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Abstract

In this paper we consider the dynamic assortment selection problem under an
uncapacitated multinomial-logit (MNL) model. By carefully analyzing a rev-
enue potential function, we show that a trisection based algorithm achieves an
item-independent regret bound of Op?T log log T q, which matches information
theoretical lower bounds up to iterated logarithmic terms. Our proof technique
draws tools from the unimodal/convex bandit literature as well as adaptive confi-
dence parameters in minimax multi-armed bandit problems.
Keywords: dynamic assortment planning, multinomial logit choice model, trisec-
tion algorithm, regret analysis.

1 Introduction

Assortment planning has a wide range of applications in e-commerce and online advertising. Given a
large number of substitutable products, the assortment planning problem refers to the selection of a
subset of products (a.k.a., an assortment) offering to a customer such that the expected revenue is
maximized [2, 3, 14, 17, 20]. Given N items, each associated with a revenue parameter 1 ri P r0, 1s
representing the revenue a retailer collects once a customer purchases the i-th item. The revenue
parameters triuNi“1 are typically known to the retailer, who has full knowledge of each item’s
prices/costs. In a dynamic assortment planning problem, assuming that there are a total of T time
epochs, the retailer presents an assortment St Ď rN s to an incoming customer, and observes his/her
purchasing action it P St Y t0u. (If it “ 0 then the customer makes no purchases at time t.) If
a purchasing action is made (i.e., it ‰ 0), the corresponding revenue rit is collected. It is worthy
noting that since items are substitutable (e.g., different models of cell phones), a typical setting of
assortment planning usually restricts a purchase to be a single item.

The retailer’s objective is to maximize the expected revenue over the T time periods. Such objectives
can be best measured and evaluated under a “regret minimization” framework, in which the retailer’s

1The constraint ri ď 1 is without loss of generality, because it is only a normalization of revenues.
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assortment sequence is compared against the optimal assortment. More specifically, consider

RegretptStuTt“1q :“ E
Tÿ

t“1

RpS˚q ´RpStq, S˚ P arg min
SĎrNs

RpSq (1)

as the regret measure of an assortment sequence tStuTt“1, where RpStq “ Errit |Sts is the ex-
pected revenue the retailer collects on assortment St (for notational convenience we define r0 “ 0
corresponding to the “no-purchase” action).

For the regret measure Eq. (1) to be well-defined, it is conventional to specify a probabilistic model
(known as “choice model”) that governs a customer’s purchasing choice it P St Y t0u on a provided
assortment St. Perhaps the most popular choice model is the multinomial-logit (MNL) choice model
[5, 18, 22], which assigns each item i P rN s a “preference parameter” vi ě 0 and the purchasing
choice it P St Y t0u is modeled by

Prrit “ j|Sts “ vj
v0 `ř

kPSt vk
, @j P St Y t0u. (2)

Subsequently, the expected revenue RpStq can be expressed as

RpStq “
ÿ

jPSt
rj Prrit “ j|Sts “

ř
jPSt rjvj

v0 `ř
jPSt vj

. (3)

For normalization purposes the preference parameter for the “no-purchase” action is assumed to be
v0 “ 1. Apart from that, the rest of the preference parameters tviuNi“1 are unknown to the retailer
and have to be either explicitly or implicitly learnt from customers’ purchasing actions tituTt“1.

1.1 Our results and techniques

The main contribution of this paper is an optimal characterization of the worst-case regret under
the MNL assortment selection model specified in Eqs. (1) and (2). More specifically, we have the
following informal statement of the main results in this paper.
Theorem 1 (informal). There exists a policy whose worst-case regret over T time periods is upper
bounded by C1

?
T log log T for some universal constant C1 ą 0; furthermore, there exists another

universal constant C2 ą 0 such that no policy can achieve worst-case regret smaller than C2

?
T .

An important aspect of Theorem 1 is that our regret bound is completely independent of the number
of items N , which improves the existing dynamic regret minimization results on the MNL assortment
selection problem [2, 3, 20]. This property makes our result more favorable for scenarios when a
large number of potential items are available, e.g., online sales or online advertisement.

