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Abstract

In this paper we developed a computational hierarchical network model to under-
stand the spatiotemporal sequence learning effects observed in the primate visual
cortex. The model is a hierarchical recurrent neural model that learns to predict
video sequences using the incoming video signals as teaching signals. The model
performs fast feedforward analysis using a deep convolutional neural network with
sparse convolution and feedback synthesis using a stack of LSTM modules. The
network learns a representational hierarchy by minimizing its prediction errors
of the incoming signals at each level of the hierarchy. We found that recurrent
feedback in this network lead to the development of semantic cluster of global
movement patterns in the population codes of the units at the lower levels of the
hierarchy. These representations facilitate the learning of relationship among move-
ment patterns, yielding state-of-the-art performance in long range video sequence
predictions on benchmark datasets. Without further tuning, this model automati-
cally exhibits the neurophysiological correlates of visual sequence memories that
we observed in the early visual cortex of awake monkeys, suggesting the princi-
ple of self-supervised prediction learning might be relevant to understanding the
cortical mechanisms of representational learning.

1 Introduction

While the hippocampus is known to play a critical role in encoding episodic memories, the storage of
these memories might ultimately rest in the sensory areas of the neocortex [1]. Indeed, a number of
neurophysiological studies suggest that neurons throughout the hierarchical visual cortex, including
those in the early visual areas such as V1 and V2, might be encoding memories of object images [2]
and of visual sequences in cell assemblies [3,4,5,6,7]. These memories, together with the generic
statistical priors encoded in receptive fields and connectivity of neurons, serve as internal models of
the world for predicting incoming visual experiences. However, it is not clear why early visual cortex
needs to be involved in the encoding of spatiotemporal memories and what computational roles it
might play.

In this paper, we explored a class of computational models based on predictive self-supervised
learning for understanding some neurophysiological learning phenomena observed in the early visual
cortex. This class of models uses the incoming visual signals as teaching signals to train neural
network using backpropagation [8,9,10,11,12,13]. Recently, a number of hierarchical recurrent neural
network models based on this principle, notably PredNet [14] and PredRNN++ [15], have been
developed for video prediction with state-of-the-art performance. PredNet in particular was inspired
by the predictive coding theory in neuroscience [16,17,13,18,19] and is a legitimate cortical model
at a functional level. It learns a LSTM (long short-term memory) model at each level to predict the
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errors made in an earlier level of the hierarchical network. It has been demonstrated to be effective
in explaining the predictive suppression phenomena in the inferotemporal cortex [63]. However,
PredNet only builds a hierarchical representation of errors, where the model of a higher layer learns
to predict the prediction errors of the lower layer. It does not build a feature hierarchy. Thus, its
ability for long-range video prediction is rather limited. PredRNN++ does build a feature hierarchy,
but the generation of prediction is based on a auto-encoder-like feedforward network albeit with local
recurrent within each layer. It does not explicitly model the recurrent feedback architecture of the
cortex. Nor does it claim any neural plausibility.

We propose Hierarchical Prediction Network (HPNet) as an alternative functional model for the
visual cortex incorporating additional neural constraints. It draws on good features from both models.
It learns a feature hierarchy while using recurrent feedback to provide top-down synthesis of the
expectation at each level. In this paper, we will first demonstrate HPNet’s effectiveness in video
learning and prediction, with performance superior to PredNet and comparable to PredRNN++,
which is a state-of-the-art computer vision deep learning models for video prediction. Then we
will present novel findings from a neurophysiological experiment that demonstrates the early visual
cortex exhibited similar sensitivity to memories of global movement patterns, and that HPNet
can automatically account for the neurophysiological observations without further tuning. These
findings suggest that predictive self-supervised learning might be relevant principle for learning
representational hierarchy in the visual cortex.

2 Related works

Our model integrates ideas from predictive coding models [21,17,14] and associative coding or
interactive activation models [22,23]. It is therefore also related to the classical ideas of analysis
by synthesis [21,64], counter stream model [62] as well as hierarchical spatiotemporal memory
model (HTM) [61]. In contrast to the earlier models that use a feedback path which synthesizes the
expectation using linear transform, prediction is synthesized in HPNet (as well as PredNet) by an
LSTM circuit at each level under feedback gating from higher levels.

Predictive self-supervised learning has long been advocated as a plausible strategy the brain uses
to learn internal representations [8]. Recently, thanks to the development of deep learning tech-
nology, self-supervised learning in computer vision [24,12,25,11,26,27], and video prediction
[9,28,29,30,10,31,32] have become an active area of research. The large variety of models can
be roughly grouped into three categories: autoencoders, DCNN, hierarchy of LSTMs, adversary net-
works [33,14,34,15,35], as well as variational autoencoders[36,37]. The state-of-the-art hierarchical
model for video prediction at the writing of this paper is PredRNN++ [15]. Like PredNet and HPNet,
PredRNN++ [15] consists of a stack of LSTM modules, but operates in a feedforward auto-encoder
architecture to generate the next video frame. It offers state-of-the-art performance for benchmark
performance evaluation, with documented comparisons to other approaches.

