
Invertibility of Convolutional Generative
Networks from Partial Measurements

Fangchang Ma*
MIT

fcma@mit.edu

Ulas Ayaz˚
MIT

uayaz@mit.edu
uayaz@lyft.com

Sertac Karaman
MIT

sertac@mit.edu

Abstract

The problem of inverting generative neural networks (i.e., to recover the input latent
code given partial network output), motivated by image inpainting, has recently
been studied by a prior work that focused on fully-connected networks. In this
work, we present new theoretical results on convolutional networks, which are more
widely used in practice. The network inversion problem is highly non-convex, and
hence is typically computationally intractable and without optimality guarantees.
However, we rigorously prove that, for a 2-layer convolutional generative network
with ReLU and Gaussian-distributed random weights, the input latent code can be
deduced from the network output efficiently using simple gradient descent. This
new theoretical finding implies that the mapping from the low-dimensional latent
space to the high-dimensional image space is one-to-one, under our assumptions.
In addition, the same conclusion holds even when the network output is only
partially observed (i.e., with missing pixels). We further demonstrate, empirically,
that the same conclusion extends to networks with multiple layers, other activation
functions (leaky ReLU, sigmoid and tanh), and weights trained on real datasets.

1 Introduction

In recent years, generative models have made significant progress in learning representations for
complex and multi-modal data distributions, such as those of natural images [10, 18]. However,
despite the empirical success, there has been relatively little theoretical understanding into the
mapping itself from the input latent space to the high-dimensional space. In this work, we address the
following question: given a convolutional generative network2, is it possible to “decode” an output
image and recover the corresponding input latent code? In other words, we are interested in the
invertibility of convolutional generative models.

The impact of the network inversion problem is two-fold. Firstly, the inversion itself can be applied
in image in-painting [21, 17], image reconstruction from sparse measurements [14, 13], and image
manipulation [22] (e.g., vector arithmetic of face images [12]). Secondly, the study of network
inversion provides insight into the mapping from the low-dimensional latent space to the high-
dimensional image space (e.g., is the mapping one-to-one or many-to-one?). A deeper understanding
of the mapping can potentially help solve the well known mode collapse3 problem [20] during the
training in the generative adversarial network (GAN) [7, 16].

˚Both authors contributed equally to this work. Ulas Ayaz is presently affiliated with Lyft, Inc.
2Deep generative models typically use transposed convolution (a.k.a. “deconvolution”). With a slight abuse

of notation we refer to transposed convolutional generative models as convolutional models.
3Mode collapse refers to the problem that the Generator characterizes only a few images to fool the

discriminator in GAN. In other words, multiple latent codes are mapped to the same output in the image space.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Figure 1: Recovery of the input latent code z from under-sampled measurements y “ AGpzq where
A is a sub-sampling matrix and G is an expanding generative neural network. We prove that z can be
recovered with guarantees using simple gradient-descent methods under mild technical assumptions.

The challenge of the inversion of a deep neural network lies in the fact that the inversion problem is
highly non-convex, and thus is typically computationally intractable and without optimality guaran-
tees. However, in this work, we show that network inversion can be solved efficiently and optimally,
despite being highly non-convex. Specifically, we prove that with simple first-order algorithms like
stochastic gradient descent, we can recover the latent code with guarantees. The sample code is
available at https://github.com/fangchangma/invert-generative-networks.

1.1 Related Work

The network inversion problem has attracted some attention very recently. For instance, Bora et al. [2]
empirically find that minimizing the non-convex Problem (3), which is defined formally in Section 2,
using standard gradient-based optimizer yields good reconstruction results from small number of
Gaussian random measurements. They also provide guarantees on the global minimum of a generative
network with certain structure. However, their work does not analyze how to find the global minimum.
Hand and Voroninski [8] further establish that a fully connected generative network with weights
following Gaussian distribution can be inverted given only compressive linear observations of its last
layer. In particular, they show that under mild technical conditions Problem (3) has a favorable global
geometry, in the sense that there are no stationary points outside of neighborhoods around the desired
solution and its negative multiple with high probability. However, most practical generative networks
are deconvolutional rather than fully connected, due to memory and speed constraints. Besides, their
results are proved for Gaussian random measurements, which are rarely encountered in practical
applications. In this work, we build on top of [8] and extend their results to 2-layer deconvolutional
neural networks, as well as uniform random sub-sampling.

