
Learning to Propagate for Graph Meta-Learning

Lu Liu1, Tianyi Zhou2, Guodong Long1, Jing Jiang1, Chengqi Zhang1

1Center for Artificial Intelligence, University of Technology Sydney
2Paul G. Allen School of Computer Science & Engineering, University of Washington
lu.liu-10@student.uts.edu.au, tianyizh@uw.edu, guodong.long@uts.edu.au

jing.jiang@uts.edu.au, chengqi.zhang@uts.edu.au

Abstract

Meta-learning extracts the common knowledge from learning different tasks and
uses it for unseen tasks. It can significantly improve tasks that suffer from insuffi-
cient training data, e.g., few-shot learning. In most meta-learning methods, tasks
are implicitly related by sharing parameters or optimizer. In this paper, we show
that a meta-learner that explicitly relates tasks on a graph describing the relations of
their output dimensions (e.g., classes) can significantly improve few-shot learning.
The graph’s structure is usually free or cheap to obtain but has rarely been explored
in previous works. We develop a novel meta-learner of this type for prototype
based classification, in which a prototype is generated for each class, such that
the nearest neighbor search among the prototypes produces an accurate classi-
fication. The meta-learner, called “Gated Propagation Network (GPN)”, learns
to propagate messages between prototypes of different classes on the graph, so
that learning the prototype of each class benefits from the data of other related
classes. In GPN, an attention mechanism aggregates messages from neighboring
classes of each class, with a gate choosing between the aggregated message and
the message from the class itself. We train GPN on a sequence of tasks from
many-shot to few-shot generated by subgraph sampling. During training, it is
able to reuse and update previously achieved prototypes from the memory in a
life-long learning cycle. In experiments, under different training-test discrepancy
and test task generation settings, GPN outperforms recent meta-learning methods
on two benchmark datasets. The code of GPN and dataset generation is available
at https://github.com/liulu112601/Gated-Propagation-Net.

1 Introduction

The success of machine learning (ML) during the past decade has relied heavily on the rapid growth
of computational power, new techniques training larger and more representative neural networks, and
critically, the availability of enormous amounts of annotated data. However, new challenges have
arisen with the move from cloud computing to edge computing and Internet of Things (IoT), and
demands for customized models and local data privacy are increasing, which raise the question: how
can a powerful model be trained for a specific user using only a limited number of local data? Meta-
learning, or “learning to learn”, can address this few-shot challenge by training a shared meta-learner
model on top of distinct learner models for implicitly related tasks. The meta-learner aims to extract
the common knowledge of learning different tasks and adapt it to unseen tasks in order to accelerate
their learning process and mitigate their lack of training data. Intuitively, it allows new learning tasks
to leverage the “experiences” from the learned tasks via the meta-learner, though these tasks do not
directly share data or targets.

Meta-learning methods have demonstrated clear advantages on few-shot learning problems in recent
years. The form of a meta-learner model can be a similarity metric (for K-nearest neighbor (KNN)
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Figure 1: LEFT: t-SNE [17] visualization of the class prototypes produced by GPN and the associated
graph. RIGHT: GPN’s propagation mechanism for one step: for each node, its neighbors pass
messages (their prototypes) to it according to attention weight a, where a gate further choose to
accept the message from the neighbors g+ or from the class itself g∗.

classification in each task) [24], a shared embedding module [19], an optimization algorithm [14]
or parameter initialization [5], and so on. If a meta-learner is trained on sufficient and different
tasks, it is expected to be generalized to new and unseen tasks drawn from the same distribution
as the training tasks. Thereby, different tasks are related via the shared meta-learner model, which
implicitly captures the shared knowledge across tasks. However, in a lot of practical applications, the
relationships between tasks are known in the form of a graph of their output dimensions, for instance,
species in the biology taxonomy, diseases in the classification coding system, and merchandise on an
e-commerce website.

In this paper, we study the meta-learning for few-shot classification tasks defined on a given graph of
classes with mixed granularity, that is, the classes in each task could be an arbitrary combination of
classes with different granularity or levels in a hierarchical taxonomy. The tasks can be classification
of cat vs mastiff (dog) or an m-vs-rest task, e.g. classification that aims to distinguish among cat, dog
and others. In particular, we define the graph with each class as a node and each edge connecting a
class to its sub-class (i.e., children class) or parent class. In practice, the graph is usually known in
advance or can be easily extracted from a knowledge base, such as the WordNet hierarchy for classes
in ImageNet [4]. Given the graph, each task is associated with a subset of nodes on the graph. Hence,
tasks can be related through the paths on the graph that links their nodes even when they share few
output classes. In this way, different tasks can share knowledge by message passing on the graph.

