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Abstract

The development of a metric for structural data is a long-term problem in pattern
recognition and machine learning. In this paper, we develop a general metric for
comparing nonlinear dynamical systems that is defined with Perron-Frobenius
operators in reproducing kernel Hilbert spaces. Our metric includes the existing
fundamental metrics for dynamical systems, which are basically defined with
principal angles between some appropriately-chosen subspaces, as its special cases.
We also describe the estimation of our metric from finite data. We empirically
illustrate our metric with an example of rotation dynamics in a unit disk in a
complex plane, and evaluate the performance with real-world time-series data.

1 Introduction

Classification and recognition has been one of the main focuses of research in machine learning
for the past decades. When dealing with some structural data other than vector-valued ones, the
development of an algorithm for this problem according to the type of the structure is basically
reduced to the design of an appropriate metric or kernel. However, not much of the existing literature
has addressed the design of metrics in the context of dynamical systems. To the best of our knowledge,
the metric for ARMA models based on comparing their cepstrum coefficients [12] is one of the
first papers to address this problem. De Cock and De Moor extended this to linear state-space
models by considering the subspace angles between the observability subspaces [6]. Meanwhile,
Vishwanathan et al. developed a family of kernels for dynamical systems based on the Binet-Cauchy
theorem [25]. Chaudhry and Vidal extended this to incorporate the invariance on initial conditions [4].

As mentioned in some of the above literature, the existing metrics for dynamical systems that
have been developed are defined with principal angles between some appropriate subspaces such
as column subspaces of observability matrices. However, those are basically restricted to linear
dynamical systems although Vishwanathan et al. mentioned an extension with reproducing kernels
for some specific metrics [25]. Recently, Fujii et al. discussed a more general extension of these
metrics to nonlinear systems with Koopman operator [8]. Mezic et al. propose metrics of dynamcal
systems in the context of ergodic theory via Koopman operators on L2-spaces[14, 15]. The Koopman
operator, also known as the composition operator, is a linear operator on an observable for a nonlinear
dynamical system [10]. Thus, by analyzing the operator in place of directly nonlinear dynamics,
one could extract more easily some properties about the dynamics. In particular, spectral analysis
of Koopman operator has attracted attention with its empirical procedure called dynamic mode
decomposition (DMD) in a variety of fields of science and engineering [18, 2, 17, 3].

In this paper, we develop a general metric for nonlinear dynamical systems, which includes the
existing fundamental metrics for dynamical systems mentioned above as its special cases. This metric
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is defined with Perron-Frobenius operators in reproducing kernel Hilbert spaces (RKHSs), which are
shown to be essentially equivalent to Koopman operators, and allows us to compare a pair of datasets
that are supposed to be generated from nonlinear systems. We also describe the estimation of our
metric from finite data. We empirically illustrate our metric using an example of rotation dynamics in
a unit disk in a complex plane, and evaluate the performance with real-world time-series data.

The remainder of this paper is organized as follows. In Section 2, we first briefly review the definition
of Koopman operator, especially the one defined in RKHSs. In Section 3, we give the definition of
our metric for comparing nonlinear dynamical systems (NLDSs) with Koopman operators and, then,
describe the estimation of the metric from finite data. In Section 4, we describe the relation of our
metric to the existing ones. In Section 5, we empirically illustrate our metric with synthetic data and
evaluate the performance with real-world data. Finally, we conclude this paper in Section 6.

2 Perron-Frobenius operator in RKHS

Consider a discrete-time nonlinear dynamical system xt+1 = f(xt) with time index t 2 T := {0}[N
and defined on a state space M (i.e., x 2 M), where x is the state vector and f : M ! M is
a (possibly, nonlinear) state-transition function. Then, the Koopman operator (also known as the
composition operator), which is denoted by K here, is a linear operator in a function space X defined
by the rule

Kg = g � f , (1)
where g is an element of X . The domain D(K) of the Koopman operator K is D(K) := {g 2
X | g � f 2 X}, where � denotes the composition of g with f [10]. The choice of X depends on
the problem considered. In this paper, we consider X as an RKHS. The function g is referred as an
observable. We see that K acts linearly on the function g, even though the dynamics defined by f may
be nonlinear. In recent years, spectral decomposition methods for this operator has attracted attention
in a variety of scientific and engineering fields because it could give a global modal description of
a nonlinear dynamical system from data. In particular, a variant of estimation algorithms, called
dynamic mode decomposition (DMD), has been successfully applied in many real-world problems,
such as image processing [11], neuroscience [3], and system control [16]. In the community of
machine learning, several algorithmic improvements have been investigated by a formulation with
reproducing kernels [9] and in a Bayesian framework [22].

