
Approximating Real-Time Recurrent Learning with

Random Kronecker Factors

Asier Mujika ∗

Department of Computer Science
ETH Zürich, Switzerland
asierm@inf.ethz.ch

Florian Meier
Department of Computer Science

ETH Zürich, Switzerland
meierflo@inf.ethz.ch

Angelika Steger
Department of Computer Science

ETH Zürich, Switzerland
steger@inf.ethz.ch

Abstract

Despite all the impressive advances of recurrent neural networks, sequential data is
still in need of better modelling. Truncated backpropagation through time (TBPTT),
the learning algorithm most widely used in practice, suffers from the truncation bias,
which drastically limits its ability to learn long-term dependencies.The Real-Time
Recurrent Learning algorithm (RTRL) addresses this issue, but its high computa-
tional requirements make it infeasible in practice. The Unbiased Online Recurrent
Optimization algorithm (UORO) approximates RTRL with a smaller runtime and
memory cost, but with the disadvantage of obtaining noisy gradients that also limit
its practical applicability. In this paper we propose the Kronecker Factored RTRL
(KF-RTRL) algorithm that uses a Kronecker product decomposition to approximate
the gradients for a large class of RNNs. We show that KF-RTRL is an unbiased and
memory efficient online learning algorithm. Our theoretical analysis shows that,
under reasonable assumptions, the noise introduced by our algorithm is not only
stable over time but also asymptotically much smaller than the one of the UORO
algorithm. We also confirm these theoretical results experimentally. Further, we
show empirically that the KF-RTRL algorithm captures long-term dependencies
and almost matches the performance of TBPTT on real world tasks by training
Recurrent Highway Networks on a synthetic string memorization task and on
the Penn TreeBank task, respectively. These results indicate that RTRL based
approaches might be a promising future alternative to TBPTT.

1 Introduction

Processing sequential data is a central problem in the field of machine learning. In recent years,
Recurrent Neural Networks (RNN) have achieved great success, outperforming all other approaches in
many different sequential tasks like machine translation, language modeling, reinforcement learning
and more.

Despite this success, it remains unclear how to train such models. The standard algorithm, Truncated
Back Propagation Through Time (TBPTT) [18], considers the RNN as a feed-forward model over
time with shared parameters. While this approach works extremely well in the range of a few hundred
time-steps, it scales very poorly to longer time dependencies. As the time horizon is increased, the

∗Author was supported by grant no. CRSII5_173721 of the Swiss National Science Foundation.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

parameters are updated less frequently and more memory is required to store all past states. This
makes TBPTT ill-suited for learning long-term dependencies in sequential tasks.

An appealing alternative to TBPTT is Real-Time Recurrent Learning (RTRL) [19]. This algorithm
allows online updates of the parameters and learning arbitrarily long-term dependencies by exploiting
the recurrent structure of the network for forward propagation of the gradient. Despite its impressive
theoretical properties, RTRL is impractical for decently sized RNNs because run-time and memory
costs scale poorly with network size.

As a remedy to this issue, Tallec and Ollivier [16] proposed the Unbiased Online Recurrent Learning
algorithm (UORO). This algorithm unbiasedly approximates the gradients, which reduces the run-
time and memory costs such that they are similar to the costs required to run the RNN forward.
Unbiasedness is of central importance since it guarantees convergence to a local optimum. Still, the
variance of the gradients slows down learning.

Here we propose the Kronecker Factored RTRL (KF-RTRL) algorithm. This algorithm builds up on
the ideas of the UORO algorithm, but uses Kronecker factors for the RTRL approximation. We show
both theoretically and empirically that this drastically reduces the noise in the approximation and
greatly improves learning. However, this comes at the cost of requiring more computation and only
being applicable to a class of RNNs. Still, this class of RNNs is very general and includes Tanh-RNN
and Recurrent Highway Networks [20] among others.

The main contributions of this paper are:

• We propose the KF-RTRL online learning algorithm.

