
Equality of Opportunity in Classification:
A Causal Approach

Junzhe Zhang
Purdue University, USA
zhang745@purdue.edu

Elias Bareinboim
Purdue University, USA

eb@purdue.edu

Abstract

The Equalized Odds (for short, EO) is one of the most popular measures of dis-
crimination used in the supervised learning setting. It ascertains fairness through
the balance of the misclassification rates (false positive and negative) across the
protected groups – e.g., in the context of law enforcement, an African-American
defendant who would not commit a future crime will have an equal opportunity of
being released, compared to a non-recidivating Caucasian defendant. Despite this
noble goal, it has been acknowledged in the literature that statistical tests based
on the EO are oblivious to the underlying causal mechanisms that generated the
disparity in the first place (Hardt et al. 2016). This leads to a critical disconnect
between statistical measures readable from the data and the meaning of discrimina-
tion in the legal system, where compelling evidence that the observed disparity is
tied to a specific causal process deemed unfair by society is required to characterize
discrimination. The goal of this paper is to develop a principled approach to con-
nect the statistical disparities characterized by the EO and the underlying, elusive,
and frequently unobserved, causal mechanisms that generated such inequality. We
start by introducing a new family of counterfactual measures that allows one to
explain the misclassification disparities in terms of the underlying mechanisms
in an arbitrary, non-parametric structural causal model. This will, in turn, allow
legal and data analysts to interpret currently deployed classifiers through causal
lens, linking the statistical disparities found in the data to the corresponding causal
processes. Leveraging the new family of counterfactual measures, we develop a
learning procedure to construct a classifier that is statistically efficient, interpretable,
and compatible with the basic human intuition of fairness. We demonstrate our
results through experiments in both real (COMPAS) and synthetic datasets.

1 Introduction
The goal of supervised learning is to provide a statistical basis upon which individuals with different
group memberships can be reliably classified. For instance, a bank may want to learn a function from
a set of background factors so as to determine whether a customer will repay her loan; a university
may train a classifier to predict the future GPA of an applicant to decide whether to accept her into
the program. The growing adoption of automated systems based on standard classification algorithms
throughout society (including in law enforcement, education, and finance [13, 4, 8, 21, 1]) has raised
concerns about potential issues due to unfairness and discrimination.
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Figure 1: COMPAS

A recent high-profile example is a risk assessment tool called COMPAS,
which has been widely used across the US to inform decisions in the criminal
justice system. Fig. 1 graphically describes this setting – X represents the
race (0 for Caucasian, 1 for African-American) of a defendant and Y stands
for the recidivism outcome (0 for no, 1 otherwise), which are mediated by the prior convictionsW , and
confounded by other demographic information Z (e.g., age, gender) of the defendant. The COMPAS
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Figure 2: (a-d) Causal diagrams of classifiers f, f1, f2, f3 in COMPAS. Nodes represent variables,
directed arrows for functional relationships, and bi-directed arrows for unknown associations.

tool is a classifier f(x, z, w) (shown in Fig. 2(a)) providing a prediction Ŷ on whether the defendant
is expected to commit a future crime. An analysis performed by the news organization ProPublica
revealed that the odds of receiving a positive prediction (Ŷ = 1) for defendants who did not recidivate
were on average higher among African-Americans than their Caucasians counterparts [1]. In words,
the error rates of COMPAS disproportionately misclassified African-American defendants.

Many attempts have been made to model discrimination in the classification setting [26, 14, 11, 9, 15].
A recent, noteworthy framework comes under the rubric of Equalized Odds [7] (also referred to as
Error Rate Balance [5]), which constrains the classification algorithm such that its disparate error rate
ERx0,x1

(ŷ|y) = P (ŷ|x1, y)−P (ŷ|x0, y) is equalized (and equal to 0) across different demographics
x0, x1, i.e., the odds of misclassification does not disproportionately affect any population sub-group.
In the COMPAS example, the condition ERx0,x1

(Ŷ = 1|Y = 0) = 0 implies that an African-
American defendant who does not commit a future crime will have an equal opportunity of getting
released, compared to non-recidivating Caucasian defendants. This notion of fairness is natural in
many learning settings and, indeed, has been implemented in a number of algorithms [7, 6, 25, 23].

Unfortunately, the framework of equalized odds is not without its problems. To witness, consider
a binary instance of Fig. 1 where the values of X and Z are determined such that x = z and W
is decided by the function w ← x. We are concerned with the ER disparity induced by different
classifiers f1, f2, f3 (Fig. 2(b-d)), where, for instance, ŷ ← f1(x) = x (i.e., f1 takes only X as input,
and ignores the other features). Remarkably, a simple analysis shows that ERx0,x1

(Ŷ = 1|Y = 0) is
the same (and equal to 1) in all three classifiers, despite their fundamentally different mechanisms
associating X and Ŷ . Note that f1, f2, f3 corresponds to the direct path X → Ŷ , the indirect path
X →W → Ŷ , and the remaining spurious (non-causal) paths (e.g., X ↔ Z → Ŷ ), respectively.

