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Abstract

An important class of distance metrics proposed for training generative adversarial
networks (GANSs) is the integral probability metric (IPM), in which the neural net
distance captures the practical GAN training via two neural networks. This paper
investigates the minimax estimation problem of the neural net distance based on
samples drawn from the distributions. We develop the first known minimax lower
bound on the estimation error of the neural net distance, and an upper bound tighter
than an existing bound on the estimator error for the empirical neural net distance.
Our lower and upper bounds match not only in the order of the sample size but also
in terms of the norm of the parameter matrices of neural networks, which justifies
the empirical neural net distance as a good approximation of the true neural net
distance for training GANs in practice.

1 Introduction

Generative adversarial networks (GANS), first introduced by [9], have become an important technique
for learning generative models from complicated real-life data. Training GANs is performed via a min-
max optimization with the maximum and minimum respectively taken over a class of discriminators
and a class of generators, where both discriminator and generators are modeled by neural networks.
Given that the discriminator class is sufficiently large, [9] interpreted the GAN training as finding a
generator such that the generated distribution v is as close as possible to the target true distribution g,
measured by the Jensen-Shannon distance d j5(i, V), as shown below:

' . 1
i dys(p,v) (1)

Inspired by such an idea, a large body of GAN models were then proposed based on various distance
metrics between a pair of distributions, in order to improve the training stability and performance,
e.g., [2,13,[13,[15]. Among them, the integral probability metric (IPM) [19] arises as an important
class of distance metrics for training GANSs, which takes the following form

dr(p,v) = ;1611; ey f () — Exnw f(2)] - (2)

In particular, different choices of the function class F in @ result in different distance metrics.
For example, if F represents a set of all 1-Lipschitz functions, then dz(u, V) corresponds to the
Wasserstein-1 distance, which is used in Wasserstein-GAN (WGAN) [2]]. If F represents a unit ball
in a reproducing kernel Hilbert space (RKHS), then d(u, ) corresponds to the maximum mean
discrepancy (MMD) distance, which is used in MMD-GAN [[7, [13]].

Practical GAN training naturally motivates to take JF in @]) as a set F,,,, of neural networks, which
results in the so-called neural net distance dr,, (u,v) introduced and studied in [3] 28]. For
computational feasibility, in practice dz,  (fin, Um ) is typically adopted as an approximation (i.e.,
an estimator) of the true neural net distance dx, , (i, v) for the practical GAN training, where /iy,
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and 7,,, are the empirical distributions corresponding to x and v, respectively, based on n samples
drawn from p and m samples drawn from v. Thus, one important question one can ask here is
how well dx, (fin, V) approximates dx, (u,v). If they are close, then training GANSs to small
dg, . (fin, Um) also implies small dz,  (u,v), i.e., the generated distribution v is guaranteed to be
close to the true distribution .

To answer this question, [3] derived an upper bound on the quantity |dz, (i@, v) — dx,, (fin, Pm)ls
and showed that dz,  (fi,, 7, ) converges to d,, (i, v) at arate of O(n~ /2 +m~'/2). However,
the following two important questions are still left open: (a) Whether the rate O(n~'/2 + m~1/2) of
convergence is optimal? We certainly want to be assured that the empirical objective dx,, (fin, Pm )
used in practice does not fall short at the first place. (b) The dependence of the upper bound on neural
networks in [3]] is characterized by the total number of parameters of neural networks, which can
be quite loose by considering recent work, e.g., [20} 27]]. Thus, the goal of this paper is to address
the above issue (a) by developing a lower bound on the minimax estimation error of dx, (1, V) (see
Section [2.2|for the precise formulation) and to address issue (b) by developing a tighter upper bound
than [3]].

In fact, the above problem can be viewed as a distance estimation problem, i.e., estimating the neural
net distance dx,, (i, ) based on samples i.i.d. drawn from p and v, respectively. The empirical
distance d ., (fin, Vm ) serves as its plug-in estimator (i.e., substituting the true distributions by their
empirical versions). We are interested in exploring the optimality of the convergence of such a plug-in
estimator not only in terms of the size of samples but also the parameters of neural networks. We
further note that the neural net distance can be used in a variety of other applications such as the
support measure machine [[18] and the anomaly detection [29], and hence the performance guarantee
we establish here can be of interest in those domains.

