5, 13].
8Shalev-Shwartz [29] first discovered that one can apply SVRG to minimize sum-of-nonconvex functions.

It was also observed that applying APPA/Catalyst reductions to SVRG one can achieve accelerated convergence
rates [13, 29], and this approach is commonly known as AccSVRG. However, AccSVRG requires some careful
parameter tuning of its inner loops, and thus is a logarithmic-factor slower than KatyushaX and also less
practical [3].

8

Of course, one needs to show that KatyushaX is stable to noise. Using similar techniques as the
previous two sections, one can show that the error term is proportional to O(‖z‖22), and thus as long
as we bound the norm of z is bounded (just like we did in the previous two sections), this should not
affect the performance of the algorithm. We decide to ignore the detailed theoretical proof of this
result, because it will complicate this paper.

Theorem 5 (Neon2finite). Let f(x) = 1
n

∑n
i=1 fi(x) where each fi is L-smooth and L2-

second-order smooth. For every point x0 ∈ Rd, every δ > 0, every p ∈ (0, 1], the output
v = Neon2finite(f, x0, δ, p) satisfies that, with probability at least 1− p:
1. If v = ⊥, then∇2f(x0) � −δI.
2. If v 6= ⊥, then ‖v‖2 = 1 and v>∇2f(x0)v ≤ − δ2 .

Moreover, the total number stochastic gradient evaluations is Õ
(
n+ n3/4

√
L√

δ

)
, where the Õ notion

hides logarithmic factors in d, 1/p and L/δ.

6 Applications of Neon2
We show how Neon2 can be applied to existing algorithms such as SGD, GD, SCSG, SVRG, Natasha2,
CDHS. Unfortunately, we are unaware of a generic statement for applying Neon2 to any algorithm.
Therefore, we have to prove them individually.9

Throughout this section, we assume that some starting vector x0 ∈ Rd and upper bound ∆f is given
to the algorithm, and it satisfies f(x0)−minx{f(x)} ≤ ∆f . This is only for the purpose of proving
theoretical bounds. Since ∆f only appears in specifying the number of iterations, in practice, one
can run enough number of iterations and then halt the algorithm, without knowing ∆f .

6.1 Applying Neon2 to SGD and GD
To apply Neon2 to turn SGD into an algorithm finding approximate local minima, we propose the
following process Neon2+SGD (see Algorithm 4). In each iteration t, it first applies SGD with mini-
batch size O(1

ε2) (see Line 4). Then, if SGD finds a point with small gradient, we apply Neon2online

to decide if it has a negative curvature, if so, then we move in the direction of the negative curvature
(see Line 10). We have the following theorem:

Theorem 7a. With probability at least 1 − p, Neon2+SGD outputs an (ε, δ)-approximate local

minimum in gradient complexity T = Õ
(

(Vε2 + 1)
(L2

2∆f

δ3 +
L∆f

ε2

)
+ L2

δ2
L2

2∆f

δ3

)
.

Corollary 6.1. Treating ∆f ,V, L, L2 as constants, we have T = Õ
(

1
ε4 + 1

ε2δ3 + 1
δ5

)
.

One can similarly (and more easily) give an algorithm Neon2+GD, which is the same as Neon2+SGD
except that the mini-batch SGD is replaced with a full gradient descent, and the use of Neon2online

is replaced with Neon2det. We have the following theorem:

Theorem 7c. With probability at least 1− p, Neon2+GD outputs an (ε, δ)-approximate local mini-

mum using Õ
(
L∆f

ε2 + L1/2

δ1/2
L2

2∆f

δ3

)
full gradient computations.

We only prove Theorem 7a in Appendix D and the proof of Theorem 7c is only simpler.

6.2 Other Applications
Due to space limitation, we defer the applications to Natasha2, CDHS, and SCSG to Appendix A.
At a high level, the applications to Natasha2 and CDHS are trivial because NC-search was already
a subroutine required by both algorithms, so one can directly replace them with Neon2 of this pa-
per. The application to SCSG is less non-trivial, because one has to additionally take care of some
probabilistic behavior from SCSG.

Acknowledgements
We would like to thank Tianbao Yang and Yi Xu for helpful feedbacks on this manuscript. This
work was done when Yuanzhi Li was a summer intern at Microsoft Research in 2017.