This observation is not entirely new, and is part of a pattern noted by [7] – statistical tests based on
the disparate ER are oblivious to the underlying causal mechanisms that generated the data. This
realization has dramatic implications to the applicability of supervised learning in the real world since
it seems to suggest that commonsense notions of discrimination, for example, the unequalized false
positive rate caused by direct discrimination (X → Ŷ ), cannot be formally articulated, measured
from data, and, therefore, controlled. More importantly, the legal frameworks of anti-discrimination
laws in the US (e.g., Title VII) require that to establish a prima facie case of discrimination, the
plaintiff must demonstrate “a strong causal connection” between the alleged discriminatory practice
and the observed statistical disparity, otherwise the case will be dismissed (Texas Dept. of Housing
and Community Affairs v. Inclusive Communities Project, Inc., 576 U.S. __ (2015)). Without a robust
causal basis, an evidence of disparate ER on its own is not sufficient to lead to any legal liability.

More recently, the use of causal reasoning to help open the black-box of decision-making systems
has attracted considerable interest in the community, leading to fine-grained explanations of observed
statistical biases [11, 10, 25, 9]. One of the main tasks of causal inference is to explain “how
nature works,” or more technically, to decompose a composite statistical measure (e.g, the total
variation TVx0,x1

(ŷ) = P (ŷ|x1)− P (ŷ|x0)), into its most elementary and interpretable components
[24, 17, 29]. In particular, [28] introduced the causal explanation formula, which allows fairness
analysts to decompose TV into detailed counterfactual measures describing the effects along direct,
indirect, and spurious paths from X to Ŷ . While [28] explains how the statistical inequality in the
observed outcome is brought about, it is unclear how to apply such insight to correct the problematic
behaviors of an alleged, discriminatory policy. Furthermore, the explanation formula allows the
decomposition of marginal measures such as TV, but it’s unable to explain disparities represented by
conditional ones, such as the ER (e.g., non-recidivating African-American defendants).

This paper aims to overcome these challenges. We develop a causal framework to link the disparities
realized through the ER and the (unobserved) causal mechanisms by which the protected attribute X
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affects change in the prediction Ŷ . Specifically, (1) we introduce a family of counterfactual measures
capable of describing the ER in terms of the direct, indirect, and spurious paths from X to Ŷ on
an arbitrary structural causal model (Defs. 1-3) and we prove different qualitative and quantitative
properties of these measures (Thms. 1-2); (2) we derive adjustment-like formulas to estimate the
counterfactual ERs from observational data (Thms. 3-4), which are accompanied with an efficient
algorithm (Alg. 1, Thm. 5) to find the corresponding admissible sets; (3) we operationalize the
proposed counterfactual estimands through a novel procedure to learn a fair classifier subject to
constraints over the effect along the underlying causal mechanisms (Algs. 2-3, Thm. 6).

2 Preliminaries and Notations
We use capital letters to denote variables (X), and small letters for their values (x). We use the
abbreviation P (x) to represent the probabilities P (X = x). For arbitrary sets A and B, let A\B
denote the set difference {x : x ∈ A and x 6∈ B}, and let |A| be the dimension of set A.

The basic semantical framework of our analysis rests on structural causal models (SCM) [16, Ch. 7].
A SCM is a tuple 〈M,P (u)〉, where M consists of a set of endogenous (observed) variables V and
exogenous (unobserved) variables U . The values of each Vi ∈ V are determined by a structural
function fVi

taking as arguments a combination of other endogenous and exogenous variables (i.e.,
Vi ← fVi

(PAi, Ui), PAi ⊆ V , Ui ⊆ U)). Values of U are drawn from the distribution P (u). Each
SCM is associated with a directed acyclic graph (DAG)G = 〈V ,E〉, termed a causal diagram, where
nodes V represent endogenous variables and directed edges E stand for functional relations (e.g., see
Fig. 1). By convention, U are not explicitly shown; a bi-directed arrow between Vi and Vj indicates
the presence of an unobserved confounder (UC) Uk affecting both Vi, Vj , i.e., Vi ← Uk → Vj .

A path is a sequence of edges where each pair of adjacent edges in the sequence share a node. We use
d-separation and blocking interchangeably, following the convention in [16]. A path from a node X
to a node Ŷ consists exclusively of direct arrows pointing away from X is called causal; all the other
non-causal paths are called spurious. The causal paths could be further categorized into the direct
path X → Ŷ and the indirect paths, e.g., X →W → Ŷ of Fig. 2(a). Let (X → Ŷ )G, (X i−→ Ŷ )G
and (X

s←→ Ŷ )G denote, respectively, the direct, indirect and spurious paths between X and Ŷ in
a DAG G. A descendant of X is any node which X has a causal path to (including X itself). The
descendant set of a set X is all descendants of any node in X , which we denote by De(X)G.

An intervention on a set of variables X ⊆ V , denoted by do(x), is an operation where values of
X are set to constants x, regardless of how they were ordinarily determined (through the functions
fX ). We denote by 〈Mx, P (u)〉 a sub-model of a SCM 〈M,P (u)〉 induced by do(x). The potential
response of Ŷ to intervention do(x), denoted by Ŷx(u), is the solution of Ŷ with U = u in the
sub-model Mx; it can be read as the counterfactual sentence “the value that Ŷ would have obtained
in situation U = u, had X been x.” Statistically, averaging U ’s distribution (P (u)) leads to the
counterfactual variable Ŷx. For a more detailed discussion on SCMs, please refer to [16, 2].