1.1 Our Contribution

In this paper, we investigate the minimax estimation of the neural net distance dz,  (u, ), where the
major challenge in analysis lies in dealing with complicated neural network functions. This paper
establishes a tighter upper bound on the convergence rate of the empirical estimator than the existing
one in [3]], and develop a lower bound that matches our upper bound not only in the order of the
sample size but also in terms of the norm of the parameter matrices of neural networks. Our specific
contributions are summarized as follows:

e In Section[3.1] we provide the first known lower bound on the minimax estimation error of
dr,, (1, v) based on finite samples, which takes the form as ¢; max (n~/2, m~1/2) where
the constant ¢; depends only on the parameters of neural networks. Such a lower bound further
specializes to b [[¢_, M (i) max (n~'/2, m~1/2) for ReLU networks, where b; is a constant,
d is the depth of neural networks and M () can be either the Frobenius norm or || - ||1,0c norm
constraint of the parameter matrix W in layer ¢. Our proof exploits the Le Cam’s method with
the technical development of a lower bound on the difference between two neural networks.

e In Section we develop an upper bound on the estimation error of dr, (u,v) by
dz,. (fin, 'm), which takes the form as ¢, (n~/2 +m~1/2), where the constant c,, depends
only on the parameters of neural networks. Such an upper bound further specializes to

buvVd+h H?:l M (i)(n='/? 4+ m~1/2) for ReLU networks, where b, is a constant, h is the

dimension of the support of 1 and v, and v/d + h can be replaced by v/d or \/d + log h
depending on the distribution class and the norm of the weight matrices. Our proof includes
the following two major technical developments presented in Section[3.4]

— A new concentration inequality: In order to develop an upper bound for the unbounded-
support sub-Gaussican class, standard McDiarmid inequality under bounded difference
condition is not applicable. We thus first generalize a McDiarmid inequality [[L1] for
unbounded functions of scalar sub-Gaussian variables to that of sub-Gaussian vectors,
which can be of independent interest for other applications. Such a development requires
substantial machineries. We then apply such a concentration inequality to upper-bounding
the estimation error of the neural net distance in terms of Rademacher complexity.

— Upper bound on Rademacher complexity: Though existing Rademacher complexity bounds
[8L 22]] of neural networks can be used for input data with bounded support, direct applica-
tions of those bounds to the unbounded sub-Gaussian input data yield order-level loose



bounds. Thus, we develop a tighter bound on the Rademacher complexity that exploits the
sub-Gaussianity of the input variables. Such a bound is also tighter than the existing same
type by [23]. The details of the comparison are provided after Theorem
e In Section[3.3] comparison of the lower and upper bounds indicates that the empirical neural
net distance (i.e., the plug-in estimator) achieves the optimal minimax estimation rate in terms
of n=Y/2 4+ m~1/2, Furthermore, for ReLU networks, the two bounds also match in terms
of H?zl M (i), indicating that both Hle ||'W;||r and Hle [W;||1,00 are key quantities that
capture the estimation accuracy. Such a result is consistent with those made in [20] for the
generalization error of training deep neural networks. We note that there is still a gap v/d
between the bounds, which requires future efforts to address.

1.2 Related Work

Estimation of IPMs. [25] studied the empirical estimation of several IPMs including the Wasserstein
distance, MMD and Dudley metric, and established the convergence rate for their empirical estimators.
A recent paper [26] established that the empirical estimator of MMD achieves the minimax optimal
convergence rate. [3] introduced the neural net distance that also belongs to the IPM class, and
established the convergence rate of its empirical estimator. This paper establishes a tighter upper
bound for such a distance metric, as well as a lower bound that matches our upper bound in the order
of sample sizes and the norm of the parameter matrices.

Generalization error of GANS. In this paper, we focus on the minimax estimation error of the neural
net distance, and hence the quantity |dz,, (1, ) — dx,, (fin, Vm)| is of our interest, on which our
bound is tighter than the earlier study in [3]. Such a quantity relates but is different from the following
generalization error recently studied in [14} 28] for training GANs. [28]] studied the generalization
error dr(ju, 0*) — inf,ep, dF(p, v), where 0* was the minimizer of d (i, ) and F was taken as
a class F,,,of neural networks. [14] studied the same type of generalization error but took F as a
Sobolev space, and characterized how the smoothness of Sobolev space helps the GAN training.