• We theoretically prove that our algorithm is unbiased and under reasonable assumptions the
noise is stable over time and asymptotically by a factor n smaller than the noise of UORO.

• We test KF-RTRL on a binary string memorization task where our networks can learn
dependencies of up to 36 steps.

• We evaluate in character-level Penn TreeBank, where the performance of KF-RTRL almost
matches the one of TBPTT for 25 steps.

• We empirically confirm that the variance of KF-RTRL is stable over time and that increasing
the number of units does not increase the noise significantly.

2 Related Work

Training Recurrent Neural Networks for finite length sequences is currently almost exclusively done
using BackPropagation Through Time [15] (BPTT). The network is "unrolled" over time and is
considered as a feed-forward model with shared parameters (the same parameters are used at each
time step). Like this, it is easy to do backpropagation and exactly calculate the gradients in order to
do gradient descent.

However, this approach does not scale well to very long sequences, as the whole sequence needs to
be processed before calculating the gradients, which makes training extremely slow and very memory
intensive. In fact, BPTT cannot be applied to an online stream of data. In order to circumvent this
issue, Truncated BackPropagation Through Time [18] (TBPTT) is used generally. The RNN is only
"unrolled" for a fixed number of steps (the truncation horizon) and gradients beyond these steps are
ignored. Therefore, if the truncation horizon is smaller than the length of the dependencies needed to
solve a task, the network cannot learn it.

Several approaches have been proposed to deal with the truncation horizon. Anticipated Reweighted
Truncated Backpropagation [17] samples different truncation horizons and weights the calculated
gradients such that the expected gradient is that of the whole sequence. Jaderberg et al. [5] proposed
Decoupled Neural Interfaces, where the network learns to predict incoming gradients from the future.
Then, it uses these predictions for learning. The main assumption of this model is that all future
gradients can be computed as a function of the current hidden state.

A more extreme proposal is calculating the gradients forward and not doing any kind of BPTT. This is
known as Real-Time Recurrent Learning [19] (RTRL). RTRL allows updating the model parameters
online after observing each input/output pair; we explain it in detail in Section 3. However, its large
running time of order O(n4) and memory requirements of order O(n3), where n is the number of

2

units of a fully connected RNN, make it unpractical for large networks. To fix this, Tallec and Ollivier
[16] presented the Unbiased Online Recurrent Optimization (UORO) algorithm. This algorithm
approximates RTRL using a low rank matrix. This makes the run-time of the algorithm of the same
order as a single forward pass in an RNN, O(n2). However, the low rank approximation introduces a
lot of variance, which negatively affects learning as we show in Section 5.

Other alternatives are Reservoir computing approaches [8] like Echo State Networks [6] or Liquid
State Machines [9]. In these approaches, the recurrent weights are fixed and only the output con-
nections are learned. This allows online learning, as gradients do not need to be propagated back in
time. However, it prevents any kind of learning in the recurrent connections, which makes the RNN
computationally much less powerful.

3 Real-Time Recurrent Learning and UORO

RTRL [19] is an online learning algorithm for RNNs. Contrary to TBPPT, no previous inputs or
network states need to be stored. At any time-step t, RTRL only requires the hidden state ht, input

xt and
dht−1

dθ
in order to compute dht

dθ
. With dht

dθ
at hand, dLt

dθ
= dLt

dht

dht

dθ
is obtained by applying the

chain rule. Thus, the parameters can be updated online, that is, for each observed input/output pair
one parameter update can be performed.

In order to present the RTRL update precisely, let us first define an RNN formally. An RNN is a
differentiable function f , that maps an input xt, a hidden state ht−1 and parameters θ to the next

hidden state ht = f(xt, ht−1, θ). At any time-step t, RTRL computes dht

dθ
by applying the chain rule:

dht

dθ
=

∂ht

∂ht−1

dht−1

dθ
+

∂ht

∂xt

dxt

dθ
+

∂ht

∂θ
(1)

=
∂ht

∂ht−1

dht−1

dθ
+

∂ht

∂θ
, (2)

where the middle term vanishes because we assume that the inputs do not depend on the parameters.