3 Counterfactual Analysis of Unequalized Classification Errors
In this section, we investigate the unequalized odds of misclassification observed in COMPAS by
devising three simple thought experiments. These experiments could be generalized into a set of
novel counterfactual measures, providing a fine-grained explanation of how the ER disparity of a
classifier f(p̂a) is brought about. Throughout our analysis, we will letX be the protected attribute, Ŷ
be the prediction and Y be the true outcome; P̂A is a set of (possible) input features of the predictor
Ŷ . We will denote by value x1 the disadvantaged group and x0 the advantaged group. Given the
space constraints, all proofs are included in the full technical report [27, Appendix A].

We consider first the impact of the direct discrimination (i.e., the direct path X → Ŷ ) on the ER
disparity observed in the COMPAS. We will devise a thought experiment concerning with a Caucasian
defendant who does not recidivate (i.e., x0, y). Imagine a hypothetical situation where this defendant
were a non-recidivating African-American (x1, y), while keeping the prior convictions W and other
demographic information Z fixed at the level that the defendant x0, y currently has. We then measure
the prediction Ŷ in this imagined world (counterfactually), compared to what the defendant currently
receives from COMPAS (factually). If the prediction were different in these two situations, e.g., Ŷ
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changes from 0 to 1, we could then say the path X → Ŷ is active, i.e., the direct discrimination
against African-American defendants exists.

(a) P (ŷx1,y,Wx0,y,Z |x0, y)
W

x0 x1 Ŷ

Z

−

(b) P (ŷ|x0, y)
W

x0 Ŷ

Z

Figure 3: Graphical representation of the coun-
terfactual direct ER in COMPAS.

Figs. 3(a-b) represent this thought experiment
graphically. Fig. 3(b) shows the conditional
SCM 〈M,P (u|x0, y)〉 of the non-recidivating
Caucasian defendant (x0, y): variables X,Z,W
are correlated by conditioning on the collider Y
[16, pp. 339]; we omit the true outcome Y for
simplicity. Using this model as the baseline (i.e.,
what factually happened in reality), we change in Fig. 3(a) the input ofX to the direct pathX → Ŷ to
x1 (edges in G represent functional relations), while keeping the value of X to other variables (W,Z)
fixed at the baseline level x0, y. In this reality, variable Zx0,y = Z since Z is a non-descendant
node of X and Y [16, pp. 232]; the intervention on Y is omitted since Y does not directly affect the
prediction Ŷ . Since the direct path X → Ŷ is the only difference between models of Figs. 3(a-b), the
change in Ŷ thus measure the influence of X → Ŷ . Indeed, this hypothetical procedure could be
generalized, applicable to any classifier in an arbitrary SCM, which we summarize as follows.
Definition 1 (Counterfactual Direct Error Rate). Given a SCM 〈M,P (u)〉 and a classifier f(p̂a),
the counterfactual direct error rate for a sub-population x, y (with prediction ŷ 6= y) is defined as:

ERd
x0,x1

(ŷ|x, y) = P (ŷx1,y,(P̂A\X)x0,y
|x, y)− P (ŷx0,y|x, y) (1)

In Eq. 1, Ŷx1,y,(P̂A\X)x0,y
could be further simplified as Ŷx1,(P̂A\X)x0,y

since Y is not an input of

f(p̂a). The subscript (P̂A\X)x0,y is the solution of the input features (besides X) (P̂A\X)(u)
in the sub-model Mx0,y; values of U are drawn from the distribution P (u) such that X(u) =
x, Y (u) = y. The query of Eq. 1 could be read as: “For an individual with the protected attribute
X = x and the true outcome Y = y, how would the prediction Ŷ change had X been x1, while
keeping all the other features P̂A\X at the level that they would attain had X = x0 and Y = y,
compared to the prediction Ŷ she/he would receive had X been x0 and Y been y?”

(a) P (ŷx0,y,Wx1,y,Z |x0, y)
W

x0 x1 Ŷ

Z

−

(b) P (ŷ|x0, y)
W

x0 Ŷ

Z

Figure 4: Graphical representations of the coun-
terfactual indirect ER in COMPAS.

Similarly, we could devise a thought experiment
to measure the effect of the indirect discrimina-
tion, mediated by the prior convictionsW , i.e., the
indirect path X → W → Ŷ . Consider again the
non-recidivating Caucasian defendant x0, y. We
conceive a scenario where the prior convictions
W of the defendant x0, y changes to the level that
it would have achieved had the defendant been a non-recidivating African-American x1, y, while
keeping the other features X,Z fixed at the level that they currently are. Fig. 4(a) describes this
hypothetical scenario: we change only input value of edge X → W to x1, while keeping all the
other paths untouched (at the baseline). We then measure the prediction Ŷ in both the counterfactual
(Fig. 4(a)) and factual (Fig. 4(b)) world and compare their differences. The change in the prediction of
these models thus represent the influence of indirect path X →W → Ŷ . We generalize this thought
experiment and provide an estimand of the indirect paths for any SCM and classifier f , namely:
Definition 2 (Counterfactual Indirect Error Rate). Given a SCM 〈M,P (u)〉 and a classifier f(p̂a),
the counterfactual indirect error rate for a sub-population x, y (with prediction ŷ 6= y) is defined as:

ERi
x0,x1

(ŷ|x, y) = P (ŷx0,y,(P̂A\X)x1,y
|x, y)− P (ŷx0,y|x, y). (2)

(a) P (ŷx0,y|x1, y)
W

x1 x0 Ŷ

Z

−

(b) P (ŷx0,y|x0, y)
W

x0 Ŷ

Z

Figure 5: Graphical representations of the
counterfactual spurious ER in COMPAS.