We develop Gated Propagation Network (GPN) to learn how to pass messages between nodes (i.e.,
classes) on the graph for more effective few-shot learning and knowledge sharing. We use the setting
from [24]: given a task, the meta-learner generates a prototype representing each class by using only
few-shot training data, and during test a new sample is classified to the class of its nearest prototype.
Hence, each node/class is associated with a prototype. Given the graph structure, we let each class
send its prototype as a message to its neighbors, while a class received multiple messages needs to
combine them with different weights and update its prototype accordingly. GPN learns an attention
mechanism to compute the combination weights and a gate to filter the message from different
senders (which also includes itself). Both the attention and gate modules are shared across tasks and
trained on various few-shot tasks, so they can be generalized to the whole graph and unseen tasks.
Inspired by the hippocampal memory replay mechanism in [2] and its application in reinforcement
learning [18], we also retain a memory pool of prototypes per training class, which can be reused
as a backup prototype for classes without training data in future tasks.

We evaluate GPN under various settings with different distances between training and test classes, dif-
ferent task generation methods, and with or without class hierarchy information. To study the effects
of distance (defined as the number of hops between two classes) between training and test classes,
we extract two datasets from tieredImageNet [22]: tieredImageNet-Far and tieredImageNet-Close.
To evaluate the model’s generalization performance, test tasks are generated by two subgraph sam-
pling methods, i.e., random sampling and snowball sampling [8] (snowball sampling can restrict the
distance of the targeted few-shot classes). To study whether/when the graph structure is more helpful,
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we evaluate GPN with and without using class hierarchy. We show that GPN outperforms four recent
few-shot learning methods. We also conduct a thorough analysis of different propagation settings.
In addition, the “learning to propagate” mechanism can be potentially generalized to other fields.

2 Related Works
Meta-learning has been proved to be effective on few-shot learning tasks. It trains a meta learner using
augmented memory [23, 11], metric learning [27, 24, 3] or learnable optimization [5]. For example,
prototypical network [24] applied a distance-based classifier in a trained feature space. We can extend
the single prototype per class to an adaptive number of prototypes by infinite mixture model [1].
The feature space could be further improved by scaling features according to different tasks [19].
Our method is built on prototypical network and improves the prototype per class by propagation
between prototypes of different classes. Our work also relates to memory-based approaches, in which
feature-label pairs are selected into memory by dedicated reading and writing mechanisms. In our
case, the memory stores prototypes and improves the propagation efficiency. Auxiliary information,
such as unlabeled data [22] and weakly-labeled data [15] has been used to embrace the few-shot
challenge. In this paper, we improve the quality of prototype per class by sending messages between
prototypes on a graph describing the class relationships.

Our idea of prototype propagation is inspired by belief propagation [20, 28], message passing and
label propagation [30, 29]. It is also related to Graph Neural Networks (GNN) [10, 26], which applies
convolution/attention iteratively on a graph to achieve node embedding. In contrast, the graph in our
paper is a computational graph in which every node is associated with a prototype produced by an
CNN rather than a non-parameterized initialization in GNN. Our goal is to obtain a better prototype
representation for classes in few-shot classification. Propagation has been applied in few-shot learning
for label propagation [16] in a transductive setting to infer the entire query set from support set at once.

3 Graph Meta-Learning

3.1 Problem Setup Table 1: Notations used in this paper.

Notation Definition

Y Ground set of classes for all possible tasks
G = (Y, E) Category graph with nodes Y and edges E
Ny The set of neighbor classes of y on graph G
M(·; Θ) A meta-learner model with paramter Θ
T A few-shot classification task
T Distribution that each task T is drawn from
YT ⊆ Y The set of output classes in task T
(x, y) A sample with input data x and label y
DT Distribution of (x, y) in task T
Py Final output prototype of class y
P t
y Prototype of class y at step t