Both PredNet and HPNet provides recurrent feedback to the early layers of the network that are
analogous to early visual areas (V1, V2 and V4). HPNet in particular predicts that higher order
semantic information such as global movement pattern information might transform the population
codes in the early visual cortex, resulting in sensitivity to memory of global movement patterns in early
visual cortical neurons. Neurons in the inferotemporal cortex (IT) of monkeys are known to exhibit
sensitivity to memories of predictable familiar image sequences than to novel sequences [52,53,54],
and some sensitivity to memories of grating sequences have been reported in V1 [3,4,5,6,7]. In
this study, we presented novel neurophysiological findings demonstrating that early visual cortical
(V2) neurons in awake monkeys also demonstrate sensitivity to memories of natural movies of large
spatial extent in the form of response suppression to familiar or predicted movies, consistent with the
behaviors of model neurons in HPNet.

3 Hierarchical Prediction Network

3.1 Cortical Modules

HPNet is composed of a stack of Cortical Modules (CM). Each CM can be considered as a visual
area along the ventral stream of the primate visual system, such as V1, V2, V4 and IT. We used four
Cortical Modules in our experiment. The network contains a fast feedforward path, instantiated by a
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deep convolutional neural network (DCNN) that learns a representational hierarchy of features of
successive complexity, and a feedback path that mediates the synthesis of a prediction via a Long
Short Term Memory (LSTM) module at each level. The prediction is compared against the input
signal from the feedforward path at that level, and the prediction error is used to modulate the LSTMs
at the same level as well as the level above.
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Figure 1: (a) Two successive layers of Cortical Modules in our hierarchical network. The input I1 at
the bottom level is a spatiotemporal block of video frames. The ? notation means a convolution along
that path. 2 ↑ indicates up-sampling or expansion operation. 2 ↓ means down-sample or reduction
in resolution. -© indicates comparator or subtraction operation; (b) The DCNN analysis path is
implemented in a sparsified convolution scheme to speed up bottom-up processing; (c) Detailed
structure of the standard LSTM used. Ct is the internal state, and Ht is the output. X is external
input, which contains multiple sources in our model. (d) Frame-by-frame scheme; (e) Block-by-
frame scheme; and (f) Block-by-block scheme, where left and right part indicates output and input
respectively with the middle indicating 2D or 3D convolution LSTM.

Figure 1a shows two cascaded CMs. The feedforward path performs convolution (indicated by ?) on
the input spatiotemporal block Il with a kernel to produce Rl, where l indicates the CM level. Rl

is then down-sampled to provide the input Il+1 for CMl+1 for another round of convolution along
the feedforward path. Il+1 also goes into LSTMl+1 (LSTM in CMl+1). In each CMl level, the
bottom-up input Il is compared with the prediction Pl, which is generated from the interpretation
output Hl of LSTMl. The prediction error signal is transformed by a convolution into El, which is
fed back to both LSTMl and LSTMl+1 to influence their generation of new interpretations Hl and
Hl+1. To make the timing relationship clear in Algorithm 1, we use k to index a spatiotemporal
block in a block sequence, which is extracted from the video input sequence xt with a stride s that
could vary from 1 to d, where d is the number of video frames contained in a block. At the bottom
input level Ik1 = (xks

, .., xks+d
) LSTMl at step k integrates the bottom-up feature input Rk

l−1, the
top-down feedback of the higher CM’s LSTM’s output Hk

l+1, and the prediction errors Ek
l−1 and

Ek−1
l to generate new hypothesis output Hk

l , which is then transformed into a new prediction P k
l

(see Algorithm 1 in Supplementary Information (SI)).

3.2 Sparse Convolution, Spatiotemporal Blocks and 3D convolutional LSTM

The feedforward DCNN path in Figure 1a runs much faster if the input to each convolution layer
is made sparse, as shown in [44]. A scheme has been proposed by [45,46,44] to speed up video
processing in convolutional neural net by transmitting the first frame in its entirety, but for the
subsequent frames only the frame difference between them is transmitted. Hence, convolution can be
performed efficiently on the difference signals ∆Ikl = Ikl − I

k−1
l between two consecutive blocks.

In the next layer, the resulting ∆Rk
l is added back to the representation of the last time block Rk−1

l

to reconstruct the actual higher order feature representation of the input signals Rk
l . This allows the

network to recover and maintain a full higher order representation R for computation in the next
layer while enjoying the benefit of fast computation on sparse data. The same set of sparse kernels
was used for processing both the first full frame and the subsequent temporal-difference frames.
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Visual neurons’ receptive fields are spatiotemporal 3D kernels, rather than 2D. Therefore, we use
spatiotemporal block of the input video sequence as input to the neuron in our neural network. The
block could slide in time with a temporal stride s as small as one frame or as large as the length of the
spatiotemporal block d. To process 3D data, a 3D convolutional LSTM is used [20,35]. The details
of our 3D convolutional LSTM are specified in the Supplementary Information (SI).

