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Abstract

The state-of-the-art methods for solving optimization problems in big dimensions
are variants of randomized coordinate descent (RCD). In this paper we introduce a
fundamentally new type of acceleration strategy for RCD based on the augmenta-
tion of the set of coordinate directions by a few spectral or conjugate directions.
As we increase the number of extra directions to be sampled from, the rate of the
method improves, and interpolates between the linear rate of RCD and a linear rate
independent of the condition number. We develop and analyze also inexact variants
of these methods where the spectral and conjugate directions are allowed to be
approximate only. We motivate the above development by proving several negative
results which highlight the limitations of RCD with importance sampling.

1 Introduction

An increasing array of learning and training tasks reduce to optimization problem in very large
dimensions. The state-of-the-art algorithms in this regime are based on randomized coordinate
descent (RCD). Various acceleration strategies were proposed for RCD in the literature in recent
years, based on techniques such as Nesterov’s momentum [12, 9, 5, 1, 14], heavy ball momentum
[16, 11], importance sampling [13, 19], adaptive sampling [4], random permutations [8], greedy rules
[15], mini-batching [20], and locality breaking [21]. These techniques enable faster rates in theory
and practice.

In this paper we introduce a fundamentally new type of acceleration strategy for RCD which relies
on the idea of enriching the set of (unit) coordinate directions {e1, e2, . . . , en} in Rn, which are
used in RCD as directions of descent, via the addition of a few spectral or conjugate directions. The
algorithms we develop and analyze in this paper randomize over this enriched larger set of directions.

For expositional simplicity1, we focus on quadratic minimization

min
x∈Rn

f(x) :=
1

2
x>Ax− b>x, (1)

where A is an n × n symmetric and positive definite matrix. The optimal solution is unique, and
equal to x∗ = A−1b.

1.1 Randomized coordinate descent

Applied to (1), RCD performs the iteration

xt+1 = xt −
A>:ixt − bi

Aii
ei, (2)

1Many of our results can be extended to convex functions of the form f(x) = φ(Ax)− b>x, where φ is a
smooth and strongly convex function. However, due to space limitations, and the fact that we already have a lot
to say in the special case φ(y) = 1

2
‖y‖2, we leave these more general developments to a follow-up paper.
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Method Name Algorithm Rate Reference
stochastic descent (SD) (4), Alg 1 (5), Lem 1 Gower and Richtárik [6]
stochastic spectral descent (SSD) Alg 2 (6), Thm 2 NEW
stochastic conjugate descent (SconD) Sec 2.2 Thm 2 NEW
randomized coordinate descent (RCD) (2), Alg 3 (3), (11) Gower and Richtárik [6]
stochastic spectral coord. descent (SSCD) Alg 4 (7), Thm 8 NEW
mini-batch SD (mSD) Alg 5 Lem 9 Richtárik and Takáč [18]
mini-batch SSCD (mSSCD) Alg 6 Thm 10 NEW
inexact SconD (iSconD) Alg 7 Thm 15 NEW
inexact SSD (iSSD) Alg 8 Sec F.2 NEW

Table 1: Algorithms described in this paper.

where at each iteration, i is chosen with probability pi > 0. It was shown by Leventhal and Lewis
[10] that if the probabilities are proportional to the diagonal elements of A (i.e., pi ∝ Aii), then the
random iterates of RCD satisfy E

[
‖xt − x∗‖2A

]
≤ (1 − ρ)t‖x0 − x∗‖2A, where ρ = λmin(A)

Tr(A) and
λmin(A) is the minimal eigenvalue of A. That is, as long as the number of iterations t is at least

O
(

Tr(A)

λmin(A)
log

1

ε

)
, (3)

we have E[‖xt − x∗‖2A] ≤ ε. Note that Tr(A)
λmin(A) ≥ n, and that this can be arbitrarily larger than n.

1.2 Stochastic descent

Recently, Gower and Richtárik [6] developed an iterative “sketch and project” framework for solving
linear systems and quadratic optimization; see [7] for extensions. In the context of problem (1), their
method reads as

xt+1 = xt −
s>t (Axt − b)
s>t Ast

st, (4)

where st ∈ Rn is a random vector sampled from some fixed distribution D. In this paper we will
refer to this method by the name stochastic descent (SD).