P t
y→y Message sent from class y to itself

P t
Ny→y Message sent to class y from its neighbors

We study “graph meta-learning” for
few-shot learning tasks, where each
task is associated with a prediction
space defined by a subset of nodes on
a given graph, e.g., 1) for classifica-
tion tasks: a subset of classes from
a hierarchy of classes; 2) for regres-
sion tasks: a subset of variables from
a graphical model as the prediction tar-
gets; or 3) for reinforcement learning
tasks: a subset of actions (or a sub-
sequence of actions). In real-world
problems, the graph is usually free
or cheap to achieve and can provide
weakly-supervised information for a
meta-learner since it relates different
tasks’ output spaces via the edges and paths on the graph. However, it has been rarely considered in
previous works, most of which relate tasks via shared representation or metric space.

In this paper, we will study graph meta-learning for few-shot classification. In this problem, we are
given a graph with nodes as classes and edges connecting each class to its parents and/or children
classes, and each task aims to learn a classifier categorizing an input sample into a subset of N
classes given only K training samples per class. Comparing to the traditional setting for few-shot
classification, the main challenge of graph meta-learning comes from the mixed granularity of the
classes, i.e., a task might aim to classify a mixed subset containing both fine and coarse categories.
Formally, given a directed acyclic graph (DAG) G = (Y, E), where Y is the ground set of classes for
all possible tasks, each node y ∈ Y denotes a class, and each directed edge (or arc) yi → yj ∈ E
connects a parent class yi ∈ Y to one of its child classes yj ∈ Y on the graph G. We assume that
each learning task T is defined by a subset of classes YT ⊆ Y drawn from a certain distribution
T (G) defined on the graph, our goal is to learn a meta-learnerM(·; Θ) that is parameterized by Θ
and can produce a learner modelM(T ; Θ) for each task T . This problem can then be formulated by
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the following risk minimization of “learning to learn”:
min

Θ
ET∼T (G)

[
E(x,y)∼DT − log Pr(y|x;M(T,Θ)))

]
, (1)

where DT is the distribution of data-label pair (x, y) for a task T . In few-shot learning, we assume
that each task T is an N -way-K-shot classification over N classes YT ⊆ Y , and we only observe K
training samples per class. Due to the data deficiency, conventional supervised learning usually fails.

We further introduce the form of Pr(y|x;M(T ; Θ)) in Eq. (1). Inspired by [24], each classifier
M(T ; Θ), as a learner model, is associated with a subset of prototypes PYT where each prototype
Py is a representation vector for class y ∈ YT . Given a sample x,M(T ; Θ) produces the probability
of x belonging to each class y ∈ YT by applying a soft version of KNN: the probability is computed
by an RBF Kernel over the Euclidean distances between f(x) and prototype Py , i.e.,

Pr(y|x;M(T ; Θ)) ,
exp(−‖f(x)− Py)‖2)∑

z∈YT exp(−‖f(x)− Pz)‖2)
, (2)

where f(·) is a learnable representation model for input x. The main idea of graph meta-learning is
to improve the prototype of each class in P by assimilating their neighbors’ prototypes on the graph
G. This can be achieved by allowing classes on the graph to send/receive messages to/from neighbors
and modify their prototypes. Intuitively, two classes should have similar prototypes if they are close
to each other on the graph. Meanwhile, they should not have exactly the same prototype since it
leads to large errors on tasks containing both the two classes. The remaining questions are 1) how to
measure the similarity of classes on graph G? 2) how to relate classes that are not directly connected
on G? 3) how to send messages between classes and how to aggregate the received messages to
update prototypes? 4) how to distinguish classes with similar prototypes?

3.2 Gated Propagation Network
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Figure 2: Prototype propagation in GPN:
in each step t + 1, each class y aggre-
gates prototypes from its neighbors (par-
ents and children) by multi-head atten-
tion, and chooses between the aggre-
gated message or the message from itself
by a gate g to update its prototype.