We also note the work [6], which studies a 1-layer network with a special activation function
(Concatenated ReLU, which is essentially linear) and a strong assumption on the latent code (k-
sparsity). In comparison, our results are much stronger than [6]. Specifically, our results are for
2-layer networks (with empirical evidences for deeper networks), and they apply to the most common
ReLU activation function. Our result also makes no assumption regarding the sparsity of latent codes.

Another line of research, which focuses on gradient-based algorithms, analyzes the behavior of
(stochastic) gradient descent for Gaussian-distributed input. Soltanolkotabi [19] showed that projected
gradient descent is able to find the true weight vector for 1-layer, 1-neuron model. More recently,
Du et al. [5] improved this result for a simple convolutional neural network with two unknown
layers. Their assumptions on random input and their problem of weight learning are different than
the problem we study in this paper.

Our problem is also connected to compressive sensing [4, 3] which exploits the sparsity of natural
signals to design acquisition schemes where the number of measurements scales linearly with the
sparsity level. The signal is typically assumed to be sparse in a given dictionary, and the objective
function is convex. In comparison, our work does not assume sparsity, and we provide a direct
analysis of gradient descents for the highly non-convex problem.

2

1.2 Contribution

The contribution of this work is three-fold:

• We prove that a convolutional generative neural network is invertible, with high probability,
under the following assumptions: (1) the network consists of two layers of transposed con-
volutions followed by ReLU activation functions; (2) the network is (sufficiently) expansive;
(3) the filter weights follow a Gaussian distribution. When these conditions are satisfied,
the input latent code can be recovered from partial output of a generative neural network by
minimizing a L2 empirical loss function using gradient descent.

• We prove that the same inversion can be achieved with high probability, even when only a
subset of pixels is observed. This is essentially the image inpainting problem.

• We validate our theoretical results using both random weights and weights trained on real
data. We further demonstrate empirically that that our theoretical results generalize to (1)
multiple-layer networks; (2) networks with other nonlinear activation functions, including
Leaky ReLU, Sigmoid and Tanh.

Two key ideas of our proof include (a) the concentration bounds of convolutional weight matrices
combined with ReLU operation, and (b) the angle distortion between two arbitrary input vectors
under the transposed convolution and ReLU. In general, our proof follows a similar basic structure
to [8], where the authors show the invertibility of fully connected networks with Gaussian weights.
However, in fully connected networks, the weight matrix of each layer is a dense Gaussian matrix. In
contrast, in convolutional networks the weight matrices are highly sparse with block structure due to
striding filters, as in Figure 2(a). Therefore, [8]’s proof does not apply to convolutional networks, and
the extension of concentration bounds for our case is not trivial.

To address such problem, we propose a new permutation technique which shuffles the rows and
columns of weight matrices to obtain a block matrix, as depicted in Figure 2(b). With permutation,
each block is now a dense Gaussian matrix, where we can apply existing matrix concentration results.
However, the permutation operation is quite arbitrary, depending on the structure of the convolutional
network. This requires some careful handling, since the second step (b) requires the control of angles.

In addition, Hand and Voroninski [8] assume a Gaussian sub-sampling matrix at the output of the
network, rather than partial sub-sampling (sub-matrix of identity matrix) that we study in this problem.
We observe that sub-sampling operation can be swapped with the last ReLU in the network, since
both are entrywise operations. We handle the sub-sampling by making the last layer more expansive,
and prove that it is the same with no downsampling from a theoretical standpoint.