Rademacher complexity of neural networks. Part of our analysis of the minimax estimation
error of the neural net distance requires to upper-bound the average Rademacher complexity of
neural networks. Although various bounds on the Rademacher complexity of neural networks, e.g.,
[} 14} 8L 1214 22], can be used for distributions with bounded support, direct application of the best
known existing bound for sub-Gaussian variables turns out to be order-level looser than the bound
we establish here. [0, 23] studied the average Rademacher complexity of one-hidden layer neural
networks over Gaussian variables. Specialization of our bound to the setting of [23] improves its
bound, and to the setting of [6] equals its bound.

1.3 Notations

We use the bold-faced small and capital letters to denote vectors and matrices, respectively. Given a
1/2
vector w € R", [|w]|o = (Zle wf) denotes the ¢3 norm, and ||w||; = 21}‘;1 |w;| denotes the

¢1 norm, where w; denotes the i*" coordinate of w. For a matrix W = [W,;], we use |[W| p =

1/2
(Z i ij) to denote its Frobenius norm, ||[W||; o to denote the maximal ¢; norm of the row

vectors of W, and ||W/| to denote its spectral norm. For a real distribution u, we denote fi,, as its
empirical distribution, which takes 1/n probability on each of the n samples i.i.d. drawn from p.

2 Preliminaries and Problem Formulations

In this section, we first introduce the neural net distance and the specifications of the corresponding
neural networks. We then introduce the minimax estimation problem that we study in this paper.

2.1 Neural Net Distance

The neural net distance between two distributions p and v introduced in [3] is defined as
d]:nn (/J“’ V) = Sup |E37Nlif(x) - E'I/NVf(xN 9 (3)

f€Fnn



where F,,,, is a class of neural networks. In this paper, given the domain X C R", we let F,,,, be the
following set of depth-d neural networks of the form:

f Efnn X € X*—)W;Ud_l (Wd_ldd_g (~~~01(W1x))), (4)

where W, i = 1,2, ..., d — 1 are parameter matrices, w is a parameter vector (so that the output of
the neural network is a scalar), and each o; denotes the entry-wise activation function of layer ¢ for
i=1,2,...,d—1,ie., foraninput z € R?, 0;(z) := [0:(21),04(22), ..., o (2)] T

Throughout this paper, we adopt the following two assumptions on the activation functions in ().
Assumption 1. All activation functions o;(-) fori =1,2,...,d — 1 satisfy

e 0;(+) is continuous and non-decreasing and c;(0) > 0.

e 0;(+) is L;-Lipschitz, where L; > 0.

Assumption 2. For all activation functions o;, i = 1,2, ...,d — 1, there exist positive constants q(%)
and Q, (1) such that for any 0 < 21 < x9 < q(i), 05(x2) — 05(x1) > Qp (1) (z2 — x1).

Note that Assumptions [I|and 2] hold for a variety of commonly used activation functions including
ReLU, sigmoid, softPlus and tanh. In particular, in Assumption the existence of the constants ¢(7)
and Q,(¢) are more important than the particular values they take, which affect only the constant
terms in our bounds presented later. For example, Assumption holds for ReLU for any ¢(i) < co
and Q, (i) = 1, and holds for sigmoid for any q(i) > 0 and Q, (i) = 1/(2 + 2¢)).

As shown in [2], the practical training of GANs is conducted over neural networks with parameters
lying in a compact space. Thus, we consider the following two compact parameter sets as taken
in [5 (8} 221 24]],
d—1
Wioo i = [[{W:i € R" ™01 [Will1oo € My oo(i)} x {wa € R™ : [wally < M oo(d)},
i=1
d—1
Wpg : = H {W1 e R™ XM+t |[Wy|lp < Mp(z)} x {wg € R™ : |lwy|| < Mp(d)}. 5)

i=1
2.2 Minimax Estimation Problem

In this paper, we study the minimax estimation problem defined as follows. Supposed P is a subset
of Borel probability measures of interest. Let d(n, m) denote any estimator of the neural net distance
dr,, (j1,v) constructed by using the samples {x;}}_; and {y;}2, respectively generated i.i.d. by

1, v € P. Our goal is to first find a lower bound C; (P, n, m) on the estimation error such that

inf  sup P{\d]:m (1, v) —d(n,m)| > C} (P,n,m)} >0, (6)
d(n,m) p,veP
where P is the probability measure with respect to the random samples {x;}?_; and {y;}",. We
then focus on the empirical estimator dx,, (fin, V) and are interested in finding an upper bound
C(P,n, m) on the estimation error such that for any arbitrarily small 6 > 0,
SupPP {|d]:nn (/J, V) - d}_nn (Iana ﬁm)' < Cu<7)a n, m>}’ >1-0. (7
n,ve
Clearly such an upper bound also holds if the left hand side of (/) is defined in the same minimax
sense as in (6).