9This is because stationary-point finding algorithms have somewhat different guarantees. For instance, in
mini-batch SGD we have f(xt) − E[f(xt+1)] ≥ Ω(‖∇f(xt)‖2) but in SCSG we have f(xt) − E[f(xt+1)] ≥
Ω(E[‖∇f(xt+1)‖2]).

9

References
[1] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding

Approximate Local Minima for Nonconvex Optimization in Linear Time. In STOC, 2017.

[2] Zeyuan Allen-Zhu. Natasha 2: Faster Non-Convex Optimization Than SGD. In NeurIPS,
2018.

[3] Zeyuan Allen-Zhu. Katyusha X: Practical Momentum Method for Stochastic Sum-of-
Nonconvex Optimization. In ICML, 2018.

[4] Zeyuan Allen-Zhu and Elad Hazan. Variance Reduction for Faster Non-Convex Optimization.
In ICML, 2016.

[5] Zeyuan Allen-Zhu and Yuanzhi Li. LazySVD: Even Faster SVD Decomposition Yet Without
Agonizing Pain. In NeurIPS, 2016.

[6] Zeyuan Allen-Zhu and Yuanzhi Li. Faster Principal Component Regression and Stable Matrix
Chebyshev Approximation. In ICML, 2017.

[7] Zeyuan Allen-Zhu and Yuanzhi Li. Follow the Compressed Leader: Faster Online Learning of
Eigenvectors and Faster MMWU. In ICML, 2017.

[8] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated Methods for
Non-Convex Optimization. ArXiv e-prints, abs/1611.00756, November 2016.

[9] Yair Carmon, Oliver Hinder, John C. Duchi, and Aaron Sidford. ”Convex Until Proven Guilty”:
Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions. In ICML, 2017.

[10] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun.
The loss surfaces of multilayer networks. In AISTATS, 2015.

[11] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In NeurIPS, pages 2933–2941, 2014.

[12] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A Fast Incremental Gradient
Method With Support for Non-Strongly Convex Composite Objectives. In NeurIPS, 2014.

[13] Dan Garber, Elad Hazan, Chi Jin, Sham M. Kakade, Cameron Musco, Praneeth Netrapalli,
and Aaron Sidford. Robust shift-and-invert preconditioning: Faster and more sample efficient
algorithms for eigenvector computation. In ICML, 2016.

[14] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online
stochastic gradient for tensor decomposition. In Proceedings of the 28th Annual Conference
on Learning Theory, COLT 2015, 2015.

[15] I. J. Goodfellow, O. Vinyals, and A. M. Saxe. Qualitatively characterizing neural network
optimization problems. ArXiv e-prints, December 2014.

[16] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to Escape
Saddle Points Efficiently. In ICML, 2017.

[17] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In Advances in Neural Information Processing Systems, NeurIPS 2013, pages
315–323, 2013.

[18] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. Journal of Research of the National Bureau of Standards,
45(4), 1950.

[19] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Nonconvex Finite-Sum Optimization
Via SCSG Methods. In NeurIPS, 2017.

[20] Yurii Nesterov. Introductory Lectures on Convex Programming Volume: A Basic course, vol-
ume I. Kluwer Academic Publishers, 2004. ISBN 1402075537.

10

[21] Yurii Nesterov and Boris T. Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[22] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathemat-
ical biology, 15(3):267–273, 1982.

[23] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):
147–160, 1994.

[24] Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In ICML, 2016.

[25] Sashank J Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poczos, Francis Bach, Ruslan Salakhut-
dinov, and Alexander J Smola. A generic approach for escaping saddle points. ArXiv e-prints,
abs/1709.01434, September 2017.

[26] Youcef Saad. Numerical methods for large eigenvalue problems. Manchester University Press,
1992.

[27] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. ArXiv e-prints, abs/1309.2388, September 2013.

[28] Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723–1738, 2002.

[29] Shai Shalev-Shwartz. SDCA without Duality, Regularization, and Individual Convexity. In
ICML, 2016.

[30] Lloyd N. Trefethen. Approximation Theory and Approximation Practice. SIAM, 2013.

[31] Yi Xu and Tianbao Yang. First-order Stochastic Algorithms for Escaping From Saddle Points
in Almost Linear Time. ArXiv e-prints, abs/1711.01944, November 2017.

11