To enable such an N -independent regret, we provide a refined analysis of a certain unimodal revenue
potential function first studied in [20] and consider a trisection algorithm on revenue levels, borrowing
ideas from literature on unimodal bandits on either discrete or continuous arm domains [1, 11, 23].
An important challenge is that the revenue potential function (defined in Eq. (4)) does not satisfy
convexity or local Lipschitz growth, 2 and therefore previous results on unimodal bandits cannot be
directly applied. On the other hand, it is a simple exercise that mere unimodality in multi-armed
bandits cannot lead to regret smaller than

?
NT , because the worst-case constructions in the classical

lower bound or multi-armed bandits have unimodal arms [6, 7]. To overcome such difficulties, we
establish additional properties of the potential function in Eq. (4) which are different from classical
convexity or Lipschitz growth properties. In particular, we prove connections between the potential
function and the straight line F pθq “ θ, which is then used as guidelines in our update rules of
trisection. Also, because the potential function behaves differently on F pθq ď θ and F pθq ě θ, our
trisection algorithm is asymmetric in the treatments of the two trisection mid-points, which is in
contrast to previous trisection based methods for unimodal bandits [11, 23] that treat both trisection
mid-points symmetrically.

We also remark that the upper and lower bounds in Theorem 1 match except for an log log T term.
Under the “gap-free” setting where Op?T q regret is to be expected, the removal of additional log T

2See the related work section 1.2 for details.
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terms in dynamic assortment selection and unimodal bandit problems is highly non-trivial. Most
previous results on dynamic assortment selection [2, 3, 20] and unimodal/convex bandit [1, 11, 23]
have additional log T terms in regret upper bounds. (The work of [11] also derived gap-dependent
regret bounds for unimodal bandit, which is not easily comparable to our bounds.) The improvement
from log T to log log T achieved in this paper is done by using a sharper law-of-the-iterated-logarithm
(LIL) type concentration inequalities [16] and an adaptive confidence strategy similar to the MOSS
algorithm for multi-armed bandits [4]. Its analysis, however, is quite different from the analysis of
the MOSS algorithm in [4] and also yields an additional log log T factor. We conjecture that the
additional log log T factor can also be removed by resorting to much more complicated procedures,
as we discuss in Sec. 6.

1.2 Related work

The question of dynamic optimization of commodity assortments has received increasing attention in
both the machine learning and operations management society [2, 3, 8, 19, 21], as the mean utilities
of customers (corresponding to the preference parameters tviu in our model) are typically unknown
and have to be learnt on the fly.

The work of [19] is perhaps the closest to our paper, which analyzed the same revenue potential
function and designed a golden-ratio search algorithm whose regret only depends logarithmically on
the number of items. The analysis of [19] assumes a constant gap between any two assortment level
sets, which might fail to hold when the number of items N is large. In this work we relax the gap
assumption and also remove the additional logN dependency by a more refined analysis of properties
of the revenue potential function and borrowing “trisection” ideas from the unimodal bandit literature
[1, 11, 23].

The works of [2, 3] considered variants of UCB/Thompson sampling type methods and focused
primarily on the capacitated MNL assortment model, in which the size of each assortment St is
not allowed to exceed a pre-specified parameter K ă N . It is known that the regret behavior in
capacitated and uncapacitated models can be vastly different: in the capacitated case a

?
NT regret

lower bound exists provided that K ă N{4, while for the uncapacitated model it is possible to
achieve logN or even N -independent regret.

Another relevant line of research is unimodal bandit [1, 11, 12, 23], in which discrete or continuous
multi-armed bandit problems are considered with additional unimodality constraints on the means of
the arms. Apart from unimodality, additional structures such as “inverse Lipschitz continuity” (e.g.,
|µpiq ´ µpjq| ě L|i´ j|) or convexity are imposed to ensure improvement of regret, both of which
fail to hold for the potential function F arising from uncapacitated MNL assortment choice problems.
In addition, under the “gap-free” setting where an Op?T q regret is to be expected, most previous
works have additional log T terms in their regret upper bounds, except for the work of [12] which
introduces additional strong regularity conditions on the underlying functions.

In [10], a more general problem of optimizing piecewise-constant function is considered, without
unimodal structure of the function assumed. Consequently, a weaker rOpT 2{3q regret is derived.

2 The revenue potential function and its properties

For the MNL assortment selection model without capacity constraints, it is a classical result that the
optimal assortment must consist of items with the largest revenue parameters (see, e.g., [17]):
Proposition 1. There exists θ P r0, 1s such that Lθ :“ ti P rN s : ri ě θu satisfies RpLθq “ RpS˚q.