It can be seen that the minimax estimation problem is defined with respect to the set P of distributions
that 1 and v belong to. In this paper, we consider the set of all sub-Gaussian distributions over R".
We further divide the set into the two subsets and analyze them separately, for which the technical
tools are very different. The first set Pyg contains all sub-Gaussian distributions with unbounded
support, and bounded mean and variance. Specifically, we assume that there exist 7 > 0 and I'yg > 0
such that for any probability measure ;. € Py and any vector a € R”,

Exp e 7B < cllalPT/2 with 0 < 7, |E(x)|| < Ty (8)

The second class Pg of distributions contains all sub-Gaussian distributions with bounded support
X = {x: |x|| £ T} C R" (note that this set in fact includes all distributions with bounded support).
These two mutually exclusive classes cover most probability distributions in practice.



3 Main Results

3.1 Minimax Lower Bound

We first develop the following minimax lower bound for the sub-Gaussian distribution class P,g with
unbounded support.

Theorem 1 (unbounded-support sub-Gaussian class Pyg). Let F..,, be the set of neural networks
defined by (El) For the parameter set Wy in , ifvVm=T +n-1 < /3q(1)/(2Mp(1)T), then

R 1
inf  sup P{‘d}-ﬂn (w,v) — d(n,m)‘ > C(Pus) max (Tfl/27 m*1/2)} > -, )
d\(n)m) 1,V EPup 4

where

C(Pus) = ?MF(DMF(d)FuB <1 - <2MF 1 )) H Qi H Qo (1),  (10)

and ®(-) is the cumulative distribution function (CDF) of the standard Gaussian distribution and the
constants Q(i),i = 2,3, ...,d — L are given by the following recursion

Q(2) = min {Mr(2), ¢(2)/01(q(1))},

Q(i) = min { Mp(i) /oz 12 —=1)---Q(2)o1(q(1)) } fori:3 4,.,d—1. (1D
The same result holds for the parameter set Wi o by replacing Mp (i) in (I0) with M (7).
Theoremlmphes that dz_, (i1, ) cannot be estimated at a rate faster than max (n 12 m=1/ 2)
by any estimator over the class Pys. The proof of Theorem [I]is based on the Le Cam’s method.
Such a technique was also used in [26] to derive the minimax lower bound for estimating MMD.
However, our technical development is quite different from that in [26]. In specific, one major step of
the Le Cam’s method is to lower-bound the difference arising due to two hypothesis distributions.
In the MMD case in [26]], MMD can be expressed in a closed form for the chosen distributions.
Hence, the lower bound in Le Cam’s method can be derived based on such a closed form of MMD.
As a comparison, the neural net distance does not have a closed-form expression for the chosen
distributions. As a result, our derivation involves lower-bounding the difference of the expectations
of the neural network function with respect to two corresponding distributions. Such developments
require substantial machineries to deal with the complicated multi-layer structure of neural networks.
See Appendix [A.T|for more details.

For general neural networks, C'(P,p) takes a complicated form as in (I0). We next specialize to
ReLU networks to illustrate how this constant depends on the neural network parameters.

Corollary 1. Under the setting of Theorem suppose each activation function is ReLU, i.e., 0,(z) =
max{0,z}, i = 1,2, ...,d — 1. For the parameter set Wg and all m,n > 1, we have

| =

inf  sup P ‘al].-m(u7 v) —d(n, m)‘ >008FuBHMF ) max (n 1/27m_1/2) >
d(n m) p,vEPup

The same result holds for the parameter set W1 o, by replacing Mg (i) with M oo (1).