Note that xt+1 is obtained from xt by minimizing f(xt+hst) for h ∈ R and setting xt+1 = xt+hst.
Further, note that RCD arises as a special case with D being a discrete probability distribution over
the set {e1, . . . , en}. However, SD converges for virtually any distribution D, including discrete and
continuous distributions. In particular, Gower and Richtárik [6] show that as long as Es∼D[H] is
invertible, where H := ss>

s>As
, then SD converges as

O
(

1

λmin(W)
log

1

ε

)
, (5)

where W := Es∼D[A1/2HA1/2] (see Lemma 1 for a more refined result due to Richtárik and Takáč
[18]). Rate of RCD in (3) can be obtained as a special case of (5).

1.3 Stochastic spectral and conjugate descent

The starting point of this paper is the new observation that stochastic descent obtains the rate

O
(
n log

1

ε

)
(6)

in the special case when D is chosen to be the uniform distribution over the eigenvectors of A (see
Theorem 2). For obvious reasons, we refer to this new method as stochastic spectral descent (SSD).

To the best of our knowledge, SSD was not explicitly considered in the literature before. We should
note that SSD is fundamentally different from spectral gradient descent [3, 2], which refers to a
family of gradient methods with a special choice of stepsize depending on the spectrum of∇2f .

The rate (6) does not merely provide an improvement on the rate of RCD given in (3); what is
remarkable is that this rate is completely independent of the properties (such as conditioning) of A.
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Result Thm
Uniform probabilities are optimal for n = 2 3
Uniform probabilities are optimal for any n ≥ 2 as long as A is diagonal 4
“Importance sampling” pi ∝ Aii can lead to an arbitrarily worse rate than pi = 1/n 5
“Importance sampling” pi ∝ ‖Ai:‖2 can lead to an arbitrarily worse rate than pi = 1/n 5
For every n ≥ 2 and T > 0, ∃A : rate of RCD with opt. probabilities is O(T log 1

ε ) 6
For every n ≥ 2 and T > 0, ∃A : rate of RCD with opt. probabilities is Ω(T log 1

ε ) 7

Table 2: Summary of results on importance and optimal sampling in RCD.

Moreover, we show that this method is optimal among the class of stochastic descent methods (4)
parameterized by the choice of the distribution D (see Theorem 8). Despite the attractiveness of its
rate, SSD is not a practical method. This is because once we have the eigenvectors of A available,
the optimal solution x∗ can be assembled directly without the need for an iterative method.

We extend all results discussed above for SSD, including the rate (6), to the more general class of
methods we call stochastic conjugate descent (SconD), for which D is the uniform distribution over
vectors v1, . . . , vn which are mutually A conjugate: v>i Avj = 0 for i 6= j and v>i Avi = 1.

1.4 Optimizing probabilities in RCD

The idea of speeding up RCD via the use of non-uniform probabilities was pioneered by Nesterov
[13] in the context of smooth convex minimization, and later built on by many authors [19, 17, 1].
In the case of non-accelerated RCD, and in the context of smooth convex optimization, the most
popular choice of probabilities is to set pi ∝ Li, where Li is the Lipschitz constant of the gradient
of the objective corresponding to coordinate i [13, 19]. For problem (1), we have Li = Aii. Gower
and Richtárik [6] showed that the optimal probabilities for (1) can in principle be computed through
semidefinite programming (SDP); however, no theoretical properties of the optimal solution of the
SDP were given.

As a warm-up, we first ask: how important is importance sampling? More precisely, we investigate
RCD with probabilities pi ∝ Aii, and RCD with probabilities pi ∝ ‖Ai:‖2, considered as RCD with
“importance sampling”, and compare these with the baseline RCD with uniform probabilities. Our
result (see Theorem 5) contradicts conventional “wisdom”. In particular, we show that for every n
there is a matrix A such that diagonal probabilities lead to the best rate. Moreover, the rate of RCD
with “importance” can be arbitrarily worse than the rate of RCD with uniform probabilities. The
same result applies to probabilities proportional to the square of the norm of the ith row of A.