2 Problem Statement

In this section, we introduce the notation and define the network inversion problem. Let z˛ P Rn0

denote the latent code of interest, Gp¨q : Rn0 Ñ Rnd pn0 ! ndq be a d-layer generative network
that maps from the latent space to the image space. Then the ground truth output image x˛ P Rnd is
produced by

x˛ “ Gpz˛q, (1)

In this paper we consider Gp¨q to be a deep neural network4. In particular we assume Gp¨q to be a
two-layer transposed convolutional network, modeled by

Gpzq “ σpW2σpW1zqq (2)

where σpzq “ maxpz, 0q denotes the rectified linear unit (ReLU) that applies entrywise. W1 P

Rn1ˆn0 and W2 P Rn2ˆn1 , are the weight matrices of the convolutional neural network in the first
and second layers, respectively. Note that since Gp¨q is a convolutional network, W1 and W2 are
highly sparse with a particular block structure, as illustrated in Figure 2(a).

Let us make the inversion problem a bit more general by assuming that we only have partial
observations of the output image pixels. Specifically, let A P Rmˆn2 be a sub-sampling matrix

4Note that this network inversion problem happens at the inference stage, and thus is independent of the
training process.

3

(a subset of the rows of an identity matrix), and then the observed pixels are y˛ “ Ax˛ P Rm.
Consequently, the inversion problem given partial measurements can be described as follows:

Let: z˛ P Rn0 ,W1 P Rn1ˆn0 ,W2 P Rn2ˆn1 , A P Rmˆn2

Given: A,W1,W2 and observations y˛ “ AGpz˛q

Find: z˛ and x˛ “ Gpz˛q

Since x˛ is determined completely by the latent representation z˛, we only need to find z˛. We
propose to solve the following optimization problem for an estimate ẑ:

ẑ “ argmin
z
Jpzq, where Jpzq “

1

2
}y˛ ´AGpzq}

2 (3)

This minimization problem is highly non-convex because of G. Therefore, in general a gradient
descent approach is not guaranteed to find the global minimum z˛, where Jpz˛q “ 0.

2.1 Notation and Assumptions

f1,1

z1

z2

x1

x2

=·

f1,1

f1,1

f1,2

f1,2

f1,2

f2,2

f2,2

f2,2

f2,1

f2,1

f2,1

D1

D0

l

D1

(a)

z′ x′=· C1D1

l f1,1

f1,1

f1,1

f1,2

f1,2

f1,2

f2,1

f2,1

f2,1

f2,2

f2,2

f2,2

C0

C1l

(b)

Figure 2: Illustration of a single transposed convolution operation. fi,j stands for ith filter kernel
for the jth input channel. z and x denote the input and output signals, respectively. (a) The
standard transposed convolution represented as linear multiplication. (b) With proper row and column
permutations, the permuted weight matrix has a repeating block structure.

We vectorize the input signal to 1D signal. The feature at the ith layer consists of Ci channels, each
of size Di. Therefore, ni “ Ci ¨ Di. At any convolutional layer, let fi,j denotes the kernel filter
(each of size `) for the ith input channel and the jth output channel. For simplicity, we assume the
stride to be equal to the kernel size l. All filters can be concatenated to form a large block matrix Wi.
For instance, an example of such block matrix W1 for the first layer is shown in Figure 2(a). Under
our assumptions, the input and output sizes at each deconvolution operation can be associated as
Di`1 “ Di`.

Let DvJpxq be one-sided directional derivative of the objective function Jp¨q along the direction
v, i.e., DvJpxq “ limtÑ0`

Jpx`tvq´Jpxq
t . Let Bpx, rq be the Euclidean ball of radius r centered at

x. We omit some universal constants in the inequalities and use Áε (if the constant depends on a
variable ε) instead.

3 Main Results

In this section, we present our main theoretical results regarding the invertibility of a 2-layer convolu-
tional generative network with ReLUs. Our first main theoretical contribution is as follows: although
the problem in (3) is non-convex, under appropriate conditions there is a strict descent direction
everywhere, except in the neighborhood of z˛ and that of a negative multiple of z˛.