Next, we provide the minimax lower bound for the distribution class Pg with bounded support.
The proof (see Appendix |B)) is also based on the Le Cam’s method, but with the construction of
distributions having the bounded support sets, which are different from those for Theorem [T}

Theorem 2 (bounded-support class Pg). Let F,,, be the set of neural networks defined by (). For
the parameter set Wrg, we have
. 1
inf  sup ]P’{’d;m (u,v) —d(n,m)| > C(Pp) max (n_l/Q,m_l/Q)} > -, (12
d(n,m) p,vePs 4

where
C(PB) = 0.17(MF(d)O'd_1(' <01 (MF(l)FB)) — MF(d)Ud_1(~ . 0'1(—MF(1)FB))) , (13)

where all constants My (i),i = 1,2, ...,d in the second term of the right side of (13)) have negative
signs. The same result holds for the parameter set Wh o by replacing Mp (i) in with M oo (1).



Corollary 2. Under the setting of Theorem|2| suppose that each activation function is ReLU. For the
parameter set Wp, we have,

d
5 1
inf sup P ’d}-m (u,v) — d(n,m)‘ > 0.17Tg HMF(Z) max <n71/2, m*1/2) > —.
dtnm) parePy 1 1

The same result holds for the parameter set W o, by replacing Mg (i) with M oo (1).

3.2 Rademacher Complexity-based Upper Bound

. (fin, Dm)|, which serves as an
upper bound on the minimax estimation error. Our main technical development lies in deriving the
bound for the unbounded-support sub-Gaussian class Pyg, which requires a number of new technical
developments. We discuss its proof in Section 3.4}

Theorem 3 (unbounded-support sub-Gaussian class Pyg). Let F,,,, be the set of neural networks
defined by (), and suppose that two distributions p, v € Pyug and fu,, Uy, are their empirical measures.

For a constant 6 > 0 satisfying vV6h min{n, m}vm=1 +n=1 > 4,/log(1/§), we have

(I) If the parameter set is Wy and each activation function satisfies o;(ax) = ao;(z) foralla > 0
(e.g., ReLU or leaky ReLU), then with probability at least 1 — § over the randomness of [i,, and U,

|d]:7m (M? V) - d]:nn ([’l’nd lA/m)|

d d—1
<2l [] Mr (i) [] Ls <\/6dlog 2+ Bh/4 + \/2hlog(1/5)) (n—1/2 + m—1/2) .

=1 i=1

In this subsection, we provide an upper bound on |dz, (1, V) — dx

(IN) If the parameter set is Wi o and each activation function satisfies 0;(0) = 0 (e.g., ReLU, leaky
ReLU or tanh), then with probability at least 1 — 0 over the randomness of fi,, and Uy,

|d]:nn (/“v V) - d}'nn (ﬂm ﬁm)|

d d—1
<2l [ Moo (i) [T Ls (\/leog 2+ 2logh + \/thog(1/5)) (n_l/Q + m—l/ﬂ) .
=1 =1

Corollary 3. Theorem[3)is directly applicable to ReLU networks with L; = 1 fori=1,...,d.

We next present an upper bound on |dz, (u,v) — dg,, (fin, Um)| for the bounded-support class
Pg. In such a case, each data sample x; satisfies ||x;|| < I'p, and hence we apply the stan-
dard McDiarmid inequality [16] and the Rademacher complexity bounds in [§] to upper-bound
|[dz,, (1, v) — dz,, (fin, Pm)|. The detailed proof can be found in Appendix

Theorem 4 (bounded-support class Pg). Let F,,,, be the set of neural networks defined by [, and
suppose that two distributions 1, v € Pg. Then, we have

(I) If the parameter set is Wy and each activation function satisfies o;(ax) = ao;(z) for all « > 0,
then with probability at least 1 — § over the randomness of [i,, and U,

|d]:nn (/’('a V) - d]:,m (ﬂna ﬁm)‘

d d—1
< V2T'g HMLOO(Z‘) H L; (2\/d10g2 + /log(1/6) + \/5) <n71/2 + m*1/2) .
i=1 i=1

(ID) If the parameter set is W o and each activation function satisfies 0;,(0) = 0, then with
probability at least 1 — § over the randomness of i, and U,

‘d]:nn (/‘v V) - d}'nn (ﬂm ﬁm)|

d d—1
< Tp [T M1 () T] Li (4V/d+ T+ Togh + v/210g(1/8) ) (=12 4 m1/2),
i=1 i=1
Corollary 4. Theorem[H)is applicable for ReLU networks with L; = 1 fori =1,....d.