We then switch gears, and motivated by the nature of SSD, we ask the following question: in order to
obtain a condition-number-independent rate such as (6), do we have to consider new (and hard to
compute) descent directions, such as eigenvectors of A, or can a similar effect be obtained using RCD
with a better selection of probabilities? We give two negative results to this question (see Theorems 6
and 7). First, we show that for any n ≥ 2 and any T > 0, there is a matrix A such that the rate of
RCD with any probabilities (including the optimal probabilities) is O(T log 1

ε ). Second, we give a
similar but much stronger statement where we reach the same conclusion, but for the lower bound as
opposed to the upper bound. That is, O is replaced by Ω.

As a by-product of our investigations into importance sampling, we establish that for n = 2, uniform
probabilities are optimal for all matrices A (see Thm 3). For a summary of these results, see Table 2.

1.5 Interpolating between RCD and SSD

RCD and SSD lie on opposite ends of a continuum of stochastic descent methods for solving (1).
RCD “minimizes” the work per iteration without any regard for the number of iterations, while SSD
minimizes the number of iterations without any regard for the cost per iteration (or pre-processing
cost). Indeed, one step of RCD costs O(‖Ai:‖0) (the number of nonzero entries in the ith row of
A), and hence RCD can be implemented very efficiently for sparse A. If uniform probabilities are
used, no pre-processing (for computing probabilities) is needed. These advantages are paid for by
the rate (3), which can be arbitrarily high. On the other hand, the rate of SSD does not depend on A.
This advantage is paid for by a high pre-processing cost: the computation of the eigenvectors. This
pre-processing cost makes the method utterly impractical.
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general spectrum

n− k largest eigvls
are γ-clustered:
c ≤ λi ≤ γc

for k + 1 ≤ i ≤ n

α-exponentially
decaying eigenvalues

RCD (pi ∝ Aii)
∑
i λi
λ1

γnc
λ1

1
αn−1

SSCD
(k+1)λk+1+

∑n
i=k+2 λi

λk+1
γn 1

αn−k−1

SSD n n n

Table 3: Comparison of complexities of RCD, SSCD (with parameter 0 ≤ k ≤ n− 1) and SSD under various
regimes on the spectrum of A. In all terms we suppress a factor of log 1

ε
.

One of the main contributions of this paper is the development of a new parametric family of
algorithms that in some sense interpolate between RCD and SSD. In particular, we consider the
stochastic descent algorithm (4) with D being a discrete distribution over the search directions
{e1, . . . , en} ∪ {u1, . . . , uk}, where ui is the eigenvectors of A corresponding to the ith smallest
eigenvalue of A. We call this new method stochastic spectral coordinate descent (SSCD).

We compute the optimal probabilities of this distribution, which turn out to be unique, and show that
for k ≥ 1 they depend on the k + 1 smallest eigenvalues of A: 0 < λ1 ≤ λ2 ≤ · · · ≤ λk+1. In
particular, we prove (see Theorem 8) that the rate of SSCD with optimal probabilities is

O
(

(k + 1)λk+1 +
∑n
i=k+2 λi

λk+1
log

1

ε

)
. (7)

For k = 0, SSCD reduces to RCD with pi ∝ Aii, and the rate (7) reduces to (3). For k = n − 1,
SSCD does not reduce to SSD. However, the rates match. Indeed, in this case the rate (7) reduces to
(6). Moreover, the rate improves monotonically as k increases, from O( Tr(A)

λmin(A) log 1
ε ) (for k = 0) to

O(n log 1
ε ) (for k = n− 1).

• SSCD removes the effect of the k smallest eigenvalues. Note that the rate (7) does not depend on the
k smallest eigenvalues of A. That is, by adding the eigenvectors u1, . . . , uk corresponding to the k
smallest eigenvalues to the set of descent directions, we have removed the effect of these eigenvalues.