Now, let Hk be the RKHS endowed with a dot product h·, ·i and a positive definite kernel k : X⇥X !
C (or R), where X is a set. Here, Hk is a function space on X . The corresponding feature map is
denoted by � : X ! Hk. Also, assume M ⇢ X , and define the closed subspace Hk,M ⇢ Hk by
the closure of the vector space generated by �(x) for 8x 2 M, i.e. Hk,M := span{�(x) | x 2 M}.
Then, the Perron-Frobenius operator in RKHS associated with f (see [9], note that Kf is called
Koopman operator on the feature map � in the literature), Kf : Hk,M ! Hk,M, is defined as a linear
operator with dense domain D(Kf ) := span (�(M)) satisfying for all x 2 M,

Kf [�(x)] = �(f(x)). (2)
Since Kf is densely defined, there exists the adjoint operator K⇤

f
. In the following proposition, we

see that K⇤

f
is essentially the same as Koopman operator K.

Proposition 2.1. Let X = H be the RKHS associated with the positive definite kernel k|M⇥M

defined by the restriction of k to M⇥M, which is a function space on M. Let ⇢ : Hk,M ! H be a
linear isomorphism defined via the restriction of functions from X to M. Then, we have

⇢K⇤

f⇢
�1 = K,

where (·)⇤ means the Hermitian transpose.

Proof. Let g 2 D(K). Since the feature map for H is the same as ⇢ � �, by the reproducing property,
hg, ⇢Kf (�(x))iH = hg, ⇢ � �(f(x))iH = g � f(x) = hKg, ⇢ � �(x)iH . Thus the definitions (1),
(2), and the fact ⇢⇤ = ⇢�1 show the statement.

3 Metric on NLDSs with Perron-Frobenius Operators in RKHSs

We propose a general metric for the comparison of nonlinear dynamical systems, which is defined with
Perron-Frobenius operators in RKHSs. Intuitively, the metric compares the behaviors of dynamical
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systems over infinite time. To ensure the convergence property, we consider the ratio of metrics,
namely angles instead of directly considering exponential decay terms. We first give the definition in
Subsection 3.1, and then derive an estimator of the metric from finite data in Subsection 3.2.

3.1 Definition

Let Hob be a Hilbert space and M ⇢ X a subset. Let h : M ! Hob be a map, often called
an observable. We define the observable operator for h by a linear operator Lh : Hk,M ! Hob

such that h = Lh � �. We give two examples here: First, in the case of Hob = Cd and h(x) =
(g1(x), . . . , gm(x)) for some g1, . . . , gm 2 Hk, the observable operator is Lh(v) := (hgi, vi)mi=1.
This situation appears, for example, in the context of DMD, where observed data is obtained by
values of functions in RKHS. Secondly, in the case of Hob = Hk,M and h = �|M, the observable
operator is Lh(v) = v. This situation appears when we can observe the state space X , and we try to
get more detailed information by observing data sent to RKHS via the feature map.

Let Hin be a Hilbert space. we refer to Hin as an initial value space. We call a linear operator
I : Hin ! Hk,M an initial value operator on M if I is a bounded operator. Initial value operators
are regarded as expressions of initial values in terms of linear operators. In fact, in the case of
Hin = CN and let x1, . . . ,xN 2 M. Let I := (�(x1), . . . ,�(xN )) be an initial value operator on
M, which is a linear operator defined by I ((ai)Ni=1) =

P
i
ai�(xi). Let Kf be a Perron-Frobenius

operator associated with a dynamical system f : M ! M. Then for any positive integer n > 0,
we have Kn

f
I ((ai)Ni=1) =

P
i
ai�(fn(xi)), and Kn

f
I is a linear operator including information at

time n of the orbits of the dynamical system f with inital values x1, . . . ,xN .