We propose Gated Propagation Network (GPN) to address
the graph meta-learning problem. GPN is a meta-learning
model that learns how to send and aggregate messages
between classes in order to generate class prototypes that
result in high KNN prediction accuracy across differentN -
way-K-shot classification tasks. Technically, we deploy
a multi-head dot-product attention mechanism to measure
the similarity between each class and its neighbors on
the graph, and use the obtained similarities as weights to
aggregate the messages (prototypes) from its neighbors.
In each head, we apply a gate to determine whether to
accept the aggregated messages from the neighbors or the
message from itself. We apply the above propagation on
all the classes (together with their neighbors) for multiple
steps, so we can relate the classes not directly connected
in the graph. We can also avoid identical prototypes of
different classes due to the capability of rejecting messages
from any other classes except the one from the class itself.
In particular, given a task T associated with a subset of
classes YT and an N -way-K-shot training set DT . At the
very beginning, we compute an initial prototype for each
class y ∈ YT by averaging over all the K-shot samples
belonging to class y as in [24], i.e.,

P 0
y ,

1

|{(xi, yi) ∈ DT : yi = y}|
∑

(xi,yi)∈DT ,yi=y

f(xi). (3)

GPN repeatedly applies the following propagation procedure to update the prototypes in PYT for
each class y ∈ YT . At step-t, for each class y ∈ YT , we firstly compute the aggregated messages
from its neighbors Ny by a dot-product attention module a(p, q), i.e.,

P t+1
Ny→y ,

∑
z∈Ny

a(P t
y ,P

t
z )× P t

z , a(p, q) =
〈h1(p), h2(q)〉

‖h1(p)‖ × ‖h2(q)‖
. (4)

where h1(·) and h2(·) are learnable transformations and their parameters Θprop are parts of the meta-
learner parameters Θ. To avoid the propagation to generate identical prototypes, we allow each class
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y to send its own last-step prototype P t
y to itself, i.e., P t+1

y→y , P t
y . Then we apply a gate g making

decisions of whether accepting messages P t+1
Ny→y from its neighbors or message P t+1

y→y from itself, i.e.

P t+1
y , gP t+1

y→y + (1− g)P t+1
Ny→y, g =

exp[γ cos(P 0
y ,P

t+1
y→y)]

exp[γ cos(P 0
y ,P

t+1
y→y)] + exp[γ cos(P 0

y ,P
t+1
Ny→y)]

, (5)

where cos(p, q) denotes the cosine similarity between two vectors p and q, and γ is a temperature
hyper-parameter that controls the smoothness of the softmax function. To capture different types
of relation and use them jointly for propagation, we apply k modules of the above attentive and gated
propagation (Eq. (4)-Eq. (5)) with untied parameters for h1(·) and h2(·) (as the multi-head attention
in [25]) and average the outputs of the k “heads”, i.e.,

P t+1
y =

1

k

∑k

i=1
P t+1
y [i], (6)

where P t+1
y [i] is the output of the i-th head and computed in the same way as P t+1

y in Eq. (5). In GPN,
we apply the above procedure to all y ∈ YT for T steps and the final prototype of class y is given by

Py , λ× P 0
y + (1− λ)× P Ty . (7)

GPN can be trained in a life-long learning manner that relates tasks learned at different time steps
by maintaining a memory of prototypes for all the classes on the graph that have been included in any
previous task(s). This is especially helpful to learning the above propagation mechanism, because in
practice it is common that many classes y ∈ YT do not have any neighbor in YT , i.e., Ny ∩ YT = ∅,
so Eq. (4) cannot be applied and the propagation mechanism cannot be effectively trained. However,
by initializing the prototypes of these classes to be the ones stored in memory, GPN is capable to
apply propagation over all classes in Ny ∪ YT and thus relate any two classes on the graph, if there
exists a path between them and all the classes on the path have prototypes stored in the memory.

3.3 Training Strategies

Algorithm 1 GPN Training

Input: G = (Y, E), memory update interval m,
propagation steps T , total episodes τtotal;

1: Initialization: Θcnn, Θprop, Θfc, τ ← 0;
2: for τ ∈ {1, · · · , τtotal} do
3: if τ mod m = 0 then
4: Update prototypes in memory by Eq. (3);
5: end if
6: Draw α ∼Unif[0, 1];
7: if α < 0.920τ/τt then
8: Train a classifier to update Θcnn with loss∑

(x,y)∼D − log Pr(y|x; Θcnn,Θfc);
9: else

10: Sample a few-shot task T as in Sec. 3.3;
11: Construct MST YTMST as in Sec. 3.3;
12: For y ∈ YTMST , compute P 0

y by Eq. (3) if
y ∈ T , otherwise fetch P 0

y from memory;
13: for t ∈ {1, · · · , T } do
14: For all y ∈ YTMST , concurrently update

their prototypes P t
y by Eq. (4)-(6);