• Clustered eigenvalues. Assume that the n − k largest eigenvalues are clustered: c ≤ λi ≤ γc
for some c > 0 and γ > 1, for all k + 1 ≤ i ≤ n. In this case, the rate (7) can be estimated as a
function of the clustering “tightness” parameter γ: O

(
γn log 1

ε

)
. See Table 3. This can be arbitrarily

better than the rate of RCD, even for k = 1. In other words, there are situations where by enriching
the set of directions used by RCD by a single eigenvector only, the resulting method accelerates
dramatically. To give a concrete and simplified example to illustrate this, assume that λ1 = δ > 0,
while λ2 = · · · = λn = 1. In this case, RCD has the rate O((1 + n−1

δ ) log 1
ε ), while SSCD with

k = 1 has the rate O(n log 1
ε ). So, SSCD is 1

δ times better than RCD, and the difference grows to
infinity as δ approaches zero even for fixed dimension n.

• Exponentially decaying eigenvalues. If the eigenvalues of A follow an exponential decay with factor
0 < α < 1, then the rate of RCD is O

(
1

αn−1 log 1
ε

)
, while the rate of SSCD is O

(
1

αn−k−1 log 1
ε

)
.

This is an improvement by the factor 1
αk

, which can be very large even for small k if α is small. See
Table 3. For an experimental confirmation of this prediction, see Figure 5.

• Adding a few “largest” eigenvectors does not help. We show that in contrast with the situation
above, adding a few of the “largest” eigenvectors to the coordinate directions of RCD does not help.
This is captured formally in the supplementary material as Theorem 12.

•Mini-batching. We extend SSCD to a mini-batch setting; we call the new method mSSCD. We show
that the rate of mSSCD interpolates between the rate of mini-batch RCD and rate of SSD. Moreover,
we show that mSSCD is optimal among a certain parametric family of methods, and that its rate
improves as k increases. See Theorem 10.

1.6 Inexact Directions

Finally, we relax the need to compute exact eigenvectors or A–conjugate vectors, and analyze the
behavior of our methods for inexact directions. Moreover, we propose and analyze an inexact variant
of SSD which does not arise as a special case of SD. See Sections E and F.
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2 Stochastic Descent

The stochastic descent method was described in (4). We now formalize it as Algorithm 1, and equip
it with a stepsize, which will be useful in Section A.1, where we study mini-batch version of SD.

Algorithm 1 Stochastic Descent (SD)

Parameters: Distribution D; Stepsize parameter ω > 0
Initialize: Choose x0 ∈ Rn
for t = 0, 1, 2, . . . do

Sample search direction st ∼ D and set xt+1 = xt − ω
s>t (Axt − b)
s>t Ast

st

end for

In order to guarantee convergence of SD, we restrict our attention to the class of proper distributions.
Assumption 1. Distribution D is proper with respect to A. That is, Es∼D[H] is invertible, where

H :=
ss>

s>As
. (8)

Next we present the main convergence result for SD.
Lemma 1 (Convergence of stochastic descent [6, 18]). Let D be proper with respect to A, and let
0 < ω < 2. Stochastic descent (Algorithm 1) converges linearly in expectation,

E
[
‖xt − x∗‖2A

]
≤ (1− ω(2− ω)λmin(W))t‖x0 − x∗‖2A,

and we also have the lower bound (1−ω(2−ω)λmax(W))t‖x0−x∗‖2A ≤ E
[
‖xt − x∗‖2A

]
, where

W := Es∼D
[
A1/2HA1/2

]
. (9)

Finally, the statement remains true if we replace ‖xt − x∗‖2A by f(xt)− f(x∗) for all t.

It is easy to observe that the stepsize choice ω = 1 is optimal. This is why we have decided to present
the SD method (4) with this choice of stepsize. Moreover, notice that due to linearity of expectation,

Tr(W)
(9)
= E

[
Tr(A1/2HA1/2)

]
(8)
= E

[
Tr

(
zz>

z>z

)]
= E

[
Tr

(
z>z

z>z

)]
= 1,

where z = A1/2s. Therefore, 0 < λmin(W) ≤ 1
n ≤ λmax(W) ≤ 1.

2.1 Stochastic Spectral Descent

Let A =
∑n
i=1 λiuiu

>
i be the eigenvalue decomposition of A. That is, 0 < λ1 ≤ λ2 ≤ . . . ≤ λn

are the eigenvalues of A and u1, . . . , un are the corresponding orthonormal eigenvectors. Consider
now the SD method with D being the uniform distribution over the set {u1, . . . , un}, and ω = 1.
This gives rise to a new variant of SD which we call stochastic spectral descent (SSD).