4

Theorem 1 (Invertibity of convolutional generative networks). Fix ε ą 0. Let W1 P RC0D0ˆC1D1

and W2 P RC1D1ˆC2D2 be deconvolutional weight matrices with filters in R` with i.i.d. entries from
N p0, 1{Ci`q for layers i “ 1, 2 respectively. Let the sampling matrix A “ I be an identity matrix
(meaning there’s no sub-sampling). If C1` Áε C0 logC0 and C2` Áε C1 logC1 then with probability
at least 1´ κpD1C1 e

´γC0 `D2C2 e
´γC1q we have the following. For all nonzero z and z˛, there

exists vz,z˛ P Rn0 such that

Dvz,z˛Jpzq ă 0, @z R Bpz˛, ε}z˛}2q Y Bp´ρz˛, ε}z˛}2q Y t0u (4)

DzJp0q ă 0, @z ‰ 0, (5)

where ρ is a positive constant. Both γ ą 0 and κ ą 0 depend only on ε.

Theorem 1 establishes under some conditions that the landscape of the cost function is not adversarial.
Despite the heavily loaded notation, Theorem 1 simply requires that the weight matrices with Gaussian
filters should be sufficiently expansive (i.e., output dimension of each layer should increase by at least
a logarithmic factor). Theorem 1 does not provide information regarding the neighborhood centered
at ´ρx˛, which implies the possible existence of a local minimum or a saddle point. However,
empirically we did not observe convergence to a point other than the ground truth. In other words,
gradient descent seems to always find the global minimum, see Figure 4.

One assumption we make is the size of stride s being same as the filter size `. Although theoretically
convenient, this assumption is not common in the practical choices of transposed convolutional
networks. We believe a further analysis can remove this assumption, which we also leave as a future
work. In practice different activation functions other than ReLU can be used as well, such as sigmoid
function, Tanh and Leaky ReLU. It is also an interesting venue of research to see whether a similar
analysis can be done with those activations. In particular, for Leaky ReLU we briefly explain how
the proof would divert from ours in Section Sup.2. We include landscapes of the cost function when
different activations are used in Figure 4.

Gaussian weight assumption might seem unrealistic at first. However, there is some research [1]
indicating that weights of some trained networks follow a normal distribution. We also make a similar
observation on the networks we trained, see Section 4. We also note that Theorem 1 does not require
independence of network weights across layers.

Proof Outline: Due to space limitations, the complete proof of Theorem 1 is given in the supple-
mentary material [15]. Here we give a brief outline of the proof and highlight the main steps. The
theorem is proven by showing two main conditions on the weight matrices.

The first condition is on the spatial arrangement of the network weights within each layer.
Lemma Sup.2 [15] provides a concentration bound on the distribution of the effective weight matrices
(after merging the ReLUs into the matrices). It shows that the set of neuron weights within each
layer are distributed approximately like Gaussian. A key idea for the proving Lemma Sup.2 is our
new permutation technique. Specifically, we rearrange both rows and columns of the sparse weight
matrices, as in Figure 2(a), into a block diagonal matrix, as in Figure 2(b). Each block in the permuted
matrix is the same Gaussian matrix with independent entries. The permutation into block matrices
helps turns each block in Figure 2(b) into a dense Gaussian matrix, and therefore makes it possible to
utilize existing concentration bounds on Gaussian matrices.

The second condition is on the approximate angle contraction property of an effective weight matrix
Wi (after merging the ReLUs into the matrices). Lemma Sup.4 [15] shows that the angle between two
arbitrary input vectors x and y does not vanish under a transposed convolution layer and the ReLU.
The permutation poses a significant challenge on the proof of Lemma Sup.4, since permutation of the
input vectors distorts the angles. The difficulty is handled carefully in the proof of Lemma Sup.4,
which deviates from the proof machinery in [8] and hence is a major technical contribution. ˝

Corollary 2 (One-to-one mapping). Under the assumptions of Theorem 1, the mapping Gp¨q :
Rn0 Ñ Rn2 pn0 ! n2q is injective (i.e., one-to-one) with high probability.

