Learning Hierarchical Semantic Image Manipulation through Structured Representations

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews Supplemental

Authors

Seunghoon Hong, Xinchen Yan, Thomas S. Huang, Honglak Lee

Abstract

Understanding, reasoning, and manipulating semantic concepts of images have been a fundamental research problem for decades. Previous work mainly focused on direct manipulation of natural image manifold through color strokes, key-points, textures, and holes-to-fill. In this work, we present a novel hierarchical framework for semantic image manipulation. Key to our hierarchical framework is that we employ structured semantic layout as our intermediate representations for manipulation. Initialized with coarse-level bounding boxes, our layout generator first creates pixel-wise semantic layout capturing the object shape, object-object interactions, and object-scene relations. Then our image generator fills in the pixel-level textures guided by the semantic layout. Such framework allows a user to manipulate images at object-level by adding, removing, and moving one bounding box at a time. Experimental evaluations demonstrate the advantages of the hierarchical manipulation framework over existing image generation and context hole-filing models, both qualitatively and quantitatively. Benefits of the hierarchical framework are further demonstrated in applications such as semantic object manipulation, interactive image editing, and data-driven image manipulation.