Algorithm 2 Stochastic Spectral Descent (SSD)

Initialize: x0 ∈ Rn; (u1, λ1), . . . (un, λn): eigenvectors and eigenvalues of A
for t = 0, 1, 2, . . . do

Choose i ∈ [n] uniformly at random and set xt+1 = xt −
(
u>i xt −

u>i b

λi

)
ui

end for

For SSD we can establish an unusually strong convergence result, both in terms of speed and tightness.
Theorem 2 (Convergence of stochastic spectral descent). Let {xk} be the sequence of random
iterates produced by stochastic spectral descent (Algorithm 2). Then

E[‖xt − x∗‖2A] =

(
1− 1

n

)t
‖x0 − x∗‖2A. (10)

This theorem implies the rate (6) mentioned in the introduction. Up to a log factor, SSD only needs n
iterations to converge. Notice that (10) is an identity, and hence the rate is not improvable.
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2.2 Stochastic Conjugate Descent

The same rate as in Theorem 2 holds for the stochastic conjugate descent (SconD) method, which
arises as a special case of stochastic descent for ω = 1 and D being a uniform distribution over a set
of A-orthogonal (i.e., conjugate) vectors. The proof follows by combining Lemmas 1 and 13.

2.3 Randomized Coordinate Descent

RCD (Algorithm 3) arises as a special case of SD with unit stepsize (ω = 1) and distribution D given
by st = ei with probability pi > 0.

Algorithm 3 Randomized Coordinate Descent (RCD)

Parameters: probabilities p1, . . . , pn > 0
Initialize: x0 ∈ Rn
for t = 0, 1, 2, . . . do

Choose i ∈ [n] with probability pi > 0 and set xt+1 = xt −
Ai:xt − bi

Aii
ei

end for

The rate of RCD (Algorithm 3) can therefore be deduced from Lemma 1. Notice that in view of (8),
we have E[H] =

∑
i pi

eie
>
i

Aii
= Diag( p1

A11
, . . . , pn

Ann
). So, as long as all probabilities are positive,

Assumption 1 is satisfied. Therefore, Lemma 1 applies and RCD enjoys the rate

O

([
λmin

(
ADiag

(
pi

Aii

))]−1

log
1

ε

)
. (11)

2.3.1 Uniform probabilities can be optimal

We first prove that uniform probabilities are optimal in 2D.
Theorem 3. Let n = 2 and consider RCD (Algorithm 3) with probabilities p1 > 0 and p2 > 0,
p1 + p2 = 1. Then the choice p1 = p2 = 1

2 optimizes the rate of RCD in (11).

Next we claim that uniform probabilities are optimal in any dimension n as long as A is diagonal.
Theorem 4. Let n ≥ 2 and let A be diagonal. Then uniform probabilities (pi = 1

n for all i) optimize
the rate of RCD in (11).

2.3.2 “Importance” sampling can be unimportant

In our next result we contradict conventional wisdom about typical choices of “importance sampling”
probabilities. We claim that diagonal and row-squared-norm probabilities can lead to an arbitrarily
worse performance than uniform probabilities.
Theorem 5. For every n ≥ 2 and T > 0, there exists A such that: (i) The rate of RCD with
pi ∝ Aii is T times worse than the rate of RCD with uniform probabilities. (ii) The rate of RCD with
pi ∝ ‖Ai:‖2 is T times worse than the rate of RCD with uniform probabilities.

2.3.3 Optimal probabilities can be bad

Finally, we show that there is no hope for adjustment of probabilities in RCD to lead to a rate
independent of the data A, as is the case for SSD. Our first result states that such a result can’t be
obtained from the generic rate (11).
Theorem 6. For every n ≥ 2 and T > 0, there exists A such that the number of iterations (as
expressed by formula (11)) of RCD with any choice of probabilities p1, . . . , pn > 0 isO(T log(1/ε)).