15: end for
16: Compute Py for y ∈ YTMST by Eq.(7);
17: Compute log Pr(y|x; Θcnn,Θprop) by

Eq. (2) for all samples (x, y) in task T ;
18: Update Θcnn and Θprop by minimizing∑

(x,y)∼DT

− log Pr(y|x; Θcnn,Θprop);

19: end if
20: end for

Generating training tasks by subgraph
sampling: In meta-learning setting, we train
GPN as a meta-learner on a set of training
tasks. We can generate each task by sam-
pling targeted classes YT using two possi-
ble methods: random sampling and snowball
sampling [8]. The former randomly samples
N classes YT without using the graph, and
they tend to be weakly related if the graph is
sparse (which is often true). The latter selects
classes sequentially: in each step, it randomly
sample classes from the hop-kn neighbors of
the previously selected classes, where kn is a
hyper-parameter controlling how relative the
selected classes are. In practice, we use a hy-
brid of them to cover more diverse tasks. Note
kn also results in a trade-off: the classes se-
lected into YT are close to each other when
kn is small and they can provide strong train-
ing signals to learn the message passing; on
the other hand, the tasks become hard because
similar classes are easier to be confused.

Building propagation pathways by maxi-
mum spanning tree: During training, given
a task T defined on classes YT , we need to
decide the subgraph we apply the propaga-
tion procedure to, which can cover the classes
z /∈ YT but connected to some class y ∈ YT
via some paths. Given that we apply T steps
of propagation, it makes sense to add all the
hop-1 to hop-T neighbors of every y ∈ YT to
the subgraph. However, this might result in a large subgraph requiring costly propagation computa-
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Table 2: Statistics of tieredImageNet-Close and tieredImageNet-Far for graph meta-learning, where
#cls and #img denote the number of classes and images respectively.

tieredImageNet-Close tieredImageNet-Far
training test

#img
training test

#img
#cls #img #cls #img #cls #img #cls #img
773 100,320 315 45,640 145,960 773 100,320 26 12,700 113,020

tion. Hence, we further build a maximum spanning tree (MST) [13] (with edge weight defined by
cosine similarity between prototypes from memory) YTMST for the hop-T subgraph of YT as our
“propagation pathways”, and we only deply the propagation procedure on the MST YTMST . MST
preserves the strongest relations to train the propagation and but significantly saves computations.

Curriculum learning: It is easier to train a classifier given sufficient training data than few-shot
training data since the former is exposed to more supervised information. Inspired by auxiliary
task in co-training [19], during early episodes of training1, with high probability we learn from a
traditional supervised learning task by training a linear classifier Θfc with input f(·) and update both
the classifier and the representation model f(·). We gradually reduce the probability later on by using
an annealed probability 0.920τ/τt so more training will target on few-shot tasks. Another curriculum
we find helpful is to gradually reduce λ in Eq. (7), since P 0

y often works better than P Ty in earlier
episodes but with more training P Ty becomes more powerful. In particular, we set λ = 1− τ/τt.
The complete training algorithm for GPN is given in Alg. 1. On image classification, we usually use
CNNs for f(·). In GPN, the output of the meta-learnerM(T ; Θ) = {P y}y∈YT , i.e., the prototypes
of class y achieved in Eq. (7), and the meta-learner parameter Θ = {Θcnn,Θprop}.

3.4 Applying a Pre-trained GPN to New Tasks
The outcomes of GPN training are the parameters {Θcnn,Θprop} defining the GPN model and the
prototypes of all the training classes stored in the memory. Given a new task T with target classes
YT , we apply the procedure in lines 11-17 of Alg.1 to obtain the prototypes for all the classes in
YT and the prediction probability of any possible test samples for the new task. Note that YTMST
can include training classes, so the test task can benefit from the prototypes of training classes in
memory. However, this can directly work only when the graph already contains both the training
classes and test classes in T . When test classes YT are not included in the graph, we apply an extra
step at the beginning in order to connect test classes in YT to classes in the graph: we search for each
test class’s kc nearest neighbors among all the training prototypes in the space of P 0

y , and add arcs
from the test class to its nearest classes on the graph.