Corollary 2 is a direct implication of Theorem 1. Corollary 2 states that the mapping from the latent
code space to the high-dimensional image space is one-to-one with high probability, when the
assumptions hold. This is interesting from a practical point of view, because mode collapse is a
well-known problem in training of GAN [20] and Corollary 2 provides a sufficient condition to avoid
mode collapses. It remains to be further explored how we can make use of this insight in practice.

5

Conjecture 3. Under the assumptions of Theorem 1, let the network weights follow any zero-mean
subgaussian distribution Pp|x| ą tq ď ce´γt

2

, @t ą 0 instead of Gaussian. Then with high
probability the same conclusion holds.

A subgaussian distribution (a.k.a. light-tailed distribution) is one whose tail decays at least as fast as a
Gaussian distribution (i.e., exponential decay). This includes, for example, any bounded distribution
and the exponential distribution. Empirically, we observe that Theorem 1 holds for a number of zero-
mean subgaussian distributions, including uniform random weights and t`1,´1u binary random
weights.

Now let us move on to the case where the subsampling matrix A is not an identity matrix. Instead,
consider a fixed sampling rate r P p0, 1s.
Theorem 4 (Invertibility under partial measurements). Under the assumptions of Theorem 1, let
A P RmˆC2D2 be an arbitrary subsampling matrix with m{pC2D2q ě r. Then with high probability
the same result as Theorem 1 hold.

Note that the subsampling rate r appears in the dimension of the weight matrix of the second layer.

Proof. Since ReLU operation is pointwise, we have the identity

y “ AGpzq “ AσpW2σpW1zqq “ σpAW2σpW1zqq.

It suffices to show that Theorem 1 still holds with AW2 as the last weight matrix. Note that AW2

selects a row subset of the matrix W2 Figure 2(a). Consequently, after proper permutation, AW2 is
again a block diagonal matrix with each block being a Gaussian matrix with independent entries.
Only this time the blocks are not identical, but instead have different sizes. As a result, Theorem 1
still holds for AW2, since the proof of Theorem 1 does not require the identical blocks. However,
there are certain dimension constraints, which can be met by expanding the last layer with a factor of
r, the sampling rate. This modification is reflected in the additional dimension assumption on the
weight matrix W2.

The minimal sampling rate r is a constant that depends on both the network architecture (e.g., how
expansive the networks are) and the sampling matrix A. We made 2 empirical observations. Firstly,
spatially disperse sampling patterns (e.g., uniform random samples) require a lower r, whilst more
aggressive sampling patterns (e.g., top half, left half, sampling around image boundaries) demand
more measurements for perfect recovery. Secondly, regardless of the sampling patterns A, the
probability of perfect recovery exhibits a phase transition phenomenon w.r.t. the sampling rate r.
This observation supports Theorem 4 (i.e., network is invertible given sufficient measurements). A
more rigorous and mathematical characterization of r remains an open question.

4 Experimental Validation

In this section, we verify the gaussian weight assumption of trained generative networks, our main
result Theorem 4 on simulated 2-layer networks, as well as the generalization of Theorem 4 to more
complex multi-layer networks trained on real datasets.

4.1 Gaussian Weight in Trained Networks

We extract the convolutional filter weights, trained on real data to generate images in Figure 5, from
a 4-layer convolutional generative models. The histogram of the weights in each layer is depicted
in Figure 3. It can be observed that the trained weights highly resembles a zero-mean gaussian
distribution. We also discover similar distributions of weights in other trained convolutional networks,
such as ResNet [9]. Arora et al. [1] also report similar results.