For notational simplicity, define Gt :=
dht

dθ
, Ht :=

∂ht

∂ht−1

and Ft :=
∂ht

∂θ
, which reduces the above

equation to

dht

dθ
= Gt = HtGt−1 + Ft . (3)

Both Ft and Ht are straight-forward to compute for RNNs. We assume h0 to be fixed, which implies
G0 = 0. With all this, RTRL obtains the exact gradient Gt for each time-step and enables online
updates of the parameters. However, updating the parameters means that Gt is only exact in the limit
were the learning rate is arbitrarily small. This is because the θ that was used for computing Gt is
different from the θ after the parameter update. In practice learning rates are sufficiently small such
that this is not an issue.

The downside of RTRL is that for a fully connected RNN with n units the matrices Ht and Gt have
size n× n and n× n2, respectively. Therefore, computing Equation 3 takes O(n4) operations and
requires O(n3) storage, which makes RTRL impractical for large networks.

The UORO algorithm [16] addresses this issue and reduces run-time and memory requirements to
O(n2) at the cost of obtaining an unbiased but noisy estimate of Gt. More precisely, the UORO
algorithm keeps an unbiased rank-one estimate of Gt by approximating Gt as the outer product vwT

of two vectors of size n and size n2, respectively. At any time t, the UORO update consists of two

approximation steps. Assume that the unbiased approximation Ĝt−1 = vwT of Gt−1 is given. First,

Ft is approximated by a rank-one matrix. Second, the sum of two rank-one matrices HtĜt−1 + Ft

is approximated by a rank-one matrix yielding the estimate Ĝt of Gt. The estimate Ĝt is provably
unbiased and the UORO update requires the same run-time and memory as updating the RNN [16].

3

4 Kronecker Factored RTRL

Our proposed Kronecker Factored RTRL algorithm (KF-RTRL) is an online learning algorithm for
RNNs, which does not require storing any previous inputs or network states. KF-RTRL approximates
Gt, which is the derivative of the internal state with respect to the parameters, see Section 3, by a
Kronecker product. The following theorem shows that the KF-RTRL algorithm satisfies various
desireable properties.

Theorem 1. For the class of RNNs defined in Lemma 1, the estimate G′

t obtained by the KF-RTRL
algorithm satisfies

1. G′

t is an unbiased estimate of Gt, that is E[G′

t] = Gt, and

2. assuming that the spectral norm of Ht is at most 1− ǫ for some arbitrary small ǫ > 0, then
at any time t, the mean of the variances of the entries of G′

t is of order O(n−1).

Moreover, one time-step of the KF-RTRL algorithm requires O(n3) operations and O(n2) memory.

We remark that the class of RNNs defined in Lemma 1 contains many widely used RNN architectures
like Recurrent Highway Networks and Tanh-RNNs, and can be extended to include LSTMs [4], see
Section A.6. Further, the assumption that the spectral norm of Ht is at most 1− ǫ is reasonable, as
otherwise gradients might grow exponentially as noted by Bengio et al. [2]. Lastly, the bottleneck of
the algorithm is a matrix multiplication and thus for sufficiently large matrices an algorithm with a
better run time than O(n3) may be be practical.

In the remainder of this section, we explain the main ideas behind the KF-RTRL algorithm (formal
proofs are given in the appendix). In the subsequent Section 5 we show that these theoretical
properties carry over into practical application. KF-RTRL is well suited for learning long-term
dependencies (see Section 5.1) and almost matches the performance of TBPTT on a complex real
world task, that is, character level language modeling (see Section 5.2). Moreover, we confirm
empirically that the variance of the KF-RTRL estimate is stable over time and scales well as the
network size increases (see Section 5.3).