Finally, we introduce a hypothetical procedure mea-
suring the influence of the spurious relations between
the protected attribute X and prediction Ŷ through
the population attributes that are non-descendants
of both X and Ŷ , e.g., the path X ↔ Z → Ŷ in
Fig. 2(a). We consider a Caucasian x0, y and an
African-American x1, y defendants who both would
not recidivate. We measure the prediction Ŷ these defendants would receive had they both been

4



non-recidivating Caucasians (x0, y). Figs. 5 (a-b) describes this experimental setup. Since the causal
influence ofX (on Ŷ ) are fixed at x0 in both models, the difference in Ŷ must be due to the population
characteristics that are not affected by X i.e., the spurious X − Ŷ relationships.
Definition 3 (Counterfactual Spurious Error Rate). Given a SCM 〈M,P (u)〉 and a classifier f(p̂a),
the counterfactual spurious error rate for a sub-population x, y (with prediction ŷ 6= y) is defined as:

ERs
x0,x1

(ŷ|y) = P (ŷx0,y|x1, y)− P (ŷx0,y|x0, y) (3)

Def. 3 generalizes the thought experiment described above to an arbitrary SCM. In the above
equation, the distribution P (ŷx0,y|x0, y) coincides with P (ŷ|x0, y) since variable Ŷx0,y = Ŷ given
that X = x0, Y = y (the composition axiom [16, Ch. 7.3]). Eq. 3 can be read as the counterfactual
sentence: “For two demographics x0, x1 with the same true outcome Y = y, how would the
prediction Ŷ differ had they both been x0, y?”

3.1 Properties of Counterfactual Error Rates
Theorem 1. Given a SCM 〈M,P (u)〉 and a classifier f(p̂a), for any x0, x1, x, ŷ, y, the counter-
factual ERs of Defs. 1-3 obey the following properties : (1) (X 6→ Y )G|Y ⇒ ERd

x0,x1
(ŷ|x, y) = 0;

(2) |(X i−→ Y )G|Y | = 0 ⇒ ERi
x0,x1

(ŷ|x, y) = 0; (3) |(X s←→ Y )G|Y | = 0 ⇒ ERs
x0,x1

(ŷ|x, y) = 0,
where G|Y is the causal diagram of a conditional SCM 〈My, P (u|y)〉.

The conditional causal diagram G|Y is obtained from the original model G by (1) removing the
node Y and (2) adding bi-directed arrows between nodes whose associated exogenous variables are
correlated in P (u|y)1 (e.g., Fig. 3(b)). Thm. 1 says that Defs. 1-3 provide prima facie evidence for
discrimination detection. For instance, ERd

x0,x1
(ŷ|x, y) 6= 0 implies that the path X → Ŷ is active,

i.e., the direct discrimination exists. It is expected that the proposed counterfactual measures capture
the relative strength of different active pathways connecting node X and Ŷ in the underlying SCM.
We now derive how the counterfactual ERs are quantitatively related with the unequalized odds of
misclassification induced by an arbitrary classifier.
Theorem 2 (Causal Explanation Formula of Equalized Odds). For any x0, x1, ŷ, y, ERx0,x1

(ŷ|x, y),
ERd

x0,x1
(ŷ|x, y), ERi

x0,x1
(ŷ|x, y) and ERs

x0,x1
(ŷ|y) obey the following non-parametric relationship:

ERx0,x1
(ŷ|y) = ERd

x0,x1
(ŷ|x0, y)− ERi

x1,x0
(ŷ|x0, y)− ERs

x1,x0
(ŷ|y). (4)

Thm. 2 guarantees that the disparate ER with the transition from x0 to x1 is equal to the sum of
the counterfactual direct ER with this transition, minus the indirect and spurious ER with reverse
transition, from x1 to x0, on the sub-population x0, y. Together with Thm. 1, each decomposing
term in Eq. 4 thus estimates the adverse impact of its corresponding discriminatory mechanism
on the total ER disparity. For instance, in COMPAS, ERd

x0,x1
(ŷ1|x0, y) explains how much the

direct racial discrimination accounts for the unequalized false positive rate ERx0,x1
(ŷ1|y0) between

non-recidivating African American (x1, y) and Caucasian (x0, y) defendants. Perhaps surprisingly,
this result holds non-parametrically, which means that the counterfactual ERs decompose following
Thm. 2 for any functional form of the classifier and the underlying causal models where the dataset
was generated. Owed to their generality and ubiquity, we refer to this equation as the “Causal
Explanation Formula” for the disparate ER in classification tasks.