4 Experiments
In experiments, we conduct a thorough empirical study of GPN and compare it with several most
recent methods for few-shot learning in 8 different settings of graph meta-learning on two datasets
we extracted from ImageNet and specifically designed for graph meta-learning. We will briefly
introduce the 8 settings below. First, the similarity between test tasks and training tasks may influence
the performance of a graph meta-learning method. We can measure the distance/dissimilarity of a
test class to a training class by the length (i.e., the number of edges) of the shortest path between
them. Intuitively, propagation brings more improvement when the distance is smaller. For example,
when test class “laptop” has nearest neighbor “electronic devices” in training classes, the prototype
of electronic devices can provide more related information during propagation when generating
the prototype for laptop and thus improve the performance. In contrast, if the nearest neighbor is
“device”, then the help by doing prototype propagation might be very limited. Hence, we extract two
datasets from ImageNet with different distance between test classes and training classes. Second,
as we mentioned in Sec. 3.4, in real-world problems, it is possible that test classes are not included
in the graph during training. Hence, we also test GPN in the two scenarios (denoted by GPN+ and
GPN) when the test classes have been included in the graph or not. At last, we also evaluate GPN
with two different sampling methods as discussed in Sec. 3.3. The combination of the above three
options finally results in 8 different settings under which we test GPN and/or other baselines.

1We update GPN in each episode τ on a training task T , and train GPN for τtotal episodes.
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4.1 Datasets
Importance. We built two datasets with different distance/dissimilarity between test classes and
training classes, i.e., tieredImageNet-Close and tieredImageNet-Far. To the best of our knowledge,
they are the first two benchmark datasets that can be used to evaluate graph meta-learning methods
for few-shot learning. Their importance are: 1) The proposed datasets (and the method to generate
datasets) provide benchmarks for the novel graph meta-learning problem, which is practically
important since it uses the normally available graph information to improve the few-shot learning
performance, and is a more general challenge since it covers classification tasks of any classes from
the graph rather than only the finest ones. 2) On these datasets, we empirically justified that the
relation among tasks (reflected by class connections on a graph) is an important and easy-to-reach
source of meta-knowledge which can improve meta-learning performance but has not been studied
by previous works. 3) The proposed datasets also provide different graph morphology to evaluate the
meta knowledge transfer through classes in different methods: Every graph has 13 levels and covers∼
800 classes/nodes and it is flexible to sample a subgraph or extend to a larger graph using our released
code. So we can design more and diverse learning tasks for evaluating meta-learning algorithms.

Details. The steps for the datasets generation procudure are as follows: 1) Build directed acyclic graph
(DAG) from the root node to leaf nodes (a subset of ImageNet classes [22]) according to WordNet.
2) Randomly sample training and test classes on the DAG that satisfy the pre-defined minimum
distance conditions between the training classes and test classes. 3) Randomly sample images for
every selected class, where the images of a non-leaf class are sampled from their descendant leaf
classes, e.g. the animal class has images sampled from dogs, birds, etc., all with only a coarse label
“animal”. The two datasets share the same training tasks and we make sure that there is no overlap
between training and test classes. Their difference is at the test classes. In tieredImageNet-Close, the
minimal distance between each test class to a training class is 1∼4, while the minimal distance goes
up to 5∼10 in tieredImageNet-Far. The statistics for tieredImageNet-Close and tieredImageNet-Far
are reported in Table 2.

4.2 Experiment Setup

We used kn = 5 for snowball sampling in Sec. 3.3. The training took τtotal =350k episodes using
Adam [12] with an initial learning rate of 10−3 and weight decay 10−5. We reduced the learning
rate by a factor of 0.9× every 10k episodes starting from the 20k-th episode. The batch size for the
auxiliary task was 128. For simplicity, the propagation steps T = 2. More steps may result in higher
performance with the price of more computations. The interval for memory update is m = 3 and the
the number of heads is 5 in GPN. For the setting that test class is not included in the original graph,
we connect it to the kc = 2 nearest training classes. We use linear transformation for g(·) and h(·).
For fair comparison, we used the same backbone ResNet-08 [9] and the same setup of the training
tasks, i.e., N -way-K-shot, for all methods in our experiments. Our model took approximately 27
hours on one TITAN XP for the 5-way-1-shot learning. The computational cost can be reduced by
updating the memory less often and applying fewer steps of propagation.