However, that does not mean, by itself, that such a result can’t be possibly obtained via a different
analysis. Our next result shatters these hopes as we establish a lower bound which can be arbitrarily
larger than the dimension n.
Theorem 7. For every n ≥ 2 and T > 0, there exists an n×n positive definite matrix A and starting
point x0, such that the number of iterations of RCD with any choice probabilities p1, . . . , pn > 0 is
Ω(T log(1/ε)).
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3 Interpolating Between RCD and SSD

Assume now that we have some partial spectral information available. In particular, fix k ∈
{0, 1, . . . , n − 1} and assume we know eigenvectors ui and eigenvalues λi for i = 1, . . . , k. We
now define a parametric distribution D(α, β1, . . . , βk) with parameters α > 0 and β1, . . . , βk ≥ 0 as
follows. Sample s ∼ D(α, β1, . . . , βk) arises through the process

s =

{
ei with probability pi = αAii

Ck
, i ∈ [n],

ui with probability pn+i = βi
Ck
, i ∈ [k],

where Ck := αTr(A) +
∑k
i=1 βi is a normalizing factor ensuring that the probabilities sum up to 1.

3.1 The method and its convergence rate

Applying the SD method with the distribution D = D(α, β1, . . . , βk) gives rise to a new specific
method which we call stochastic spectral coordinate descent (SSCD).

Algorithm 4 Stochastic Spectral Coordinate Descent (SSCD)

Parameters: Distribution D(α, β1, . . . , βk)
Initialize: x0 ∈ Rn
for t = 0, 1, 2, . . . do

Sample st ∼ D(α, β1, . . . , βk) and set xt+1 = xt −
s>t (Axt − b)
s>t Ast

st

end for

Theorem 8. Consider Stochastic Spectral Coordinate Descent (Algorithm 4) for fixed k ∈
{0, 1, . . . , n − 1}. The method converges linearly for all positive α > 0 and nonnegative βi.
The best rate is obtained for parameters α = 1 and βi = λk+1 − λi; and this is the unique choice of
parameters leading to the best rate. In this case,

E
[
‖xt − x∗‖2A

]
≤
(

1− λk+1

Ck

)t
‖x0 − x∗‖2A,

where Ck := (k + 1)λk+1 +
∑n
i=k+2 λi. Moreover, the rate improves as k grows, and we have

λ1

Tr(A)
=
λ1

C0
≤ · · · ≤ λk+1

Ck
≤ · · · ≤ λn

Cn−1
=

1

n
.

If k = 0, SSCD reduces to RCD (with diagonal probabilities). Since λ1

C0
= λ1

Tr(A) , we recover the
rate of RCD of Leventhal and Lewis [10]. With the choice k = n− 1 our method does not reduce to
SSD. However, the rates match. Indeed, λn

Cn−1
= λn

nλn
= 1

n (compare with Theorem 2).

3.2 “Largest” eigenvectors do not help

It is natural to ask whether there is any benefit in considering a few “largest” eigenvectors instead.
Unfortunately, for the same parametric family as in Theorem 8, the answer is negative. The optimal
parameters suggest that RCD has better rate without these directions. See Thm 12 in suppl. material.

4 Experiments

4.1 Stochastic spectral coordinate descent (SSCD)

In our first experiment we study how the practical behavior of SSCD (Algorithm 4) depends on the
choice of k. What we study here does not depend on the dimensionality of the problem (n), and hence
it suffices to perform the experiments on small dimensional problems (n = 30). In this experiment
we consider the regime of clustered eigenvalues described in the introduction and summarized in
Table 3. In particular, we construct a synthetic matrix A ∈ R30×30 with the smallest 15 eigenvalues
clustered in the interval (5, 5 + ∆) and the largest 15 eigenvalues clustered in the interval (θ, θ + ∆).
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Figure 1: Expected precision E
[
‖xt − x∗‖2A/‖x0 − x∗‖2A

]
versus # iterations of SSCD for symmetric positive

definite matrices A of size 30× 30 with different structures of spectra. The spectrum of A consists of 2 equally
sized clusters of eigenvalues; one in the interval (5, 5 + ∆), and the other in the interval (θ, θ + ∆).
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Figure 2: Expected precision versus # iterations of mini-batch SSCD for A ∈ R30×30 and several choices of
mini-batch size τ . The spectrum of A was chosen as a uniform discretization of the interval [1, 60].

We vary the tightness parameter ∆ and the separation parameter θ, and study the performance of
SSCD for various choices of k. See Figure 3.