4.2 On 2-layer Networks with Random Weights

As a sanity check on Theorem 4, we construct a generative neural network with 2 transposed
convolution layers, each followed by a ReLU. The first layer has 16 channels and the second layer has
1 single channel. Both layers have a kernel size of 5 and a stride of 3. In order to be able to visualize

6

0.2 0.1 0.0 0.1
weight value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pr
ob

ab
ilit

y
de

ns
ity

layer 1a
layer 1b
layer 2
layer 3
layer 4

Figure 3: Distribution of the kernel weights from every layer in a trained convolutional generative
network. The trained weights roughly follow a zero-mean gaussian distribution.

the cost function landscape, we set the input latent space to be 2-dimensional. The weights of the
transposed convolution kernels are drawn i.i.d. from a Gaussian distribution with zero mean and unit
standard deviation. Only 50% of the network output is observed. We compute the cost function Jpzq
for every input latent code z on a grid centered at the ground truth. The landscape of the cost function
Jpzq is depicted in Figure 4(a). Although Theorem 4 implies a possibility of a stationary point at the
negative multiple of the ground truth, experimentally we do not observe convergence to any point
other than the global minimum.

Despite the fact that Theorem 1 and Theorem 4 are proved only for the case of 2-layer network
with ReLU, the same conclusion empirically extends to networks with more layers and different
kernel sizes and strides. In addition, the inversion of generative models generalizes to other standard
activation functions including Sigmoid, and Tanh. Specifically, Sigmoid and Tanh have quasi-convex
landscapes as shown in Figure 4(b) and (c), which are even more favorable than that of ReLU. Leaky
ReLU has the same landscape as a regular ReLU.

-0.5

0

0.5-1.5

-1

1
-0.5

0
1.5

(a) ReLU

40

20

-40
0

-20

-20 0

20
-40

40

(b) Sigmoid

-5

0
5

0 5

-5
10

(c) Tanh (d) mode collapse

Figure 4: The landscape of the cost function Jpzq for deconvolutional networks with (a) ReLU, (b)
Sigmoid, and (c) Tanh as activation functions, respectively. There exists a unique global minimum.

As a counter example, we draw kernel weights uniformly randomly from r0, 1s (which violates the
zero-mean Gaussian assumption). Consequently, there is a flat global minimum in the latent space,
as shown in Figure 4(d). In this region, any two latent vectors are mapped to the exact same output,
indicating that mode collapse indeed occurs.

4.3 On Multi-layer Networks Trained with Real Data

In this section, we demonstrate empirically that our finding holds for multi-layer networks trained on
real data. The first network is trained with GAN to generate handwritten digits, and the second for
celebrity faces. In both experiments, the correct latent codes can be recovered perfectly from partial
(but sufficiently many) observations.

MNIST: For the first network on handwritten digit, we rescale the raw grayscale images from the
MNIST dataset [11] to size of 32ˆ 32. We used the conditional deep convolutional generative adver-
sarial networks (DCGAN) framework [16, 18] to train both a generative model and a discriminator.
Specifically, the generative network has 4 transposed convolutional layers. The first 3 transposed
convolutional layers are followed by a batch normalization and a Leaky ReLU. The last layer is
followed by a Tanh. The discriminator has 4 convolutional layers, with the first 3 followed by batch

7

normalization and Leaky ReLU and the last one followed by a Sigmoid function. We use Adam with
learn rate 0.1 to optimize the latent code z . The optimization process usually converges within 500
iterations. The input noise to the generator is set to have a relatively small dimension 10 to ensure a
sufficiently expanding network.

Figure 5: We demonstrate recovery of latent codes on a generative network trained on the MNIST
dataset. From top to bottom: ground truth output images; partial measurements with different
sampling masks; reconstructed image using the recovered latent codes from partial measurements.
The recovery of latent codes in these examples is perfect, using simple gradient descent.

5 different sampling matrices are showcased in Figure 5, including observing uniform random
samples, as well as the top half, bottom half, left half, and right half of the image space. In all cases,
the input latent codes are recovery perfectly. We feed the recovered latent code as input to the network
to obtain the completed image, shown in the 3rd row.