Before giving the theoretical background and motivating the key ideas of KF-RTRL, we give a
brief overview of the KF-RTRL algorithm. At any time-step t, KF-RTRL maintains a vector ut

and a matrix At, such that G′

t = ut ⊗ At satisfies E[G′

t] = Gt. Both HtG
′

t−1 and Ft are factored
as a Kronecker product, and then the sum of these two Kronecker products is approximated by
one Kronecker product. This approximation step (see Lemma 2) works analogously to the second
approximation step of the UORO algorithm (see rank-one trick, Proposition 1 in [16]). The detailed
algorithmic steps of KF-RTRL are presented in Algorithm 1 and motivated below.

Theoretical motivation of the KF-RTRL algorithm

The key observation that motivates our algorithm is that for many popular RNN architectures F can be
exactly decomposed as the Kronecker product of a vector and a diagonal matrix, see Lemma 1. In the
following Lemma, we show that this property is satisfied by a large class of RNNs that include many
popular RNN architectures like Tanh-RNN and Recurrent Highway Networks. Intuitively, an RNN of
this class computes several linear transformations (corresponding to the matrices W 1, . . . ,W r) and
merges the resulting vectors through pointwise non-linearities. For example, in the case of RHNs,
there are two linear transformations that compute the new candidate cell and the forget gate, which
then are merged through pointwise non-linearities to generate the new hidden state.

Lemma 1. Assume the learnable parameters θ are a set of matrices W 1, . . . ,W r, let ĥt−1 be the

hidden state ht−1 concatenated with the input xt and let zk = ĥt−1W
k for k = 1, . . . , r. Assume

that ht is obtained by point-wise operations over the zk’s, that is, (ht)j = f(z1j , . . . , z
r
j), where

f is such that
∂f

∂zk
j

is bounded by a constant. Let Dk ∈ R
n×n be the diagonal matrix defined by

Dk
jj =

∂(ht)j
∂zk

j

, and let D =
(

D1| . . . |Dr
)

. Then, it holds ∂ht

∂θ
= ĥt−1 ⊗D.

Further, we observe that the sum of two Kronecker products can be approximated by a single
Kronecker product in expectation. The following lemma, which is the analogue of Proposition 1 in
[14] for Kronecker products, states how this is achieved.

4

Algorithm 1 — One step of KF-RTRL (from time t− 1 to t)

Inputs:

– input xt, target yt, previous recurrent state ht−1 and parameters θ
– ut−1 and At−1 such that E [ut−1 ⊗At−1] = Gt−1

– SGDopt and ηt+1: stochastic optimizer and its learning rate

Outputs:

– new recurrent state ht and updated parameters θ
– ut and At such that E [ut ⊗At] = Gt

/* Run one step of the RNN and compute the necessary matrices*/
zkj ← Compute linear transformations using xt, ht−1 and θ

ht ← Compute ht using using point-wise operations over the zkj
ĥt−1 ← Concatenate ht−1 and xt

Dk
jj ←

∂(ht)j
∂zk

j

H ← ∂ht

∂ht−1

H ′ ← H ·At−1

/* Compute variance minimization and random multipliers */

p1 ←
√

‖H ′‖HS/‖ut−1‖HS p2 ←

√

‖D‖HS/‖ĥt−1‖HS

c1, c2 ← Independent random signs

/* Compute next approximation */

ut ← c1p1ut−1 + c2p2ĥt−1 At ← c1
1
p1

H ′ + c2
1
p2

D

/* Compute gradients and update parameters */

Lgrad ← ut ⊗
(

∂L(yt,ht)
∂ht

·At

)

SGDopt(Lgrad, ηt+1, θ)

Lemma 2. Let C = A1 ⊗ B1 + A2 ⊗ B2, where the matrix A1 has the same size as the matrix
A2 and B1 has the same size as B2. Let c1 and c2 be chosen independently and uniformly at
random from {−1, 1} and let p1, p2 > 0 be positive reals. Define A′ = c1p1A1 + c2p2A2 and
B′ = c1

1
p1

B1+ c2
1
p2

B2. Then, A′⊗B′ is an unbiased approximation of C, that is E [A′ ⊗B′] = C.