Proposition 1 suggests that it suffices to consider “level-set” type assortments Lθ “ ti P rN s :
ri ě θu and finds θ P r0, 1s that gives rises to the largest RpLθq. This motivates the following
“potential” function, which takes a revenue threshold θ as input and outputs the expected revenue of
its corresponding level set assortments:

The revenue potential function: F pθq :“ RpLθq, θ P r0, 1s. (4)

The potential F was first introduced and considered in [17], in which it was proved that F is left-
continuous, piecewise-constant and unimodal in its input revenue θ. Using such unimodality, a
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Figure 1: Illustration of the potential function F pθq, the important quantities F˚ and θ˚, and their properties.

golden-ratio search based policy was designed that achieves OplogN log T q regret under additional
consecutive gap assumptions of the level set assortments tLθu. To derive gap-independent results
and to get rid of the additional logN dependency, we provide a more refined analysis of properties of
the potential function F in this paper, summarized in the following three lemmas:

Lemma 1. There exists θ˚ ą 0 such that θ˚ “ F pθ˚q “ F˚ “ supθě0 F pθq “ RpS˚q.
Lemma 2. For any θ ě θ˚, F pθq ď θ and F pθq ě F pθ`q, where F pθ`q “ limϕÑθ` F pϕq.
Lemma 3. For any θ ď θ˚, F pθq ě θ and F pθq ď F pθ`q.
The proofs of the above lemmas are given in the appendix. The give a rather complete picture of
the behavior of the potential function F , and most importantly the relationship between F and the
central straight line F prq “ r, as depicted in Figure 1. More precisely, The mode of F occurs at its
intersection with F prq “ r and monotonically decreases moving away from θ˚ in both directions.
This helps us gauge the positioning of a particular revenue level θ by simply comparing the expected
revenue of RpLθq with θ itself, motivating an asymmetric trisection algorithm which we describe in
the next section.

3 Trisection and regret analysis

We propose an algorithm based on trisections of the potential function F in order to locate level θ˚
at which the maximum expected revenue F˚ “ F pθ˚q is attained. Our algorithm avoids explicitly
estimating individual items’ mean utilities tviuNi“1, and subsequently yields a regret independent of
the number of items N . We first give a simplified algorithm (pseudo-code description in Algorithm
1) with an additional Op?log T q term in the regret upper bound and outline its proofs. We further
show how the additional dependency on T can be improved to Op?log log T q and eventually fully
removed by using more advanced techniques. Due to space constraints, complete proofs of all results
are deferred to the appendix.

To assist with readability, below we list notations used in the algorithm description together with their
meanings:

- aτ and bτ : left and right boundaries that contain θ˚; it is guaranteed that aτ ď θ˚ ď bτ with high
probability, and the regret incurred on failure events is strictly controlled;

- xτ and yτ : trisection points; xτ is closer to aτ and yτ is closer to bτ ;

- `tpyτ q and utpyτ q: lower and upper confidence bands for F pyτ q established at iteration t; it is
guaranteed that `tpyτ q ď F pyτ q ď utpyτ q with high probability, and the regret incurred on failure
events is strictly controlled;

- ρtpyτ q: accumulated reward by exploring level set Lyτ up to iteration t.

With these notations in place, we provide a detailed description of Algorithm 1 to facilitate the
understanding. The algorithm operates in epochs (outer iterations) τ “ 1, 2, ¨ ¨ ¨ until a total of T
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Input: revenue parameters r1, ¨ ¨ ¨ , rn P r0, 1s, time horizon T
Output: sequence of assortment selections S1, S2, ¨ ¨ ¨ , ST Ď rN s