Our first finding is a confirmation of the phase transition phenomenon predicted by our theory.
Recall that the rate of SSCD (see Theorem 8) is Õ

(
(k+1)λk+1+

∑n
i=k+2 λi

λk+1

)
. If k < 15, we know

λi ∈ (5, 5 + ∆) for i = 1, 2, . . . , k + 1, and λi ∈ (θ, θ + ∆) for i = k + 2, . . . , n. Therefore,
the rate can be estimated as rsmall := Õ (k + 1 + (n− k − 1)(θ + ∆)/5) . On the other hand, if
k ≥ 15, we know that λi ∈ (θ, θ + ∆) for i = k + 1, . . . , n, and hence the rate can be estimated as
rlarge := Õ (k + 1 + (n− k − 1)(θ + ∆)/θ) . Note that if the separation θ between the two clusters
is large, the rate rlarge is much better than the rate rsmall. Indeed, in this regime, the rate rlarge
becomes Õ(n), while rsmall can be arbitrarily large.

Going back to Figure 3, notice that this can be observed in the experiments. There is a clear phase
transition at k = 15, as predicted be the above analysis. Methods using k ∈ {0, 6, 12} are relatively
slow (although still enjoying a linear rate), and tend to have similar behaviour, especially when ∆
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is small. On the other hand, methods using k ∈ {18, 24, 29} are much faster, with a behaviour
nearly independent of θ and ∆. Moreover, as θ increases, the difference in the rates between the
slow methods using k ∈ {0, 6, 12} and the fast methods using k ∈ {18, 24, 29} grows. We have
performed more experiments with three clusters; see Fig 4 in the supplementary material.

4.2 Mini-batch SSCD

In Figure 2 we report on the behavior of mSSCD, the mini-batch version of SSCD, for four choices of
the mini-batch parameter τ , and several choices of k. Mini-batch of size τ is processed in parallel on
τ processors, and the cost of a single iteration of mSSCD is (roughly) the same for all τ . For τ = 1,
the method reduces to SSCD, considered in previous experiment (but on a different dataset). Since
the number of iterations is small, there are no noticeable differences across using different values of
k. As τ grows, however, all methods become faster. Mini-batching seems to be more useful as k is
larger. Moreover, we can observe that acceleration through mini-batching starts more aggressively for
small values op k, and its added benefit for increasing values of k is getting smaller and smaller. This
means that even for relatively small values of k, mini-batching can be expected to lead to substantial
speed-ups.

4.3 Matrix with 10 billion entries

In Figure 3 we report on an experiment using a synthetic problem with data matrix A of dimension
n = 105 (i.e., potentially with 1010 entries). As all experiments were done on a laptop, we worked
with sparse matrices with 106 nonzeros only. In the first row of Figure 3 we consider matrix A with
all eigenvalues distributed uniformly on the interval [1, 100]. We observe that SSCD with k = 104

(just 10% of n) requires about an order of magnitude less iterations than SSCD with k = 0 (=RCD).
In the second row we consider a scenario where l eigenvalues are small, contained in [1, 2], with
the rest of the eigenvalues contained in [100, 200]. We consider l = 10 and l = 1000 and study the
behaviour of SSCD with k = l. We see that for l = 10, SSCD performs dramatically better than
RCD: it is able to achieve machine precision while RCD struggles to reduce the initial error by a
factor larger than 106. For l = 1000, SSCD achieves error 10−9 while RCD struggles to push the
error below 10−4. These tests show that in terms of # iterations, SSCD has the capacity to accelerate
on RCD by many orders of magnitude.
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Figure 3: Expected precision E
[
‖xt − x∗‖2A/‖x0 − x∗‖2A

]
versus # iterations of SSCD for a matrix A ∈

R105×105 . Top row: spectrum of A is uniformly distributed on [1, 100]. Bottom row: spectrum contained in
two clusters: [1, 2] and [100, 200].

5 Extensions

Our algorithms and convergence results can be extended to eigenvectors and conjugate directions
which are only computed approximately. Some of this development can be found in the suppl.
material (see Section E). Finally, as mentioned in the introduction, our results can be extended to the
more general problem of minimizing f(x) = φ(Ax), where φ is smooth and strongly convex.
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