Now, we define triples of dynamical systems. A triple of a dynamical system with respect to an
initial value space Hin and an observable space Hob is a triple (f , h,I ), where the first component
f : M ! M is a dynamical system on a subset M ⇢ X (M depends on f ) with Perron-Frobenius
operator Kf , the second component h : M ! Hob is an observable with an observable operator
Lh, and the third component I : Hin ! Hk,M is an initial value operator on M, such that for
any r � 0, the composition LhKr

fI is well-defined and a Hilbert Schmidt operator. We denote by
T (Hin,Hob) the set of triples of dynamical systems with respect to an initial value space Hin and an
observable space Hob.

For two triples D1 = (f1, h1,I1), D2 = (f2, h2,I2) 2 T (Hin,Hob), and for T,m 2 N, we first
define

KT

m
(D1, D2) := tr

 
m^ T�1X

r=0

�
Lh2K

r

f2
I2

�⇤
Lh1K

r

f1
I1

!
2 C,

where the symbol ^m is the m-th exterior product (see Appendix A). We note that since Kfi is
bounded, we regard Kfi as a unique extension of Kfi to a bounded linear operator with domain
Hk,M.
Proposition 3.1. The function KT

m
is a positive definite kernel on T (Hin,Hob).

Proof. See Appendix B

Next, for positive number " > 0, we define AT

m
with KT

m
by

AT

m
(D1, D2) := lim

✏!+0

��✏+ KT

m
(D1, D2)

��2

(✏+ KT
m
(D1, D1)) (✏+ KT

m
(D2, D2))

2 [0, 1].

We remark that for D 2 T (Hin,Hob),
�
KT

m
(D,D)

�1
T=1

is a non-negative increasing sequence.
Now, we denote by `1 the Banach space of bounded sequences of complex numbers, and define
Am : T (Hin,Hob)2 ! `1 by

Am :=
�
AT

m

�1
T=1

Moreover, we introduce Banach limits for elements of `1. The Banach limit is a bounded linear
functional B : `1 ! C satisfying B ((1)1

n=1) = 1, B ((zn)1n=1) = B ((zn+1)1n=1) for any (zn)n,
and B((zn)1n=1) � 0 for any non-negative real sequence (zn)1n=1, namely zn � 0 for all n � 1.
We remark that if (zn)n 2 `1 converges a complex number ↵, then for any Banach limit B,
B ((zn)1n=1) = ↵. The existence of the Banach limits is first introduced by Banach [1] and proved
through the Hahn-Banach theorem. In general, the Banach limit is not unique.
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Definition 3.1. For an integer m > 0 and a Banach limit B, a positive definite kernel A B

m
is defined

by
A B

m
:= B (Am) .

We remark that positive definiteness of A B

m
follows Proposition 3.1 and the properties of the Banach

limit. We then simply denote A B

m
(D1, D2) by Am(D1, D2) if Am(D1, D2) converges since that is

independent of the choice of B.

In general, a Banach limit B is hard to compute. However, under some assumption and suitable
choice of B, we prove that A B

m
is computable in Proposition 3.6 below. Thus, we obtain an estimation

formula of A B

m
(see [20], [21], [7] for other results on the estimation of Banach limit). In the

following proposition, we show that we can construct a pseudo-metric from the positive definite
kernel A B

m
:

Proposition 3.2. Let B be a Banach limit. For m > 0,
p
1� A B

m
(·, ·) is a pseudo-metric on

T (Hin,Hob).

Proof. See Appendix C.

Remark 3.3. Although we defined KT

m
with RKHS, it can be defined in a more general situation

as follows. Let H, H0 and H00 be Hilbert spaces. For i = 1, 2, let Vi ⇢ H be a closed subspace,
Ki : Vi ! Vi and Li : Vi ! H00 linear operators, and let Ii : H0 ! Vi be a bounded operator. Then,
we can define KT

m
between the triples (K1, L1,I1) and (K2, L2,I2) in the similar manner.

3.2 Estimation from finite data

Now we derive an formula to compute the above metric from finite data, which allows us to compare
several time-series data generated from dynamical systems just by evaluating the values of kernel func-
tions. First, we argue the computability of A B

m
(D1, D2) and then state the formula for computation.

In this section, the initial value space is of finite dimension: Hin = CN , and for v1, . . . , vN 2 Hk,M.
We define a linear operator (v1, . . . , vN ) : CN ! Hk,M by (ai)Ni=1 7!