1 Initialization: a0 “ 0, b0 “ 1;
2 for τ “ 0, 1, ¨ ¨ ¨ do
3 xτ “ 2

3aτ ` 1
3bτ , yτ “ 1

3aτ ` 2
3bτ ; Ź trisection

4 `0pxτ q “ `0pyτ q “ 0, u0pxτ q “ u0pyτ q “ 1 ; Ź initialization of confidence intervals
5 ρ0pxτ q “ ρ0pyτ q “ 0 ; Ź initialization of accumulated rewards
6 for t “ 1 to 16rpyτ ´ xτ q´2 lnpT qqs 4 do
7 if `t´1pyτ q ď yτ ď ut´1pyτ q then ρtpyτ q, `tpyτ q, utpyτ q Ð EXPLOREpyτ , t, 1{T 2q ;
8 else ρtpyτ q, `tpyτ q, utpyτ q Ð ρt´1pyτ q, `t´1pyτ q, ut´1pyτ q;
9 Exploit the left endpoint aτ : pick assortment S “ Laτ ;

10 end
Ź Update trisection parameters

11 if utpyτ q ă yτ then aτ`1 “ aτ , bτ`1 “ yτ ;
12 else aτ`1 “ xτ , bτ`1 “ bτ ;
13 end

Algorithm 1: The trisection algorithm.

assortment selections are made. The objective of each outer iteration τ is to find the relative position
between trisection points (xτ , yτ ) and the “reference” location θ˚, after which the algorithm either
moves aτ to xτ or bτ to yτ , effectively shrinking the length of the interval raτ , bτ s that contains θ˚
to its two thirds. Furthermore, to avoid a large cumulative regret, level set corresponding to the left
endpoint aτ is exploited in each time period within the epoch τ to offset potentially large regret
incurred by exploring yτ .

In Steps 7 and 8 of Algorithm 1, lower and upper confidence bands r`tpyτ q, utpyτ qs for F pyτ q are
constructed using concentration inequalities (e.g. Hoeffding’s inequality [15]). These confidence
bands are updated until the relationship between yτ and F pyτ q is clear, or a pre-specified number
of inner iterations for outer iteration τ has been reached (set to nτ :“ r16pyτ ´ xτ q´2 lnpT 2qs in
Step 6). Algorithm 2 gives detailed descriptions on how such confidence intervals are built, based on
repeated exploration of level set Lyτ .

After sufficiently many explorations of Lyτ , a decision is made on whether to advance the left bounary
(i.e., aτ`1 Ð xτ ) or the right boundary (i.e., bτ`1 Ð yτ ). Below we give high-level intuitions on
how such decisions are made, with rigorous justifications presented later as part of the proof of the
main regret theorem for Algorithm 1.

1. If there is sufficient evidence that F pyτ q ă yτ (e.g., utpyτ q ă yτ ), then yτ must be to the right
of θ˚ (i.e., yτ ě θ˚) due to Lemma 2. Therefore, we will shrink the value of right boundary by
setting bτ`1 Ð yτ .

2. On the other hand, when utpyτ q ě yτ , we can conclude that xτ must be to the left of θ˚ (i.e.,
xτ ď θ˚). We show this by contradiction. Assuming that xτ ą θ˚, since yτ is always greater
than xτ (and thus yτ ą θ˚) and the gap between yτ and F pyτ q is at least yτ ´ xτ 3, the gap will
be detected by the confidence bands and thus we will have utpyτ q ă yτ with high probability.
This leads to a contradiction.

Therefore, since xτ is to the left of θ˚, we should increase the value of the left boundary by
setting aτ`1 Ð xτ .

The following theorem is our main upper bound result for the (worst-case) regret incurred by
Algorithm 1.

3By Lemma 2, we have yτ ´ F pyτ q ě yτ ´ F pxτ q ě yτ ´ xτ
4Stop whenever the maximum number of iterations T is reached.
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Input: revenue level θ, time t, confidence level δ
Output: accumulated revenue ρtpθq, confidence intervals `tpθq and utpθq

1 Pick assortment S “ LθpN q and observe purchasing action j P S Y t0u;
2 Update accumulated reward: ρtpθq “ ρt´1pθq ` rj ; Ź r0 :“ 0

3 Update confidence intervals: r`tpθq, utpθqs “ ρtpθq
t ˘

b
logp1{δq

2t .

Algorithm 2: EXPLORE Subroutine: exploring a certain revenue level θ

Theorem 2. There exists a universal constant C1 ą 0 such that for all parameters tviuNi“1 and
triuNi“1 satisfying ri P r0, 1s, the regret incurred by Algorithm 1 satisfies

RegptStuTt“1q “ E
Tÿ

t“1

RpS˚q ´RpStq ď C1

a
T log T . (5)

3.1 Improved regret with LIL confidence intervals

In this section we consider a variant of Algorithm 1 that achieves an improved regret of
Op?T log log T q. The key idea is to use the finite-sample law-of-iterated-logarithm (LIL, [13])
confidence intervals [16] together with an adaptive choice of confidence parameters similar to the
MOSS strategy [4] in order to carefully upper bounding regret induced by failure probabilities.