Connections with Other Counterfactual Measures Defs. 1-3 can be seen as a generalization of
the marginal counterfactual measures, including the counterfactual effects introduced in [28] and the
natural effects in [17, 11, 15]. Unable to consider the additional evidence (in classification, the true
outcome Y = y), the fairness analysis framework based on these marginal measures fails to provide a
fine-grained quantitative explanation of the ER disparity (as in, Thm. 2). The counterfactual fairness
[10] is another counterfactual measure. As noted in [28], however, it considers only the effects along
the causal paths from the protected attribute X and the outcome Ŷ , thus unable to provide a full
account of the X − Ŷ associations, including the spurious relations. We provide in Appendix B [27]
a more detailed discussion about the relationships between our measures and the existing ones.

1G|Y explicitly represents the change of information flow due to conditioning on the true outcome Y : the
information via arrows pointing away from Y is intercepted; measuring the collider Y makes its (marginally
independent) common causes dependent, also known as the “explaining away” effect [16, pp. 339].
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4 Estimating Counterfactual Error Rates
The Explanation Formula provides the precise relation between the counterfactual ERs, but it does
not specify how they should be estimated from data. When the underlying SCM is provided, the
counterfactual direct, indirect and spurious ERs (Defs. 1-3) are all well-defined and computable via
the three-step algorithm of “predictions, interventions and counterfactuals” described in [16, Ch. 7.1].

However, the SCMs are not fully known in many applications, and one must estimate the proposed
counterfactual measures from the passively-collected (observational) data. Let a classifier f(p̂a)
be denoted by f(ŵ, ẑ), where Ẑ ⊆ P̂A are non-descendants of both X and Y and the subset of
features Ŵ = P̂A\Ẑ. We first characterize a set of classifiers where such estimation is still feasible.
Definition 4 (Explanation Criterion). Given a DAG G and a classifier ŷ ← f(ŵ, ẑ), a set of
covariates C satisfies the explanation criterion relative to f (called the explaining set) if and only if
(1) Ẑ ⊆ C; (2) C ∩ Forb({X,Y }, Ŵ \X) = ∅ where Forb({X,Y }, Ŵ \X) is a set of descendants
Wi ∈ De(W )G for some W 6∈ {X,Y } on a proper causal path2 from {X,Y } to Ŵ \X in G; and (3)
all spurious paths from {X,Y } to Ŵ \X in G are blocked by C. A classifier f is counterfactually
explainable (ctf-explainable) if and only if it has an explaining set C satisfying Conditions 1-3.

Consider again the COMPAS model of Fig. 1. The classifier f(x,w, z) has input features Ŵ =

{X,W} and Ẑ = {Z}. The set C = {Z} does not satisfy the explanation criterion relative to f
since it does not block the spurious path Y ← W . Indeed, one could show that there exists no set
C satisfying Def. 4 relative to f , i.e., f(x,w, z) is not ctf-explainable. However, if we remove the
prior convictions W from the feature set, the new classifier f(x, z) is ctf-explainable with C = {Z}:
Ẑ = C = {Z} satisfies Condition 1; Conditions 2-3 follow immediately since Ŵ \X = ∅.
Defs. 4 constitutes a sufficient condition upon which the counterfactual ERs could, at least in principle,
be estimated from the observational data. This yields identification formulas as shown next:
Theorem 3. Given a causal diagram G and a classifier f(ŵ, ẑ), if f is ctf-explainable (Def. 4) with
an explaining set C, ERd

x0,x1
(ŷ|x, y),ERi

x0,x1
(ŷ|x, y) and ERs

x0,x1
(ŷ|y) can be estimated as follows:

ERd
x0,x1

(ŷ|x, y) =
∑
ŵ,c

(P (ŷx1,ŵ\x,ẑ)− P (ŷx0,ŵ\x,ẑ))P (ŵ\x|x0, c, y)P (c|x, y), (5)

ERi
x0,x1

(ŷ|x, y) =
∑
ŵ,c

P (ŷx1,ŵ\x,ẑ)(P (ŵ\x|x1, c, y)− P (ŵ\x|x0, c, y))P (c|x, y), (6)

ERs
x0,x1

(ŷ|y) =
∑
ŵ,c

P (ŷx1,ŵ\x,ẑ)P (ŵ\x|x1, c, y)(P (c|x1, y)− P (c|x0, y)). (7)

where P (ŷŵ,ẑ) is well-defined, computable from the classifier f(ŵ, ẑ)3.

In Eqs. 5-7, the conditional distributions P (c|x, y) and P (ŵ\x|x0, c, y) do not involve any counter-
factual variable, which means that they are readily estimable by any method from the observational
data (e.g., through deep nets). Continuing from the COMPAS example, we could thus estimate the
counterfactual ERs of f(x, z) from the distribution P (x, y, z, w) using Thm. 3 with C = {Z}.