P
N

i=1 aivi. We note
that any linear operator I : Hin = CN ! Hk,M is an initial value operator), and, by putting

vi := I ((0, . . . , 0,
i

1, 0, . . . , 0)), we have I = (v1, . . . , vN ).

Definition 3.4. Let D = (f , h,I ) 2 T
�
CN ,Hob

�
. We call D admissible if there exists Kf ’s

eigen-vectors '1,'2, · · · 2 Hk,M with ||'n|| = 1 and Kf'n = �n'n for all n � 0 such that
|�1| � |�2| � . . . and each vi is expressed as vi =

P
1

n=1 ai,n'n with
P

1

n=1 |ai,n| < 1, where

vi := I ((0, . . . , 0,
i

1, 0, . . . , 0)).

Definition 3.5. The triple D = (f , h,I ) 2 T
�
CN ,Hob

�
is semi-stable if D is admissible and

|�1|  1.

Then, we have the following asymptotic properties of Am.
Proposition 3.6. Let D1, D2 2 T

�
CN ,Hob

�
. If D1 and D2 are semi-stable, then the sequence

Am (D1, D2) converges and the limit is equal to A B

m
(D1, D2) for any Banach limit B. Similarly,

let C be the Cesàro operator, namely, C is defined to be C((xn)1n=1) :=
�
n�1

P
n

k=1 xn

�1
n=1

. If D1

and D2 are admissible, then CAm (D1, D2) converges and the limit is equal to A B

m
(D1, D2) for

any Banach limit B with BC = B.

Proof. See Appendix D.

We note that it is proved that there exists a Banach limit with BC = B [19, Theorem 4]. The
admissible or semi-stable condition holds in many cases, for example, in our illustrative example
(Section 5.1).

Now, we derive an estimation formula of the above metric from finite time-series data. To this end,
we first need the following lemma:
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Lemma 3.7. Let D1 =
�
f1, h1, (v1,l)Nl=1

�
, D2 =

�
f2, h2, (v2,l)Nl=1

�
2 T

�
CN ,Hob

�
. Then we

have the following formula:

KT

m
(D1, D2)

=
T�1X

t1,...,tm=0

X

0<s1<...

<smN

D
LhiK

t1
fi
vi,s1 ^ · · · ^ LhiK

tm
fi

vi,sm , LhjK
t1
fj
vj,s1 ^ · · · ^ LhjK

tm
fj

vj,sm

E

Proof. See Appendix E.

For i = 1, 2, we consider N time-series sequences {yl
i,0, y

l

i,1, y
l

i,2, . . . } ⇢ Hob in an observable
space (l = 1, . . . , N ), which are supposed to be generated from dynamical system fi on Mi ⇢ X
and observed via hi. That is, we consider, for i = 1, 2, t 2 T, and l = 1, . . . , N ,

xl

i,t+1 = fi

�
xl

i,t

�
, yl

i,t
= hi(x

l

i,t
), xl

i,0 2 Mi. (3)

Assume for i = 1, 2, the triple Di =
⇣
fi, hi,

�
�(xl

i,0)
�N
l=1

⌘
is in T

�
CN ,Hob

�
. Then, from

Lemma 3.7, we have

KT

m
(D1, D2)

=
T�1X

t1,...,tm=0

X

0<s1<...

<smN

⌦
Lhi�

�
xs1
i,t1

�
^ · · · ^ Lhi�

�
xsm
i,tm

�
, Lhj�

�
xs1
j,t1

�
^ · · · ^ Lhj�

�
xsm
j,tm

�↵

=
T�1X

t1,...,tm=0

X

0<s1<···<smN

det

0

BB@

⌦
ys1
i,t1

, ys1
j,t1

↵
Hob

· · ·
⌦
ys1
i,t1

, ysm
j,tm

↵
Hob

...
. . .

...⌦
ysm
i,tm

, ys1
j,t1

↵
Hob

· · ·
⌦
ysm
i,tm

, ysm
j,tm

↵
Hob

1

CCA . (4)

In the case of Hob = Hk and hi = �|Mi , we see that
⌦
ysa
i,tb

, ysc
j,td

↵
Hob

= k(xsa
i,tb

, xsc
j,td

). Therefore,
by Proposition 3.6, if Di’s are semi-stable or admissible, then we can compute an convergent estimator
of A B

m
through AT

m
just by evaluating the values of kernel functions.