As a comparison, the upper bound derived in [3] is linear with the total number of the parameters of

neural networks, whereas our bound in Theorem scales only with the square root of depth v/d (and
other terms in Theorem 4] matches the lower bound in Corollary [2), which is much smaller.



3.3 Optimality of Minimax Estimation and Discussions

We compare the lower and upper bounds and make the following remarks on the optimality of
minimax estimation of the neural net distance.

e For the unbounded-support sub-Gaussian class P,g, comparison of Theorems [T)and [3]indicates
that the empirical estimator dr, (fin, V) achieves the optimal minimax estimation rate
max{n~1/2 m~1/2} as the sample size goes to infinity.

e Furthermore, for ReLU networks, comparison of CorollariesE]andE]implies that the lower and
upper bounds match further in terms of Ty T, M (i) max {n~1/2, m~1/2}, where M (i)
can be Mp (i) or Mi (%), indicating that both Hle [[W;||F and H?zl W ill1,00 capture
the estimation accuracy. Such an observation is consistent with those made in [20] for the
generalization error of training deep neural networks. Moreover, the mean norm ||E(x)|| and
the variance parameter of the distributions also determine the estimation accuracy due to the
match of the bounds in I'g.

e The same observations hold for the bounded-support class Pg by comparing Theorems 2] and 4]
as well as comparing Corollaries 2] and ]

We further note that for ReLU networks, for both the unbounded-support sub-Gaussian class Pyg
and the bounded-support class Pg, there is a gap of v/d (or v/d + h, v/d + log h depending on the
distribution class and the norm of the weight matrices). To close the gap, the size-independent bound
on Rademacher complexity in [8] appears appealing. However, such a bound is applicable only to the
bounded-support class Pg, and helps to remove the dependence on v/d but at the cost of sacrificing
the rate (i.e., from m~/2 + n=1/2 to m=1/* 4+ n=1/%). Consequently, such an upper bound matches
the lower bound in Corollary [2] for ReLU networks over the network parameters, but not in terms of
the sample size, and is interesting only in the regime when d >> max{n, m}. It is thus still an open
problem and calling for future efforts to close the gap of v/d for estimating the neural net distance.

3.4 Proof Outline for Theorem

In this subsection, we briefly explain the three major steps to prove Theorem [3] because some of
these intermediate steps correspond to theorems that can be of independent interest. The detailed
proof can be found in Appendix [C|

Step 1: A new McDiarmid’s type of inequality. To establish an upper bound on |dz,  (u,v) —
dg,, (fin,Um)|, the standard McDiarmid’s inequality [16] that requires the bounded difference
condition is not applicable here, because the input data has unbounded support so that the functions
in F,, can be unbounded, e.g., ReLU neural networks. Such a challenge can be addressed by a
generalized McDiarmid’s inequality for scalar sub-Gaussian variables established in [11]]. However,
the input data are vectors in our setting. Thus, we further generalize the resultin [11] and establish the
following new McDiarmid’s type of concentration inequality for unbounded sub-Gaussian random
vectors and Lipschitz (possibly unbounded) functions. Such development turns out to be nontrivial,
which requires further machineries and tail bound inequalities (see detailed proof in Appendix [C.T).
Theorem 5. Ler {x;}, “KEand {y:}, "% U be two collections of random variables,
where i, v € Py are two unbounded-support sub-Gaussian distributions over R". Suppose that
F o (RM)m s Ris a function of X1, ..., Xn, Y1, ---» Ym, which satisfies for any i,

|F(X1, 0y Xiy oo, Ym) — F (X1, ooy Xy ooy Y| < Lr|xi — x5 ||/7,
|F(Xla o Yiy aym) - F(X17 "'>y;7 >Ym)| < L]'-Hyl - y:,”/m (14)

Then, for all 0 < € < \/3hT';gLr min{m,n}(n=t +m=1),

_€2mn
P (F (X1, Xy eros Vo) = EF (X1, ooy Xpps ooy Vo) > €) < . (5
(1o ¥) =B PG i) 2 ©) € 50 (i ) 1)

Step 2: Upper bound based on Rademacher complexity. By applying Theorem [5] we derive an
upper bound on |dx,  (u,v) — dz,, (fin, Um)| in terms of the average Rademacher complexity that
we define below.