4.3 Results

Selection of baselines. We chose meta-learning baselines that are mostly related to the idea of
metric/prototype learning (Prototypical Net [24], PPN [15] and Closer Look [3]) and prototype
propagation/message passing (PPN [15]). We also tried to include the most recent meta-learning
methods published in 2019, e.g., Closer Look [3] and PPN [15].

The results for all the methods on tieredImageNet-Close are shown in Table 3 for tasks gener-
ated by random sampling, and Table 4 for tasks generated by snowball sampling. The results on
tieredImageNet-Far is shown in Table 5 and Table 6 with the same format. GPN has compelling
generalization to new tasks and shows improvements on various datasets with different kinds of tasks.
GPN performs better with smaller distance between the training and test classes, and achieves up to
∼8% improvement with random sampling and ∼6% improvement with snowball sampling compared
to baselines. Knowing the connections of test classes to training classes in the graph (GPN+) is more
helpful on tieredImageNet-Close, which brings 1∼2% improvement on average compared to the
situation without hierarchy information (GPN). The reason is that tieredImageNet-Close contains
more important information about class relations that can be captured by GPN+. In contrast, on
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tieredImageNet-Far, the graph only provides weak/far relationship information, thus GPN+ is not as
helpful as it shows on tieredImageNet-Close.

Table 3: Validation accuracy (mean±CI%95) on 600 test tasks achieved by GPN and baselines on
tieredImageNet-Close with few-shot tasks generated by random sampling.

Model 5way1shot 5way5shot 10way1shot 10way5shot
Prototypical Net [24] 42.87±1.67% 62.68±0.99% 30.65±1.15% 48.64±0.70%
GNN [6] 42.33±0.80% 59.17±0.69% 30.50±0.57% 44.33±0.72%
Closer Look [3] 35.07±1.53% 47.48±0.87% 21.58±0.96% 28.01±0.40%
PPN [15] 41.60±1.59% 63.04±0.97% 28.48±1.09% 48.66±0.70%

GPN 48.37±1.80% 64.14±1.00% 33.23±1.05% 50.50±0.70%
GPN+ 50.54±1.67% 65.74±0.98% 34.74±1.05% 51.50±0.70%

Table 4: Validation accuracy (mean±CI%95) on 600 test tasks achieved by GPN and baselines on
tieredImageNet-Close with few-shot tasks generated by snowball sampling.

Model 5way1shot 5way5shot 10way1shot 10way5shot
Prototypical Net [24] 35.27±1.63% 52.60±1.17% 26.08±1.04% 41.48±0.76%
GNN [6] 36.50±1.03% 52.33±0.96% 27.67±1.01% 40.67±0.90%
Closer Look [3] 34.07±1.63% 47.48±0.87% 21.02±0.99% 33.70±0.44%
PPN [15] 36.50±1.62% 52.50±1.12% 27.18±1.08% 40.97±0.77%

GPN 39.56±1.70% 54.35±1.11% 27.99±1.09% 42.50±0.76%
GPN+ 40.78±1.76% 55.47±1.41% 29.46±1.10% 43.76±0.74%

Table 5: Validation accuracy (mean±CI%95) on 600 test tasks achieved by GPN and baselines on
tieredImageNet-Far with few-shot tasks generated by random sampling.

Model 5way1shot 5way5shot 10way1shot 10way5shot
Prototypical Net [24] 44.30±1.63% 61.01±1.03% 30.63±1.07% 47.19±0.68%
GNN [6] 43.67±0.69% 59.33±1.04% 30.17±0.47% 43.00±0.66%
Closer Look [3] 42.27±1.70% 58.78±0.94% 22.00±0.99% 32.73±0.41%
PPN [15] 43.63±1.59% 60.20±1.02% 29.55±1.09% 46.72±0.66%

GPN 47.54±1.68% 64.20±1.01% 31.84±1.10% 48.20±0.69%
GPN+ 47.49±1.67% 64.14±1.02% 31.95±1.15% 48.65±0.66%

Table 6: Validation accuracy (mean±CI%95) on 600 test tasks achieved by GPN and baselines on
tieredImageNet-Far with few-shot tasks generated by snowball sampling.