4 Relation to Existing Metrics on Dynamical Systems

In this section, we show that our metric covers the existing metrics defined in the previous works
[12, 6, 25]. That is, we describe the relation to the metric via subspace angles and Martin’s metric in
Subsection 4.1 and the one to the Binet-Chaucy metric for dynamical systems in Subsection 4.2 as
the special cases of our metric.

4.1 Relation to metric via principal angles and Martin’s metric

In this subsection, we show that in a certain situation, our metric reconstruct the metric (Definition
2 in [12]) for the ARMA models introduced by Martin [12] and DeCock-DeMoor [6]. Moreover,
our formula generalizes their formula to the non-stable case, that is, we do not need to assume the
eigenvalues are strictly smaller than 1.

We here consider two linear dynamical systems. That is, in Eqs. (3), let fi : Rq ! Rq and hi : Rq !
Rr be linear maps for i = 1, 2 with l = 1, which we respectively denote by Ai and Ci. Then,
De Cock and De Moor propose to compare these two models by using the subspace angles as

d((A1,C1), (A2,C2)) = � log
mY

i=1

cos2 ✓i, (5)

where ✓i is the i-th subspace angle between the column spaces of the extended observability matrices
Oi := [C>

i
(CiAi)> (CiA2

i
)> · · · ] for i = 1, 2. Meanwhile, Martin define a distance on AR

models via cepstrum coefficients, which is later shown to be equivalent to the distance (5) [6].

Now, we regard X = Rq. The positive definite kernel here is the usual inner product of Rq and the
associated RKHS is canonically isomorphic to Cq. Let Hin = Cq and Hob = Cr. Note that for
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i = 1, 2, Di = (Ai,Ci, Iq) 2 T (Cq,Cr), and for any linear maps f : Rq ! Rq and h : Rq ! RN ,
Kf = f and Lh = h.

Then we have the following theorem:
Proposition 4.1. The sequence Aq (D1,D2) converges. In the case that the systems are observable
and stable, this limit Aq (D1,D2) is essentially equal to (5).

Proof. See Appendix F.

Therefore, we can define a metric between linear dynamical systems with (A1,C1) and (A2,C2) by
Aq (D1,D2).

Moreover, the value Aq (D1,D2) captures an important characteristic of behavior of dynamical
systems. We here illustrate it in the situation where the state space models come from AR models.
We will see that Aq (D1,D2) has a sensitive behavior on the unit circle, and gives a reasonable
generalization of Martin’s metric [12] to the non-stable case.

For i = 1, 2, we consider an observable AR model:

(Mi) yt = ai,1yt�1 + · · ·+ ai,qyt�q, (6)

where ai,k 2 R for k 2 {1, · · · , q}. Let Ci = (1, 0, . . . , 0) 2 C1⇥q, and let Ai be the companion
matrix for Mi. And, let �i,1, . . . , �i,q be the roots of the equation yq � ai,1yq�1 � · · · � ai,q = 0.
For simplicity, we assume these roots are distinct complex numbers. Then, we define

Pi :=
n
�i,n

��� |�i,n| > 1
o
, Qi :=

n
�i,n

��� |�i,n| = 1
o
, and Ri :=

n
�i,n

��� |�i,n| < 1
o
.

As a result, if |P1| = |P2|, |R1| = |R2|, and Q1 = Q2, we have

Aq (D1,D2)

=

Y

↵,�2P1

�
1� ↵�

�
·
Y

↵,�2P2

�
1� ↵�

�

Y

↵2P1,�2P2

|1� ↵�|2
·

Y

↵,�2R1

�
1� ↵�

�
·
Y

↵,�2R2

�
1� ↵�

�

Y

↵2R1,�2R2

|1� ↵�|2
,

(7)

and, otherwise, Aq (D1,D2) = 0. The detail of the derivation is in Appendix G.

Through this metric, we can observe a kind of “phase transition” of linear dynamical systems on the
unit circle, and the metric has sensitive behavior when eigen values on it. We note that in the case of
Pi = Qi = ;, the formula (7) is essentially equivalent to the distance (5) (see Theorem 4 in [6]).