Figure 6: recovery of latent codes on a generative network trained on the CelebA dataset. From
top to bottom: ground truth output images; partial measurements with different sampling masks;
reconstructed image using the recovered latent codes from partial measurements. The recovery of
latent codes in these examples is perfect, using simple gradient descent.

CelebFaces: A similar study is conducted on a generative network trained on the CelebFaces [12]
dataset. We rescale the raw grayscale images from the MNIST dataset [11] to size of 64 ˆ 64. A
similar network architecture to previous MNIST experiment is adopted, but both the generative model
and the discriminator have 4 layers rather than 3. The images are showcased in Figure 6.

Note that the probability of exact recovery increases with the number of measurements. The minimum
number of measurements required for exact recovery, however, depends on the network architecture,
the weights, and the sampling spatial patterns. The mathematical characterization for minimal number
of measurements remains a challenging open question.

5 Conclusion

In this work we prove rigorously that a 2-layer ReLU convolutional generative neural network is
invertible, even when only partial output is observed. This result provides a sufficient condition
for the generator network to be one-to-one, which avoids the mode collapse problem in training of
GAN. We empirically demonstrate that the same conclusion holds even if the generative models
have other nonlinear activation functions (LeakyReLU, Sigmoid and Tanh) and multiple layers. The
same proof technique can be potentially generalized to multi-layer networks. Some interesting
future research directions include rigorous proofs for leaky ReLUs and other activation functions,
subgaussian network weights, as well as inversion under noisy measurements.

8

References
[1] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. Why are deep nets reversible: A simple theory,

with implications for training. ICLR workshop.

[2] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using
generative models. arXiv preprint arXiv:1703.03208, 2017.

[3] E. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. Comm. Pure Appl. Math., 59(8):1207–1223, 2006.

[4] David L. Donoho. For most large underdetermined systems of linear equations the minimal
l1-norm solution is also the sparsest solution. Comm. Pure Appl. Math, 59:797–829, 2004.

[5] Simon S. Du, Jason D. Lee, Yuandong Tian, Barnabas Poczos, and Aarti Singh. Gradient
descent learns one-hidden-layer cnn: Don’t be afraid of spurious local minima. arXiv preprint
arXiv:1712.00779, 2017.

[6] Anna C Gilbert, Yi Zhang, Kibok Lee, Yuting Zhang, and Honglak Lee. Towards understanding
the invertibility of convolutional neural networks. arXiv preprint arXiv:1705.08664, 2017.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[8] Paul Hand and Vladislav Voroninski. Global guarantees for enforcing deep generative priors by
empirical risk. arXiv preprint arXiv:1705.07576, 2017.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[10] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[11] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[12] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), 2015.

[13] Fangchang Ma and Sertac Karaman. Sparse-to-dense: Depth prediction from sparse depth
samples and a single image. arXiv preprint arXiv:1709.07492, 2017.

[14] Fangchang Ma, Luca Carlone, Ulas Ayaz, and Sertac Karaman. Sparse depth sensing for
resource-constrained robots. arXiv preprint arXiv:1703.01398, 2017.

[15] Fangchang Ma, Ulas Ayaz, and Sertac Karaman. Supplementary materials - invertibility of
convolutional generative networks from partial measurements. NIPS, 2018.

[16] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[17] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2536–2544, 2016.

[18] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[19] Mahdi Soltanolkotabi. Learning relus via gradient descent. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 2004–2014. Curran Associates, Inc., 2017.

9

[20] Akash Srivastava, Lazar Valkoz, Chris Russell, Michael U Gutmann, and Charles Sutton.
Veegan: Reducing mode collapse in gans using implicit variational learning. In Advances in
Neural Information Processing Systems, pages 3310–3320, 2017.

[21] Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G Schwing, Mark Hasegawa-Johnson,
and Minh N Do. Semantic image inpainting with deep generative models. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 5485–5493, 2017.

[22] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Generative visual
manipulation on the natural image manifold. In Proceedings of European Conference on
Computer Vision (ECCV), 2016.

10