Model 5way1shot 5way5shot 10way1shot 10way5shot
Prototypical Net [24] 43.57±1.67% 62.35±1.06% 29.88±1.11% 46.48±0.70%
GNN [6] 44.00±1.36% 62.00±0.66% 28.50±0.60% 46.17±0.74%
Closer Look [3] 38.37±1.57% 54.64±0.85% 30.40±1.09% 33.72±0.43%
PPN [15] 42.40±1.63% 61.37±1.05% 28.67±1.01% 46.02±0.61%

GPN 47.74±1.76% 63.53±1.03% 32.94±1.16% 47.43±0.67%
GPN+ 47.58±1.70% 63.74±0.95% 32.68±1.17% 47.44±0.71%

4.4 Visualization of Prototypes Achieved by Propagation

We visualize the prototypes before (i.e., the ones achieved by Prototypical Networks) and after (GPN)
propagation in Figure. 3. Propagation tends to reduce the intra-class variance by producing similar
prototypes for the same class in different tasks. The importance of reducing intra-class variance in
few-shot learning has also been mentioned in [3, 7]. This result indicates that GPN is more powerful
to find the relations between different tasks, which is essential for meta-learning.

4.5 Ablation Study

In Table 7, we report the performance of many possible variants of GPN. In particular, we change
the task generation methods, propagation orders on the graph, training strategies, and attention
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Figure 3: Prototypes before (top row) and after GPN propagation (bottom row) on tieredImageNet-
Close by random sampling for 5-way-1-shot few-shot learning. The prototypes in top row equal to
the ones achieved by prototypical network. Different tasks are marked by a different shape (◦/×/4),
and classes shared by different tasks are highlighted by non-grey colors. It shows that GPN is capable
to map the prototypes of the same class in different tasks to the same region. Comparing to the result
of prototypical network, GPN is more powerful in relating different tasks.

Table 7: Validation accuracy (mean±CI%95) of GPN variants on tieredImageNet-Close for 5-way-1-
shot tasks. Original GPN’s choices are in bold fonts. Details of the variants are given in Sec. 4.5.

Task Generation Propagation Mechanism Training Model ACCURACYSR-S S-S R-S N→C F→C C→C B→P M→P AUX MST M-H M-A A-A

X X X X X X 46.20±1.70%
X X X X X X 49.33±1.68%

X X X X X X 42.60±1.61%
X X X X X X 37.90±1.50%
X X X X X X 47.90±1.72%
X X X X X X 46.90±1.78%

X X X X X 41.87±1.72%
X X X X X 45.83±1.64%

X X X X X 49.40±1.69%
X X X X X X 46.74±1.71%

X X X X X X 50.54±1.67%

modules, in order to make sure that the choices we made in the paper are the best for GPN. For
task generation, GPN adopts both random and snowball sampling (SR-S), which performs better
than snowball sampling only (S-S) or random sampling only (R-S). We also compare different
choices of propagation directions, i.e., N→C (messages from neighbors, used in the paper), F→C
(messages from parents) and C→C (messages from children). B→P follows the ideas of belief
propagation [21] and applies forward propagation for T steps along the hierarchy and then applies
backward propagation for T steps. M→P applies one step of forward propagation followed by a
backward propagation step and repeat this process for T steps. The propagation order introduced in
the paper, i.e., N→C, shows the best performance. It shows that the auxiliary tasks (AUX), maximum
spanning tree (MST) and multi-head (M-H) are important reasons for better performance. We
compare the multi-head attention (M-H) using multiplicative attention (M-A) and using additive
attention (A-A), and the former has better performance.
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A Visualization Results

A.1 Prototype Hierarchy

We show more visualizations for the hierarchy structure of the training prototypes in Figure. 4.
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Figure 4: Visualization of the hierarchy structure of subgraphs from the training class prototypes
transformed by t-SNE.

A.2 Prototypes Before and After Propagation

We show more visualization examples for the comparison of the prototypes learned before (Prototypi-
cal Networks) and after propagation (GPN) in Figure. 5.
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Figure 5: Prototypes before and after GPN propagation on tieredImageNet-Close by random sampling
for 5-way-1-shot few-shot learning. The prototypes in top row equal to the ones achieved by
prototypical network. Different tasks are marked by a different shape (◦/×/4), and classes shared by
different tasks are highlighted by non-grey colors. It shows that GPN is capable to map the prototypes
of the same class in different tasks to the same region. Comparing to the result of prototypical
network, GPN is more powerful in relating different tasks.
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