More specifically, most steps in Algorithms 1 and 2 remain unchanged, and the changes we make are
summarized below:

- Step 3 in Algorithm 2 is replaced with an LIL-confidence interval [16]:

r`tpθq, utpθqs “ ρtpθq
t

˘ 4

c
ln lnp2T q ` lnp112{δq

t
. (6)

- Step 7 in Algorithm 1 is replaced with EXPLOREpyτ , t, 1{pT pyτ ´ xτ q2qq for an adaptive confi-
dence parameter δ “ 1{pT pyτ´xτ q2q; correspondingly, the number of inner iterations is changed
to nτ “ 64rpyτ ´ xτ q´2rln lnp2T q ` lnp112T pyτ ´ xτ q2qss

The first change we make to achieve improved regret is the way how confidence intervals r`tpθq, utpθqs
of F pθq is constructed. Comparing the new confidence interval in Eq. (6) with the original one in
Algorithm 2, the important difference is the ln lnp2T q term arising from the law of the iterated
logarithm, which makes the confidence intervals hold uniformly for all t. This also leads to a
different choice of confidence parameter δ in constructing confidence intervals, which is the second
important change we make. In particular, instead of using a universal confidence level 5 δ “ Op1{T 2q
throughout the entire procedure, “adaptive” confidence levels δ “ Op1{pT pyτ ´ xτ q2qq are used,
which increases as the algorithm moves onto later iterations. Such choice of confidence parameters is
motivated by the fact that the accumulated regret suffers less from a confidence interval failure at
later iterations. Indeed, since we are relatively closer to the optimal assortment, the “excess regret”
suffered when the confidence interval fails to cover the true potential function value is smaller. We
also remark that similar confidence parameter choices were also adopted in [4] to remove additional
logpT q factors in multi-armed bandit problems.

The following theorem shows that the algorithm variant presented above achieves an asymptotic
regret of Op?T log log T q, considerably improving Theorem 2 establishing an Op?T log T q regret
bound. Its proof is rather technical and involves careful analysis of failure events at each outer
iteration τ of the trisection algorithm. Due to space constraints, we defer the entire proof of Theorem
3 to the appendix.

5δ “ Op1{T 2q rather than δ “ Op1{T q is used because an additional union bound is required for all inner
iterations t in each outer iteration τ for confidence intervals constructed via the Hoeffding’s inequality.
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Theorem 3. There exists a universal constant C1 ą 0 such that for all parameters tviuNi“1 and
triuNi“1 satisfying ri P r0, 1s, the regret incurred by the variant of Algorithm 1 satisfies

RegptStuTt“1q “ E
Tÿ

t“1

RpS˚q ´RpStq ď C1

a
T log log T . (7)

4 Lower bound

We prove the following theorem showing that no policy can achieve an accumulated regret smaller
than Ωp?T q in the worst case.
Theorem 4. Let N and T be the number of items and the time horizon that can be arbitrary. There
exists revenue parameters r1, ¨ ¨ ¨ , rN P r0, 1s such that for any policy π,

sup
v1,¨¨¨ ,vNě0

E
Tÿ

t“1

RpS˚q ´RpStq ě
?
T {384. (8)

Theorem 4 shows that our regret upper bounds in Theorems 2 and 3 are tight up to
?

log T or?
log log T factors and numerical constants. We conjecture (in Sec. 6) that the additional

?
log log T

term can also be removed, leading to upper and lower bounds that match up to universal constants.

We next give a sketch of the proof of Theorem 4. Due to space constraints, we only present an outline
of the proof and defer proofs of all technical lemmas to the appendix.

We first describe the underlying parameter values on which our lower bound proof is built. Fix
revenue parameters triuNi“1 as r1 “ 1, r2 “ 1{2 and r3 “ ¨ ¨ ¨ “ rN “ 0, which are known a priori.
We then consider two constructions of the unknown mean utility parameters tviuNi“1:

P0 : v1 “ 1´ 1{4?T , v2 “ 1, v3 “ ¨ ¨ ¨ “ vN “ 0;

P1 : v1 “ 1` 1{4?T , v2 “ 1, v3 “ ¨ ¨ ¨ “ vN “ 0.