Inverse Propensity Weighting Estimators Eqs. 5-7 involve summing over all possible values of
Ŵ ,C, which may present computational and sample complexity challenges as the cardinalities
of Ŵ ,C grow very rapidly. There exist robust statistical estimation techniques, known as the
inverse propensity weighting (IPW) [12, 18], to circumvent such issues. Given the observed data
D = {Yi, Ŵi,Ci}ni=1, we propose the IPW estimator for ERd

x0,x1
(ŷ|x, y) as follows:

ÊR
d

x0,x1
(ŷ|x, y) = 1

n

n∑
i=1

(P (ŷx1,Ŵi\Xi,Ẑi
)− P (ŷx0,Ŵi\Xi,Ẑi

))
P̂ (x|Ci, y)I{Xi=x0,Yi=y}

P̂ (x0|Ci, y)P̂ (x, y)
, (8)

where I{·} is an indicator function and P̂ (x, y) is the sample mean estimator of P (x, y) (X,Y are
finite). P̂ (x|c, y) is a reliable estimator of the conditional distributions P (x|c, y) and, in practice,
could be estimated by assuming some parametric models such as logistic regression.

2A causal path from {X,Y } to Ŵ \X is proper if it does not intersect {X,Y } except at the end point [20].
3For a deterministic f(ŵ, ẑ), the probabilities P (ŷŵ,ẑ) = I{ŷ=f(ŵ,ẑ)} where I{·} is an indicator function.
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Algorithm 1: FindExpSet

Input: Feature set {Ŵ , Ẑ}, DAG G = 〈V ,E〉
Output: Explaining set C (Def. 4) relative to
f(ŵ, ẑ) in G, or ⊥ if f is not ctf-explainable.

1: Apply FindSep [22] to find a set C with
Ẑ ⊆ C ⊆ V \Forb({X,Y },Ŵ \X) such that it
d-separates {X,Y } and Ŵ \X in Gpbd

{X,Y },Ŵ \X .
2: return C

Algorithm 3: Ctf-FairLearning
Input: Samples D, DAG G, εd, εi, εs > 0
Output: A fair classifier f

1: Let F = C-SFFS(D, G).
2: Obtain a fair classifier f from F by solving Eq. 9

subject to |ERd| ≤ εd, |ERi| ≤ εi, |ERs| ≤ εs.

Algorithm 2: Causal-SFFS
Input: Samples D = {Yi,Vi}ni=1, a causal
diagram G
Output: A family of ctf-explainable classifiers F
Initialization: P̂A0 = ∅, k = 0.

1: while k < |V | do
2: Let subset V̂k be defined as

{vi ∈ V \P̂Ak : FindExpSet(P̂Ak ∪ vi, G) 6=⊥}.

3: Let vk+1 = argmaxvi∈V̂k
J(P̂Ak ∪ {vi}).

4: Let P̂Ak+1 = P̂Ak ∪ vk+1; k = k + 1.
5: Continue with the conditional exclusion of [19,

Step 2-3] and update the counter k.
6: end while
7: return F = {∀f : P̂Ak → Ŷ }.

Theorem 4. For a ctf-explainable classifier f(ŵ, ẑ), ÊR
d

x0,x1
(ŷ|x, y) (Eq. 8) is a consistent estimator

for ERd
x0,x1

(ŷ|x, y) (Eq. 5) if the model for P (x|c, y) is correctly specified.

We provide IPW estimators for counterfactual indirect and spurious ERs in Appendix A [27].

4.1 Finding Adjustment Set for Explainable Classifiers
A few natural questions arise here is (1) how to systematically test whether a classifier f is ctf-
explainable, and (2) if so, to find a set C satisfying the explanation criterion so that the counterfactual
ERs could be identified. In this section, we will develop an efficient method to answer these questions.

Given a DAGG, byGpbd

{X,Y },Ŵ \X
we denote the proper backdoor graph obtained fromG by removing

the first edge of every proper causal path from {X,Y } to Ŵ \X [22]. We formulate next in graphical
terms a set of identification conditions equivalent to the explanation criterion defined in Def. 4.

Definition 5 (Constructive Explanation Criterion). Given a DAG G and a classifier f(ŵ, ẑ), co-
variates C satisfy the constructive explanation criterion relative to f if and only if (1) Ẑ ⊆ C ⊆
V \Forb({X,Y }, Ŵ \X), where Forb({X,Y }, Ŵ \X) is a set of nodes forbidden by Def. 4; (2) C
d-separates {X,Y } and Ŵ \X in the proper backdoor graph Gpbd

{X,Y },Ŵ \X
.

Theorem 5. Given a causal diagram G and a classifier f , covariates C satisfies the explanation
criterion (Def. 4) to f if and only if it satisfies the constructive explanation criterion (Def. 5) to f .

Thm. 5 allows us to use the algorithmic framework developed by [22] for constructing d-separating
sets in DAGs. We summarize this procedure as FindExpSet, in Alg. 1. Specifically, the sub-routine
FindSep find a covariates set C with Ẑ ⊆ C ⊆ V \Forb({X,Y }, Ŵ \X), such that C d-separates
all paths between {X,Y } and Ŵ \X in Gpbd

{X,Y },Ŵ \X
, i.e., the explaining set relative to classifier

f(ŵ, ẑ) (Def. 4). This algorithm can be solved inO(n+m) runtime where n is the number of nodes
and m is the number of edges in the proper backdoor graph Gpbd

{X,Y },Ŵ \X
.