Moreover, the variance of this approximation is minimized by setting the free parameters pi =
√

||Bi||/||Ai||.

Lastly, we show by induction that random vectors ut and random matrices At exist, such that
G′

t = ut ⊗ At satisfies E[G′

t] = Gt. Assume that G′

t−1 = ut−1 ⊗ At−1 satisfies E[G′

t−1] = Gt−1.
Equation 3 and Lemma 1 imply that

Gt = HtE
[

G′

t−1

]

+ Ft = HtE [ut−1 ⊗At−1] + ĥt ⊗Dt . (4)

Next, by linearity of expectation and since the first dimension of ut−1 is 1, it follows

Gt = E

[

Ht(ut−1 ⊗At−1) + ĥt ⊗Dt

]

= E

[

ut−1 ⊗ (HtAt−1) + ĥt ⊗Dt

]

. (5)

Finally, we obtain by Lemma 2 for any p1, p2 > 0

Gt = E

[

(c1p1ut−1 + c2p1ĥt)⊗ (c1
1

p1
(HtAt−1) + c2

1

p2
Dt)

]

, (6)

where the expectation is taken over the probability distribution of ut−1, At−1, c1 and c2.

With these observations at hand, we are ready to present the KF-RTRL algorithm. At any time-step t
we receive the estimates ut−1 and At−1 from the previous time-step. First, compute ht, Dt and Ht.
Then, choose c1 and c2 uniformly at random from {−1,+1} and compute

ut = c1p1ut−1 + c2p2ĥt (7)

At = c1
1

p1
(HtAt−1) + c2

1

p2
Dt , (8)

where p1 =
√

‖HtAt−1‖/‖ut−1‖ and p2 =

√

‖Dt‖/‖ĥt‖. Lastly, our algorithm computes dLt

dht
·G′

t,

which is used for optimizing the parameters. For a detailed pseudo-code of the KF-RTRL algorithm

5

see Algorithm 1. In order to see that dLt

dht
·G′

t is an unbiased estimate of dLt

dθ
, we apply once more

linearity of expectation: E
[

dLt

dht
·G′

t

]

= dLt

dht
· E [G′

t] =
dLt

dht
·Gt =

dLt

dθ
.

One KF-RTRL update has run-time O(n3) and requires O(n2) memory. In order to see the statement
for the memory requirement, note that all involved matrices and vectors have O(n2) elements,

except G′

t. However, we do not need to explicitly compute G′

t in order to obtain dLt

dθ
, because

dLt

dht
·G′

t =
dLt

dht
·ut⊗At = ut⊗ (dLt

dht
At) can be evaluated in this order. In order to see the statement

for the run-time, note that Ht and At−1 have both size O(n)×O(n). Therefore, computing HtAt−1

requires O(n3) operations. All other arithmetic operations trivially require run-time O(n2).

The proofs of Lemmas 1 and 2 and of the second statement of Theorem 1 are given in the appendix.

Comparison of the KF-RTRL with the UORO algorithm

Since the variance of the gradient estimate is directly linked to convergence speed and performance,
let us first compare the variance of the two algorithms. Theorem 1 states that the mean of the variances
of the entries of G′

t are of order O(n−1). In the appendix, we show a slightly stronger statement, that

is, if ‖Ft‖ ≤ C for all t, then the mean of the variances of the entries is of order O(C
2

n3), where n3 is

the number of elements of Gt. The bound O(n−1) is obtained by a trivial bound on the size of the
entries of ht and Dt and using ‖ht‖‖Dt‖ = ‖Ft‖. In the appendix, we show further that already the
first step of the UORO approximation, in which Ft is approximated by a rank-one matrix, introduces
noise of order (n− 1)‖Ft‖. Assuming that all further approximations would not add any noise, then
the same trivial bounds on ‖Ft‖ yield a mean variance of O(1). We conclude that the variance of
KF-RTRL is asymptotically by (at least) a factor n smaller than the variance of UORO.