We note that P0 and P1 also give the probability distributions that characterize the customer random
purchasing actions; and thus we will use PjrAs to denote the probability of event A under the utility
parameters specified by Pj for j P t0, 1u.
The first lemma shows that there does not exist estimators that can identify P0 from P1 with high
probability with only T observations of random purchasing actions. Its proof involves careful
calculation of the Kullback-Leibler (KL) divergence between the two hypothesized distributions and
subsequent application of Le Cam’s lemma to the testing question between P0 and P1.

Lemma 4. For any estimator pψ P t0, 1u whose inputs are T random purchasing actions i1, ¨ ¨ ¨ , iT ,
it holds that maxjPt0,1u Pjr pψ ‰ js ě 1{3.

On the other hand, the following lemma shows that, if the policy π can achieve a small regret under
both P0 and P1, then one can construct an estimator based on π such that with large probability the
estimator can distinguish between P0 and P1 from observed customers’ purchasing actions.

Lemma 5. Suppose a policy π satisfies RegretptStuTt“1q ă
?
T {384 for both P0 and P1. Then

there exists an estimator pψ P t0, 1u such that Pjr pψ ‰ js ď 1{4 for both j “ 0 and j “ 1.

Lemma 5 is proved by explicitly constructing a classifier (tester) pψ from any sequence of low regret.
In particular, for any assortment sequence tStuTt“1, we construct pψ as pψ “ 0 if 1

T

řT
t“1 Ir1 P St, 2 R

Sts ě 1{2 and pψ “ 1 otherwise. Using Markov’s inequality and the construction of tri, viu, it can be
shown that if RegretptStuTt“1q ą

?
T {384 then pψ is a good tester with small testing error. Detailed

calculations and the complete proof is deferred to the appendix.

Combining Lemmas 4 and 5 we proved our lower bound result in Theorem 4.

5 Numerical results

We present simple numerical results of our proposed trisection (and its LIL-improved variant)
algorithm and compare their performance with several competitors on synthetic data.
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Table 1: Average (mean) and worst-case (max) regret of our trisection and LIL-trisection algorithms
and their competitors on synthetic data. N is the number of items and T is the time horizon.

UCB THOMPSON GRS TRISEC. LIL-TRISEC.
pN,T q mean max mean max mean max mean max mean max
(100,500) 34.9 38.1 1.28 2.97 10.9 22.4 7.68 7.68 5.17 5.17
(250,500) 54.3 56.2 2.81 4.95 7.93 34.2 7.57 7.57 5.02 5.02
(500,500) 73.4 75.5 4.90 4.95 7.02 43.4 7.43 7.43 4.91 4.91
(1000,500) 90.3 93.5 8.17 10.7 5.34 45.1 7.44 7.44 4.74 4.74

(100,1000) 73.1 78.2 1.36 2.79 139.9 175.0 8.69 8.69 5.36 5.36
(250,1000) 113.7 119.3 3.36 5.17 90.1 110.1 8.69 8.69 5.31 5.31
(500,1000) 136.8 140.3 5.65 7.64 65.7 113.9 9.38 9.38 6.01 6.01
(1000, 1000) 160.8 165.4 9.31 12.4 8.43 22.8 9.77 9.77 6.39 6.39

Experimental setup. We generate each of the revenue parameters triuNi“1 independently and
identically from the uniform distribution on r.4, .5s. For the preference parameters tviuNi“1, they are
generated independently and identically from the uniform distribution on r10{N, 20{N s, where N is
the total number of items available.