5 Achieving Equalized Counterfactual Error Rates
So far we have focused on analyzing the unequalized counterfactual ERs of an existing predictor
in the environment. A more interesting problem is how to obtain an optimal classifier such that its
induced counterfactual ERs along with a specific discriminatory mechanism are equalized.

Given finite samples D = {Yi,Vi}ni=1 drawn from P (y,v) (where the protected attribute X ∈ V ),
the associated causal diagram G, and a set of candidate ctf-explainable classifiers F , the goal of
the supervised learning is to obtain an optimal classifier f∗(p̂a) from F such that a loss function
L(D, f) measuring the distance between the prediction Ŷ and the true outcome Y is minimized. We
will elaborate later about how to construct the ctf-explainable set F . Among the quantities evolved
by Thm. 3, the counterfactual distribution P (ŷx,ŵ\x,ẑ) is defined from the classifier f and the other
conditional distributions (e.g., P (c|x, y)) are estimable from the data D. We could thus represent
a counterfactual ER (e.g., direct) of a classifier f ∈ F as a function g(D, f) (e.g., Eq. 8). A fair
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classifier is obtained by minimizing L(D, f) subject to a box constraint over g(D, f), namely,

min
f∈F

L(D, f) s.t. |g(D, f)| ≤ ε, (9)

where ε ∈ R+ and the smaller ε is, the fairer the learned classifier would be. In general, the constraints
|g(D, f)| ≤ ε are non-convex and solving the problem of Eq. 9 seems to be difficult. However, this
optimization problem could be significantly simpler in certain cases, solvable using standard convex
optimization methods [3]. We provide two canonical settings that fit this requirement.

First, we assume that the features V are discrete, and let θŷ,x,ŵ\x,ẑ denote the probabilities
P (ŷx,ŵ\x,ẑ). The counterfactual constraints |g(D, f)| ≤ ε are thus reducible to a set of linear
inequalities on the parameter space {θ}. Second, consider a classifier making decision based on a
decision boundary Ỹ = θᵀφ(x, ŵ\x, ẑ) (e.g., logistic regression), where φ(·) is the basis function.
The boundary Ỹ acts as a proxy to the prediction Ŷ . For instance, the condition ERd

x0,x1
(ỹ|x, y) = 0

implies ERd
x0,x1

(ŷ|x, y) = 0. The same reasoning applies to the counterfactual indirect and spurious
ERs. We will employ the techniques in [25] and approximate the constraints |g(D, f)| ≤ ε using the
counterfactual ERs of X on the boundary Ỹ . Assume that we are interested in the mean effect and
replace the quantities P (ŷx,ŵ\x,ẑ) in Thm. 3 with θᵀφ(x, ŵ\x, ẑ). Given the convexity of L(D, f),
Eq. 9 is a convex optimization problem and can thus be efficiently solved using standard methods.

5.1 Constructing Counterfactually Explainable Classifiers
The counterfactual explainability (Def. 4) of a classifier f relies on its input feature P̂A: the smaller
the set P̂A is, the easier it would be to find a explaining set C relative to f(p̂a). In practice, some
features contain critical information about the prediction task, which means that their exclusion
could lead to poorer performance. This observation suggests a novel feature selection problem in
the fairness-aware classification task: we would like to find a subset P̂A from the available features
V such that each classifier in the candidate set F = {∀f : P̂A → Ŷ } is ctf-explainable, without
significant loss of prediction accuracy.

Our solution builds on the procedure FindExpSet (Alg. 1) and the classic method of Sequential
Floating Forward Selection (SFFS) [19]. Let P̂Ak be the set of k features. The score function
J(p̂ak) evaluates the candidate subset P̂Ak and returns a measure of its “goodness”. In practice,
this score could be obtained by computing the statistical measures of dependence, or by evaluating
the best in-class predictive accuracy for classifiers in {∀f : P̂Ak → Ŷ } on the validation data. We
denote our method by Causal SFFS (C-SFFS) and summarize it in Alg. 2. Starting with a subset
P̂Ak, C-SFFS (Step 2-3) adds one feature which gives the highest score J . FindExpSet ensures that
the resulting subset P̂Ak+1 induces a ctf-explainable classifier f(p̂ak+1). Step 5 repeatedly removes
the least significant feature vd from the newly-formed P̂Ak until no feature could be excluded to
improve the score J . During the exclusion phase, we do not apply FindExpSet, since removing
features from a ctf-explainable classifier does not violate the explanation criterion (Def. 4). It follows
immediately from the soundness of FindExpSet that C-SFFS always returns a ctf-explainable set F .

Theorem 6. For F = C-SFFS(D, G), each classifier f ∈ F is ctf-explainable.

We summarize in Alg. 3 the procedure of training an optimal classifier satisfying the fairness
constraints over the counterfactual ERs. ERd, ERi, and ERs stand for the counterfactual quantities
ERd

x0,x1
(ŷ|x0, y), ERi

x1,x0
(ŷ|x0, y), and ERs

x1,x0
(ŷ|y), respectively. We use C-SFFS (Alg. 2) to

obtain a candidate set F such that each f ∈ F is ctf-explainable. The fair classifier is computed by
solving the optimization problem in Eq. 9 subject to the box constraints over ERd, ERi, and ERs.