Next, let us compare the generality of the algorithm when applying it to different network architectures.
The KF-RTRL algorithms requires that in one time-step each parameter only affects one element of
the next hidden state (see Lemma 1). Although many widely used RNN architectures satisfy this
requirement, seen from this angle, the UORO algorithm is favorable as it is applicable to arbitrary
RNN architectures.

Finally, let us compare memory requirements and runtime of KF-RTRL and UORO. In terms of
memory requirements, both algorithms require O(n2) storage and perform equally good. In terms of
run-time, KF-RTRL requires O(n3), while UORO requires O(n2) operations. However, the faster
run-time of UORO comes at the cost of worse variance and therefore worse performance. In order
to reduce the variance of UORO by a factor n, one would need n independent samples of G′

t. This
could be achieved by reducing the learning rate by a factor of n, which would then require n times
more data, or by sampling G′

t n times in parallel, which would require n times more memory. Still,
our empirical investigation shows, that KF-RTRL outperforms UORO, even when taking n UORO
samples of Gt to reduce the variance (see Figure 3). Moreover, for sufficiently large networks the
scaling of the KF-RTRL run-time improves by using fast matrix multiplication algorithms.

5 Experiments

In this section, we quantify the effect on learning that the reduced variance of KF-RTRL compared
to the one of UORO has. First, we evaluate the ability of learning long-term dependencies on a
deterministic binary string memorization task. Since most real world problems are more complex and
of stochastic nature, we secondly evaluate the performance of the learning algorithms on a character
level language modeling task, which is a more realistic benchmark. For these two tasks, we also
compare to learning with Truncated BPTT and measure the performance of the considered algorithms
based on ’data time’, i.e. the amount of data observed by the algorithm. Finally, we investigate the
variance of KF-RTRL and UORO by comparing to their exact counterpart, RTRL. For all experiments,
we use a single-layer Recurrent Highway Network [20] 2.

2For implementation simplicity, we use 2 ∗ sigmoid(x)− 1 instead of Tanh(x) as non-linearity function.
Both functions have very similar properties, and therefore, we do not believe this has any significant effect.

6

0 500000 1000000 1500000 2000000
data time

0

10

20

30

40

50

T

KF-RTRL
UORO
TBPTT-25

(a)

Input: #01101––––––
Output: ––––––#01101

Input: #11010––––––
Output: ––––––#11010

Input: #00100––––––
Output: ––––––#00100

(b)

Figure 1: Copy Task: Figure 1(a) shows the learning curves of UORO, KF-RTRL and TBPTT with truncation
horizon of 25 steps. We plot the mean and standard deviation (shaded area) over 5 trials. Figure 1(b) shows
three input and output examples with T = 5.

5.1 Copy Task

In the copy task experiment, a binary string is presented sequentially to an RNN. Once the full
string has been presented, it should reconstruct the original string without any further information.
Figure 1(b) shows several input-output pairs. We refer to the length of the string as T . Figure 1(a)
summarizes the results. The smaller variance of KF-RTRL greatly helps learning faster and capturing
longer dependencies. KF-RTRL and UORO manage to solve the task on average up to T = 36
and T = 13, respectively. As expected, TBPTT cannot learn dependencies that are longer than the
truncation horizon.

In this experiment, we start with T = 1 and when the RNN error drops below 0.15 bits/char, we
increase T by one. After each sequence, the hidden state is reset to all zeros. To improve performance,
the length of each sample is picked uniformly at random from T to T − 5. This forces the network to
learn a general algorithm for the task, rather than just learning to solve sequences of length T . We
use a RHN with 256 units and a batch size of 256. We optimize the log-likelihood using the Adam
optimizer [7] with default Tensorflow [1] parameters, β1 = 0.9 and β2 = 0.999. For each model
we pick the optimal learning rate from {10−2.5, 10−3, 10−3.5, 10−4}. We repeat each experiment 5
times.