4.2 Relation to the Binet-Cauchy metric on dynamical systems

Here, we discuss the relation between our metric and the Binet-Cauchy kernels on dynamical systems
defined by Vishwanathan et al. [25, Section 5]. Let us consider two linear dynamical systems as
in Subsection 4.1. In [25, Section 5], they give two kernels to measure the distance between two
systems (for simplicity, here we disregard the expectations over variables); the trace kernels ktr and
the determinant kernels kdet, which are respectively defined by

ktr((x1,0,f1,h1), (x2,0,f2,h2)) =
1X

t=1

e��ty>

1,ty2,t,

kdet((x1,0,f1,h1), (x2,0,f2,h2)) = det

 
1X

t=1

e��ty1,ty
>

2,t

!
,

where � > 0 is a positive number satisfying e��||f1||||f2||<1 to make the limits convergent. And
x1,0 and x2,0 are initial state vectors, which affect the kernel values through the evolutions of the
observation sequences. Vishwanathan et al. discussed a way of removing the effect of initial values
by taking expectations over those by assuming some distributions.
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These kernels can be described in terms of our notation as follows (see also Remark 3.3). That
is, let us regard Hk = Cq. For i = 1, 2, we define Di := (e��fi,hi,xi,0) 2 T (C,Cr), and
D⇤

i
:= (e��f⇤

i
,x⇤

i,0,h
⇤

i
) 2 T (Cr,C). Then these are described as

ktr ((x1,0,f1,h1), (x2,0,f2,h2)) = lim
T!1

KT

1 (D1, D2) ,

kdet ((x1,0,f1,h1), (x2,0,f2,h2)) = lim
T!1

KT

r
(D⇤

1 , D
⇤

2) .

Note that, introducing the exponential discounting e�� is a way to construct a mathematically valid
kernel to compare dynamical systems. However, in a certain situation, this method does not work
effectively. In fact, if we consider three dynamical systems on R: fix a small positive number ✏ > 0
and let f1(x) = (1 + ✏)x, f2(x) = x, and f3(x) = (1 � ✏)x be linear dynamical systems. We
choose 1 2 R as the initial value. Here, it would be natural to regard these dynamical systems are
"different" each other even with almost zero ✏. However, if we compute the kernel defined via the
exponential discounting, these dynamical systems are judged to be similar or almost the same. Instead
of introducing such an exponential discounting, our idea to construct a mathematically valid kernel is
considering the limit of the ratio of kernels defined via finite series of the orbits of dynamical systems.
As a consequence, we do not need to introduce the exponential discounting. It enables ones to deal
with a wide range of dynamical systems, and capture the difference of the systems effectively. In fact,
in the above example, our kernel judges these dynamical systems are completely different, i.e., the
value of A1 for each pair among them takes zero.

5 Empirical Evaluations

We empirically illustrate how our metric works with synthetic data of the rotation dynamics on the
unit disk in a complex plane in Subsection 5.1, and then evaluate the discriminate performance of our
metric with real-world time-series data in Subsection 5.2.

5.1 Illustrative example: Rotation on the unit disk

We use the rotation dynamics on the unit disk in the complex plane since we can compute the analytic
solution of our metric for this dynamics. Here, we regard X = D := {z 2 C | |z| < 1} and let
k(z, w) := (1 � zw)�1 be the Szegö kernel for z, w 2 D. The corresponding RKHS Hk is the
space of holomorphic functions f on D with the Taylor expansion f(z) =

P
n�0 an(f)z

n such that
P

n�0 |an(f)|2 < 1. For f, g 2 Hk, the inner product is defined by hf, gi :=
P

n�0 an(f)an(g).
Let Hin = C and Hob = Hk.

For ↵ 2 C with |↵|  1, let R↵ : D ! D; z 7! ↵z. We denote by K↵ the Koopman operator for
RKHS defined by R↵. We note that since K↵ is the adjoint of the composition operator defined by
R↵, by Littlewood subordination theorem, K↵ is bounded. Now, we define �z : Hk ! C; f 7! f(z)
and �z,w : Hk ! C2; f 7! (f(z), f(w)). Then we define D1

↵,z
:= (R↵,�, �⇤z) 2 T (C,Hk) and

D2
↵,z

:= (R↵,�, �⇤z,↵z) 2 T (C2,Hk).