Definition 1. The average Rademacher complexity R, (Fun, ) corresponding to the distribution
p with n samples is defined as Ry (Fon, 1) = Ex.esupper, |2 300 € f(xi)|, where {x;}7_, are
generated i.i.d. by {1 and {€;}'_, are independent random variables chosen from {—1, 1} uniformly.

Then, we have the following result with the proof provided in Appendix[C.2] Recall that L; is the
Lipchitz constant of the activation function o;(-).

Theorem 6. Let F,,, be the set of neural networks defined by ({). For the parameter set Wy defined
in (B), suppose that ju,v € Pyg are two sub-Gaussian distributions satisfying (8) and fi,,, U, are the
empirical measures of i, v. If V6h min{n, m}vm=1 +n=1 > 4./log(1/5), then with probability
at least 1 — § over the randomness of [i, and Uy, ,

‘d]:n'n, (,LL, ) d}'ym (:una ﬁm)|

d —
2Ry (Foums 11) + 2R (Frm, v) + 20 [ [ Mr (i) H Liy/2h (n=1 +m~1)log(1/6). (16)
i=1 i
The same result holds for the parameter set Wi o by replaczng Mp () in (T6) with M7 oo (i).
Step 3: Average Rademacher complexity bound for unbounded sub-Gaussian variables. We
derive an upper bound on the Rademacher complexity R,,(Fnn, 1). In particular, as we explain

next, our upper bound is tighter than directly applying the existing bounds in [8} 22]. To see this,
[I8, 22]] provided upper bounds on the data-dependent Rademacher complexity of neural networks

defined by R,,(Fpn) = E. sup fEFun 1 Zf € f(x;). For the parameter set W, [22] showed that
R (Frn) was bounded by 27 Hl L Mp( d ! 1 Lin/>o1 1 [xil]?/n, and [8] further improved this

bound to W +1 H;i L Mp(i d T L L/ 1%l /n Directly applying this result

for unbounded sub- Gaussmn inputs {xL} t ylelds

d—1
Es R (Fn) < o(rug HMF(z') H LM%NE) (17)

We next show that by exploiting the sub-Gaussianity of the input data, we provide an improved bound
on the average Rademacher complexity. The detailed proof can be found in Appendix [C.3]

Theorem 7. Let F,,,, be the set of neural networks defined by (E]) and let X1, ...,%,, € R" be i.i.d.
random samples generated by an unbounded-supported sub-Gaussian distribution y € Pyg. Then,

(I) If the parameter set is Wr and activation functions satisfy o;(ax) = ao;(x) for all a > 0, then

d d—1
Ro(Fons 1) < Tup [ [ M (i) [ Liv/6dlog2+5h/4/v/n. (18)
i=1

i=1

(IT) If the parameter set is W1 o and each activation function satisfies o;(0) = 0, then
d d—1
Ro(Fons 1) < V2L [ [ M10o (i) [ ] Lin/dlog2 + logh/v/n. (19)
i=1 i=1

Theorem [7| indicates that for the parameter set Wg, our upper bound in replaces the order

dependence O(v/dh) in to O(v/d + h), and hence our proof has the order-level improvement
than directly using the existing bounds. The same observation can be made for the parameter set
Wi1,00- Such improvement is because our proof takes advantage of the sub-Gaussianity of the inputs
whereas the bounds in [8| 22]] must hold for any data input (and hence the worst-case data input).

We also note that [23]] provided an upper bound on the Rademacher complexity for one-hidden-layer
neural networks for Gaussian inputs. Casting Lemma 3.2 in [23] to our setting of (T8) yields

Ror(Fans 1) < O (TusMi (2)Mp(1) Luv/nah/ Vi) 0)

where n; is the number of neurons in the hidden layer. Compared with (20), our bound has an
order-level O(,/n1) improvement.

Summary. Therefore, Theorem [3|follows by combining Theorems [6|and [7]and using the fact that

V1/n+1/m</1/n+



4 Conclusion

In this paper, we developed both the lower and upper bounds for the minimax estimation of the neural
net distance based on finite samples. Our results established the minimax optimality of the empirical
estimator in terms of not only the sample size but also the norm of the parameter matrices of neural
networks, which justifies its usage for training GANS.
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