5.2 Character level language modeling on the Penn Treebank dataset

A standard test for RNNs is character level language modeling. The network receives a text sequen-
tially, character by character, and at each time-step it must predict the next character. This task is very
challenging, as it requires both long and short term dependencies. Additionally, it is highly stochastic,
i.e. for the same input sequence there are many possible continuations, but only one is observed
at each training step. Figure 2 and Table 1 summarize the results. Truncated BPTT outperforms
both online learning algorithms, but KF-RTRL almost reaches its performance and considerably
outperforms UORO. For this task, the noise introduced in the approximation is more harmful than the
truncation bias. This is probably the case because the short term dependencies dominate the loss, as
indicated by the small difference between TBPTT with truncation horizon 5 and 25.

For this experiment we use the Penn TreeBank [10] dataset, which is a collection of Wall Street
Journal articles. The text is lower cased and the vocabulary is restricted to 10K words. Out of
vocabulary words are replaced by "<unk>" and numbers by "N". We split the data following Mikolov
et al. [13]. The experimental setup is the same as in the Copy task, and we pick the optimal learning
rate from the same range. Apart from that, we reset the hidden state to the all zeros state with
probability 0.01 at each time step. This technique was introduced by Melis et al. [11] to improve
the performance on the validation set, as the initial state for the validation is the all zeros state.
Additionally, this helps the online learning algorithms, as it resets the gradient approximation, getting
rid of stale gradients. Similar techniques have been shown [3] to also improve RTRL.

7

200000 400000 600000 800000 1000000
data time

1.5

2.0

2.5

3.0

3.5

BP
C

KF-RTRL
UORO
TBPTT-25
TBPTT-5

Figure 2: Validation performance on Penn
TreeBank in bits per character (BPC). The
small variance of the KF-RTRL approxima-
tion considerably improves the performance
compared to UORO.

Table 1: Results on Penn TreeBank. Merity et al. [12] is
currently the state of the art (trained with TBPTT). For
simplicity we do not report standard deviations, as all of
them are smaller than 0.03.

Name Validation Test #params

KF-RTRL 1.77 1.72 133K
UORO 2.63 2.61 133K

TBPTT-5 1.64 1.58 133K
TBPTT-25 1.61 1.56 133K

Merity et al. [12] - 1.18 13.8M

0 2000 4000 6000 8000 10000
timesteps

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

co
s(

)

(a)

KF-RTRL
UORO
UORO-AVG

200 400
units

0.0

0.5

1.0

co
s(

)
(b)

Figure 3: Variance analysis: We compare the cosine of the angle between the approximated and the true value
of dL

dθ
. A cosine of 1 implies that the approximation and the true value are exactly aligned, while a random

vector gets a cosine of 0 in expectation. Figure 3(a) shows that the variance is stable over time for the three
algorithms. Figure 3(b) shows that the variance of KF-RTRL and UORO-AVG are almost unaffected by the
number of units, while UORO degrades more quickly as the network size increases.

5.3 Variance Analysis

With our final set of experiments, we empirically measure how the noise evolves over time and how
it is affected by the number of units n. Here, we also compare to UORO-AVG that computes n
independent samples of UORO and averages them to reduce the variance. The computation costs of
UORO-AVG are on par with those of KF-RTRL, O(n3), however the memory costs of O(n3) are
higher than the ones of KF-RTRL of O(n2). For each experiment, we compute the angle φ between
the gradient estimate and the exact gradient of the loss with respect to the parameters. Intuitively, φ
measures how aligned the gradients are, even if the magnitude is different. Figure 3(a) shows that φ
is stable over time and the noise does not accumulate for any of the three algorithms. Figure 3(b)
shows that KF-RTRL and UORO-AVG have similar performance as the number of units increases.
This observation is in line with the theoretical prediction in Section A.5 that the variance of UORO
is by a factor n larger than the KF-RTRL variance (averaging n samples as done in AVG-UORO
reduces the variance by a factor n).