By direct computation, we have the following formula (see Appendix H and Appendix I for the
derivation): For A1, we have

A1

�
D

1
↵,z, D

1
�,w

�
=

8
>>>>><

>>>>>:

(1�|z|2)(1�|w|2)
|1�(zw)q |2 |↵| = |�| = 1 and ↵� = e

2⇡ip/q with (p, q) = 1,

(1� |z|2)(1� |w|2) |↵| = |�| = 1 and ↵� = e
2⇡i� with � /2 Q,

1� |z|2 |↵| = 1, |�| < 1,

1� |w|2 |↵| < 1, |�| = 1,

1 |↵|, |�| < 1.

(8)

For A2 we have

A2

�
D

2
↵,z, D

2
�,w

�
=

8
>>><

>>>:

O(|zw|2µ(↵,�)) |↵| = |�| = 1

0 |↵| = 1, |�| < 1,

0 |↵| < 1, |�| = 1,
(1�|↵|2)(1�|�|2)

|1�↵�|2 · |1+↵�|2
(1+|↵|2)(1+|�|2) +O(|zw|2) |↵|, |�| < 1.

(9)

where, µ(↵,�) is a positive scalar value described in Appendix I. From the above, we see that A1

depends on the initial values of z and w, but A2 could independently discriminate the dynamics.
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Figure 1: Orbits of rotation dynamics
by multiplying ↵ = |↵|e2⇡i✓ on the unit
disk with the same initial values.

z0 A1 A10
1 A100

1

0.9

(a) (b) (c)

0.3

(d) (e) (f)
Figure 2: Comparison of empirical values (4) and
theoretical values (8) of the kernels AT

1 and A1 of
rotation dynamics with initial values z0

Szegö kernel Gaussian kernel KDMD[8]
z0 A100

1 A100
2 A100

1 A100
2 Akkp

0.9

(a) (b) (c) (d) (e)

0.3

(f) (g) (h) (i) (j)
Figure 3: Discrimination results of various metrics for rotation dynamics with initial values z0.
Vertical and horizontal axes correspond to the dynamics in Figure 1.

Next, we show empirical results with Eq. (4) from finite data for this example.1 For A1, we consider
x1
↵,t

= ↵tz0, where ↵ = |↵|e2⇡i✓. And for A2, we consider x1
↵,t

= ↵tz0 and x2
↵,t

= ↵t+1z0 =
↵tz1. The graphs in Figure 1 show the dynamics on the unit disk with ✓ = {1/3, 1/4,⇡/3} and
|↵| = {1, 0.9, 0.3}. For simplicity, all of the initial values were set so that |z0| = 0.9.

Figure 3 shows the confusion matrices for the above dynamics to see the discriminative performances
of the proposed metric using the Szegö kernel (Figure 3a, 3b, 3f, and 3g), using radial basis function
(Gaussian) kernel (Figure 3c, 3d, 3h, and 3i), and the comparable previous metric (Figure 3e and
3j) [8]. For the Gaussian kernel, the kernel width was set as the median of the distances from data.
The last metric called Koopman spectral kernels [8] generalized the kernel defined by Vishwanathan
et al. [25] to the nonlinear dynamical systems and outperformed the method. Among the above
kernels, we used Koopman kernel of principal angle (Akkp) between the subspaces of the estimated
Koopman mode, showing the best discriminative performance [8].

The discriminative performance in A1 when T = 100 shown in Figure 2c converged to the analytic
solution when considering T ! 1 in Figure 2a compared with that when T = 10 in Figure 2b. As
guessed from the theoretical results, although A1 did not discriminate the difference between the
dynamics converging to the origin while rotating and that converging linearly, A2 in Figure 3b did.
A2 using the Gaussian kernel (Ag2) in Figure 3d achieved almost perfect discrimination, whereas
A1 using Gaussian kernel (Ag1) in Figure 3c and Akkp in Figure 3e did not. Also, we examined the

1The Matlab code is available at https://github.com/keisuke198619/metricNLDS
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Figure 4: Embeddings of four time series data using t-SNE for Ag1 (a-d), Ag2 (e-h), and Akkp

(i-l). (a,e,i) Sony AIBO robot surface I and (b,f,j) II datasets. (c,g,k) Star light curve dataset. (d,h,l)
Computers dataset. The markers x, o, and triangle represent the class 1, 2, and 3 in the datasets.

case of small initial values in Figure 3f-3j so that |z0| = 0.3 for all the dynamics. A2 (Figure 3g, 3i)
discriminated the two dynamics, whereas the remaining metrics did not (Figure 3f, 3h, and 3j).