6 Simulations and Experiments
In this section, we will illustrate our approach on both synthetic and real datasets. We focus on the false
positive rate ERx0,x1

(ŷ1|y0) across demographics x0 = 0, x1 = 1, where ŷ1 = 1, y0 = 0, and the
corresponding components ERd

x0,x1
(ŷ1|x0, y0), ERi

x1,x0
(ŷ1|x0, y0) and ERs

x1,x0
(ŷ1|y0) (following

Thm. 2). We shorten the notation and write ERx0,x1(ŷ1|y0) = ER, and similarly to ERd, ERi and
ERs. Details of the experiments are provided in Appendix C [27].
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(a) Standard Prediction Model (b) COMPAS

Figure 7: Results of Experiments 1-2. Measures that are not estimable via the explanation criterion
are shaded and highlighted. ER stands for the false positive rate ERx0,x1(ŷ1|y0); ERd, ERi and ERs

represent the corresponding counterfactual direct, indirect, and spurious ERs (Thm. 2). Classifier
fopt, fer, and fctf in Exp. 1 correspond to, respectively, color blue, orange, and yellow in Fig. (a); fopt,
fer, fopt-, fer-, and fctf- in Exp. 2 correspond to blue, orange, yellow, purple, and green in Fig. (b).

Z

X

W

Y

D

Figure 6: Standard fair-
ness prediction model

Experiment 1: Standard Prediction Model We consider a general-
ized COMPAS model containing the common descendant D, shown in
Fig. 6, which we call here the standard fairness prediction model (for
short, standard prediction model). We train two classifiers with the same
feature set {X,W,Z,D} where the first is obtained via the standard,
unconstrained optimization, which we call fopt, and the second one con-
strains the disparate ER to half of that of fopt, which we call fer. We
further compute the counterfactual ERs (Defs. 1-3). The results are shown in Fig. 7(a). We first
confirm that the procedure fer is sound in the sense that feo (90.4%) achieves a comparable predictive
accuracy to fopt (90.4%) while reducing the disparate ER in half (ERer = −0.238, ERopt = −0.476).
Second, ERd is larger in fer (ERd

eo = 0.620) than in the unconstrained fopt (ERd
opt = 0.381). This ma-

terializes the concern acknowledged in [7], namely, that optimizing based on ER may not be enforcing
any type of real-life fairness notion related to the underlying causal mechanism. To circumvent this
issue, we train a classifier with the same feature set such that its counterfactual ERs are reduced to
half of that of the unconstrained fopt, called fctf . The results (Fig. 7(a)) support the counterfactual
approach: fctf (90.1%) reports ER comparable to fer (ERctf = −0.238), but a smaller significant
direct, indirect and spurious ER disparities (ERd

ctf = 0.191, ERd
ctf = −0.194, ERd

ctf = −0.236).

Experiment 2: COMPAS In the COMPAS model of Fig. 1, we are interested in predicting whether
a defendant would recidivate, while avoiding the direct discrimination (the threshold ε = 0.01). We
compute a classifier fer with a feature set {X,Z,W} subject to |ERer| ≤ ε. We also include
an unconstrained classifier fopt as the baseline. The results (Fig. 7(b)) reveal that fer (73.7%)
and fopt (74.6%) are comparable in prediction accuracy while fer has much smaller disparate ER
(ERer = −0.005, ERopt = −0.077). Given that the underlying causal model is not fully known, we
could only estimate the counterfactual direct ER from passively-collected samples. Since classifiers
with feature set {X,W,Z} are not ctf-explainable in the COMPAS model (Def.4), ERd of fer and
fopt cannot be identified via Thm. 3. Previous analysis (Experiment 1) implies that ERd could be
significant even when ER is small, which suggests one should be wary of the direct discrimination
of fer and fopt. To overcome this issue, we remove W from the feature set and obtain fopt- and
fer- following a similar procedure. We estimate their ERd via Thm. 3 with covariates C = {Z}.
The results show that the direct discrimination are significant in both fer- and fopt- (ERd

eo− = 0.015,
ERd

opt− = −0.066). To remove the direct discrimination, we train a classifier fctf- following Alg. 3
with the features {X,Z} and εd = ε. The results support the efficacy of Alg. 3: fctf- performs slightly
worse in prediction accuracy (72.1%) but ascertains no direct discrimination (ERd

ctf− = −0.001).

7 Conclusions
We introduced a new family of counterfactual measures capable of explaining disparities in the
misclassification rates (false positive and false negative) across different demographics in terms of
the causal mechanisms underlying the specific prediction process. We then developed machinery
based on these measures to allow data scientists (1) to diagnose whether a classifier is operating in a
discriminatory fashion against specific groups, and (2) to learn a new classifier subject to fairness
constraints in terms of fine-grained misclassification rates. In practice, this approach constitutes a
formal solution to the notorious lack of interpretability of the equalized odds. We hope the causal
machinery put forwarded here will help data scientists to analyze already deployed systems as well
as to construct new classifiers that are fair even when the training data comes from an unfair world.
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