In the first experiment, we run several untrained RHNs with 256 units over the first 10000 characters
of Penn TreeBank. In the second experiment, we compute φ after running RHNs with different
number of units for 100 steps on Penn TreeBank. We perform 100 repetitions per experiment and
plot the mean and standard deviation.

6 Conclusion

In this paper, we have presented the KF-RTRL online learning algorithm. We have proven that it
approximates RTRL in an unbiased way, and that under reasonable assumptions the noise is stable
over time and much smaller than the one of UORO, the only other previously known unbiased RTRL

8

approximation algorithm. Additionally, we have empirically verified that the reduced variance of
our algorithm greatly improves learning for the two tested tasks. In the first task, an RHN trained
with KF-RTRL effectively captures long-term dependencies (it learns to memorize binary strings of
length up to 36). In the second task, it almost matches the performance of TBPTT in a standard RNN
benchmark, character level language modeling on Penn TreeBank.

More importantly, our work opens up interesting directions for future work, as even minor reductions
of the noise could make the approach a viable alternative to TBPTT, especially for tasks with inherent
long-term dependencies. For example constraining the weights, constraining the activations or using
some form of regularization could reduce the noise. Further, it may be possible to design architectures
that make the approximation less noisy. Moreover, one might attempt to improve the run-time of
KF-RTRL by using approximate matrix multiplication algorithms or inducing properties on the Ht

matrix that allow for fast matrix multiplications, like sparsity or low-rank.

This work advances the understanding of how unbiased gradients can be computed, which is of
central importance as unbiasedness is essential for theoretical convergence guarantees. Since RTRL
based approaches satisfy this key assumption, it is of interest to further progress them.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al. Tensorflow: A system for large-scale machine learning. In OSDI, volume 16,
pages 265–283, 2016.

[2] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[3] T. Catfolis. A method for improving the real-time recurrent learning algorithm. Neural Networks,
6(6):807–821, 1993.

[4] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[5] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, and
K. Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. arXiv preprint
arXiv:1608.05343, 2016.

[6] H. Jaeger. The “echo state” approach to analysing and training recurrent neural networks-with an
erratum note. Bonn, Germany: German National Research Center for Information Technology
GMD Technical Report, 148(34):13, 2001.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] M. Lukoševičius and H. Jaeger. Reservoir computing approaches to recurrent neural network
training. Computer Science Review, 3(3):127–149, 2009.

[9] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural computation, 14(11):
2531–2560, 2002.

[10] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of
english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

[11] G. Melis, C. Dyer, and P. Blunsom. On the state of the art of evaluation in neural language
models. arXiv preprint arXiv:1707.05589, 2017.

[12] S. Merity, N. S. Keskar, and R. Socher. An analysis of neural language modeling at multiple
scales. arXiv preprint arXiv:1803.08240, 2018.

[13] T. Mikolov, I. Sutskever, A. Deoras, H.-S. Le, S. Kombrink, and J. Cernocky. Subword language
modeling with neural networks. preprint (http://www. fit. vutbr. cz/imikolov/rnnlm/char. pdf),
2012.

[14] Y. Ollivier, C. Tallec, and G. Charpiat. Training recurrent networks online without backtracking.
arXiv preprint arXiv:1507.07680, 2015.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. nature, 323(6088):533, 1986.

9

[16] C. Tallec and Y. Ollivier. Unbiased online recurrent optimization. arXiv preprint
arXiv:1702.05043, 2017.

[17] C. Tallec and Y. Ollivier. Unbiasing truncated backpropagation through time. arXiv preprint
arXiv:1705.08209, 2017.

[18] R. J. Williams and J. Peng. An efficient gradient-based algorithm for on-line training of recurrent
network trajectories. Neural Computation, 2:490–501, 1990.

[19] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280, 1989.

[20] J. G. Zilly, R. K. Srivastava, J. Koutník, and J. Schmidhuber. Recurrent highway networks.
arXiv preprint arXiv:1607.03474, 2016.

10