5.2 Real-world time-series data

In this section, we evaluated our algorithm for discrimination using dynamical properties in time-
series datasets from various real-world domains. We used the UCR time series classification archive
as open-source real-world data [5]. It should be noted that our algorithm in this paper primarily target
the deterministic dynamics; therefore, we selected the examples apparently with smaller noises and
derived from some dynamics (For random dynamical systems, see e.g., [13, 26, 23]). From the above
viewpoints, we selected two Sony AIBO robot surface (sensor data), star light curve (sensor data),
computers (device data) datasets. We used Am by Proposition 3.6 because we confirmed that the data
satisfying the semi-stable condition in Definition 3.5 using the approximation of Kf defined in [9].

We compared the discriminative performances by embedding of the distance matrices computed by
the proposed metric and the conventional Koopman spectral kernel used above. For clear visualization,
we randomly selected 20 sequences for each label from validation data, because our algorithms do
not learn any hyper-parameters using training data. All of these data are one-dimensional time-series
but for comparison, we used time-delay coordinates to create two-dimensional augmented time-series
matrices. Note that it would be difficult to apply the basic estimation methods of Koopman modes
assuming high-dimensional data, such as DMD and its variants. In addition, we evaluated the
classification error using k-nearest neighbor classifier (k = 3) for simplicity. We used 40 sequences
for each label and computed averaged 10-fold cross-validation error (over 10 random trials).

Figure 4 shows examples of the embedding of the Ag1, Ag2, and Akkp using t-SNE [24] for four
time-series data. In the Sony AIBO robot surface datasets, D in Figure 4a,b,e,f (classification error:
0.025, 0.038, 0.213, and 0.150) had better discriminative performance than Akkp in Figure 4i,j
(0.100 and 0.275). This tendency was also observed in the star light curve dataset in Figure 4c,g,k
(0.150, 0.150, and 0.217), where one class (circle) was perfectly discriminated using Ag1 and Ag2

but the distinction in the remaining two class was less obvious. In computers dataset, Ag2, and Akkp

in Figure 4h,l (0.450 and 0.450) show slightly better discrimination than Akkp in Figure 4d (0.500).

6 Conclusions

In this paper, we developed a general metric for comparing nonlinear dynamical systems that is
defined with Koopman operator in RKHSs. We described that our metric includes Martin’s metric and
Binet-Cauchy kernels for dynamical systems as its special cases. We also described the estimation of
our metric from finite data. Finally, we empirically showed the effectiveness of our metric using an
example of rotation dynamics in a unit disk in a complex plane and real-world time-series data.

Several perspectives to be further investigated related to this work would exist. For example, it would
be interesting to see discriminate properties of the metric in more details with specific algorithms.
Also, it would be important to develop models for prediction or dimensionality reduction for nonlinear
time-series data based on mathematical schemes developed in this paper.
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[18] C.W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D.S. Henningson. Spectral analysis of
nonlinear flows. Journal of Fluid Mechanics, 641:115–127, 2009.

[19] E. M. Semenov and F. A. Sukochev. Invariant banach limits and applications. Journal of
Functional Analysis, 259:1517–1541, 2010.

[20] L. Sucheston. On existence of finite invariant measures. Math. Z., 86:327–336, 1964.
[21] L. Sucheston. Banach limits. In Amer. Math. Monthly, volume 74, pages 308–311. 1967.
[22] N. Takeishi, Y. Kawahara, Y. Tabei, and T. Yairi. Bayesian dynamic mode decomposition. In

Proc. of the 26th Int’l Joint Conf. on Artificial Intelligence (IJCAI’17), pages 2814–2821, 2017.
[23] N. Takeishi, Y. Kawahara, and T. Yairi. Subspace dynamic mode decomposition for stochastic

koopman analysis. Physical Review E, 96:033310, 2017.
[24] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine

Learning Research, 9:2579–2605, 2008.

10

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/


[25] S.V.N. Vishwanathan, A.J. Smola, and R. Vidal. Binet-Cauchy kernels on dynamical systems
and its application to the analysis of dynamic scenes. Int’l J. of Computer Vision, 73(1):95–119,
2007.

[26] M.O. Williams, I.G. Kevrekidis, and C.W. Rowley. A data-driven approximation of the koopman
operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6):1307–
1346, 2015.

11