To motivate our parameter setting, consider the following three types of assortments: the “single
assortment” S “ tiu for some i P rN s, the “full assortment” S “ t1, 2, ¨ ¨ ¨ , Nu, and the “appropriate”
assortment S “ ti P rN s : ri ě 0.42u. For the single assortment S “ tiu, because the preference
parameter for each item is rather small (vi ď 20{N ), no single assortment can produce an expected
revenue exceeding 0.5 ˆ p20{Nq{p1 ` 20{Nq “ 10{p20 ` Nq. For the full assortment S “
t1, 2, ¨ ¨ ¨ , Nu, because

řN
i“1 rivi

pÑ 0.45ˆ15{NˆN “ 6.75 and
řN
i“1 vi

pÑ 15 by the law of large
numbers, the expected revenue of S is around 6.75{p1` 15q “ 0.422. Finally, for the “appropriate”
assortment S “ ti P rN s : ri ě 0.42u, we have

ř
iPS rivi

pÑ 0.46 ˆ 15{N ˆ 0.8N “ 5.52 andř
iPS vi

pÑ 15{N ˆ 0.8N “ 12. Therefore, the expected revenue of S is around 5.52{p1` 12q “
0.425 ą 0.422. The above discussion shows that a revenue threshold r˚ P p0.4, 0.5q is mandatory to
extract a portion of the items ti P rN s : ri ě r˚u that attain the optimal expected revenue, which is
highly non-trivial for a dynamic assortment selection algorithm to identify.

Comparative methods. Our trisection algorithm with Op?T log T q regret is denoted as TRISEC,
and its LIL-variant (with regret Op?T log log T q) is denoted as LIL-TRISEC. The other methods
we compare against include the Upper Confidence Bound algorithm of [2] (denoted as UCB), the
Thompson sampling algorithm of [3] (denoted as THOMPSON), and the Golden Ratio Search algorithm
of [19] (denoted as GRS). Note that both UCB and THOMPSON proposed in [2, 3] were initially
designed for the capacitated MNL model, in which the number of items each assortment contains
is restricted to be at most K ă N . In our experiments, we operate both the UCB and THOMPSON
algorithms under the uncapacitated setting, simply by removing the constraint set when performing
each assortment optimization.

Most hyper-parameters (such as constants in confidence bands) are set directly using the theoretical
values. One exception is our LIL-TRISECT algorithm, in which we remove the coefficient of 4 in
front of the square root term in the confidence bands in Eq. (6), which can be thought of as taking
εÑ 0` in the finite-sample LIL inequality (see Lemma 14) and was also adopted in [16]. Another
exception is the GRS algorithm: in [19] the number of exploration iterations is set to 34 lnp2Nq{β2

where β “ minj‰j1 |RpLrj q ´ RpLrj1 q|, which is inappropriate for our “gap-free” synthetical
setting in which β “ 0. Instead, we use the common choice of

?
T exploration iterations in typical

gap-independent bandit problems for GRS.

Results. In Table 1 we report the mean and maximum regret from 20 independent runs of each
algorithm on our synthetic data, with different settings of N (number of items) and T (time horizon).
We observe that as the number of items (N ) becomes large, our algorithms (TRISEC and LIL-
TRISEC) achieve smaller mean and maximum regret compared to their competitors, and LIL-TRISEC
consistently outperforms TRISEC in all settings. Unlike UCB and THOMPSON whose regret depend
polynomial onN , our TRISEC and LIL-TRISEC algorithms have no dependency onN and hence their

8



regret does not increase significantly with N . While GRS also has weak (logarithmic) dependency on
N , its pure exploration plus pure exploitation structure makes its performance rather unstable, which
is evident from the large gaps between mean and maximum regret of GRS.

6 Discussion and conclusion
In this paper we consider the dynamic assortment allocation problem under uncapacitated MNL
models and derive near-optimal regret bounds. One important open question is to further remove
the Op?log log T q term in the upper bound in Theorem 2 and eventually achieve upper and lower
regret bounds that match each other up to universal numerical constants. We conjecture that such
improvement is possible by considering a sharper LIL concentration inequality which, instead of
holding uniformly for all t P t1, 2, ¨ ¨ ¨ u, holds only at “doubling checking” points t1, 2, 4, 8, ¨ ¨ ¨ u.
Other questions worth investigating is to design “horizon-free” algorithms which automatically
adapts to the time horizon T that is not known a priori, and “instance-optimal” regret bounds whose
regret depends explicitly on the problem parameters triuni“1, tviuni“1 and matching corresponding
(instance-dependent) minimax lower bounds in which tviuni“1 are known up to permutations. Such
instance-optimal regret might potentially depend on “revenue gaps” ∆i “ RpS˚q ´RpLriq, where
S˚ is the optimal assortment and ri is the revenue parameter of the item with the ith largest revenue.
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