3.3 Training and Loss Function

The entire network is trained by minimizing a loss function which is the L2 weighted sum of the
prediction errors of all the Cortical Modules (CM),

Lloss =
∑
k

λk

∑
l

λl

nl

∑
nl

(Ikl − P k
l )2 (1)

where k indexes the spatiotemporal block sequence, l the CM level, and nl the number of units
in that level; λk and λl are weighting factors for time step and CM level, respectively. Ikl is kth

spatiotemporal block input to the CM at level l, and P k
l is the prediction at that level, following the

variables’ notations above as well as in Figure 1.

Ikl =

{
MaxPool(ReLU(Rk

l−1)) l > 1
xt l = 1

P k
l =

{
ReLU(conv(Hk

l )) l > 1
SATLU(ReLU(conv(Hk

l ))) l = 1
(2)

Hk
l = 3DconvLSTM(Hk−1

l , Ek−1
l ,MaxPool(ReLU(Rk

l−1, E
k
l−1)), upsample(Hk

l+1)) (3)

∆Rk
l = spconv(Ikl − Ik−1

l ), Ek
l = spconv(Ikl − P k

l )Rk
l = Rk−1

l + ∆Rk
l (4)

where xt is the video input sequence, Hk
l is the output of LSTM , SATLU is a saturating non-

linearity set at the maximum pixel value (SATLU(x; pmax) := min(pmax, x), where spconv
indicates sparse convolution). The algorithm is shown in Algorithm 1 in the Supplementary Material.
For hyperparameter tuning, we adapt PredNet’s approach, performing a large grid search in hyperpa-
rameter space. We did not try to find the best possible set of parameters, only a set of parameters that
beat the state-of-the-art in video prediction. We did not tune our network or other networks in our
simulation of the neurophysiological experiments.

4 Experimental Results

In this section, to establish computational competency in video prediction, we first evaluate the
performance of our model in video prediction using two bench-mark datasets. We will then evaluate
the latent representations of the hierarchical network and compare the behaviors of the model units
in the network with behaviors of the neurons in the visual cortex in a video sequence learning
experiment.

4.1 Competency of the Model in Long-Range Video Sequence Prediction

We tested the network with two datasets which were also used as benchmark datasets in PredNet and
PredRNN++: (1) synthetic sequences of the Moving-MNIST1 database and (2) the KTH2 real world
human movement database.

The Moving-MNIST dataset contains synthetic video sequences with two handwritten digits bouncing
inside a frame of 64×64 pixels. Each sequence is 40 frames long and its starting position, hence
the speed and direction of the movements, are chosen uniformly at random in [3,4) as [15]. This
extraction process is repeated 15000 times, resulting in a training set of 10000 sequences, a validation
set of 2000 sequences, and a testing set of 3000 sequences.

The KTH video database [49] contains 2391 real-world sequences of six human actions: walking,
jogging, running, boxing, hand waving, and hand clapping, performed by 25 subjects in four different
scenarios. We divided video clips across all 6 action categories into a training set of 108717 sequences
(persons #1-16) and a test set of 4086 sequences (persons #17-25) as was done in [15], except we

1 http://yann.lecun.com/exdb/mnist/
2 http://www.nada.kth.se/cvap/actions/
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extracted 40-frame sequences. We center-cropped each frame to a 120×120 square and then re-sized
it to input frame size of 64×64.

We compared HPNet’s video prediction performance, particularly for long-term prediction, with
PredNet and PredRNN++. Because these two models work on a frame-to-frame basis to predict the
next frame based on all the existing frames, we tested two versions of our network for comparison:
(1) Frame-to-Frame (F-F), where we set our spatiotemporal block size of our data to one frame (i.e.
d = 1) and used 2D convLSTM instead of 3D convLSTM to predict the next frame based on the
current and past input frames; (2) Block-to-Block (B-B), our default model using spatiotemporal
block as data unit, where the next spatiotemporal block (d = 5, s = 5) was predicted from the current
spatiotemporal block.

We trained all four networks using 40-frame sequences extracted from the two databases in the same
way as described in [14,15]. We then compared their performance in predicting the next 20 frames
when only the first 20 frames were given. The test sequences were drawn from the same dataset
but not in the training set. To predict future frames by dead-reckoning when input was no longer
available, PredNet and PredRNN++ simply took the predicted frame and fed into the network as the
input frame to generate prediction of the next time step. All models tested have four modules (layers).
Both versions of our models and PredNet used the same number of feature channels in each layer,
optimized by grid search, i.e. (16,32,64,128) for the Moving-MNIST dataset, and (24,48,96,192)
for the KTH dataset. For PredRNN++, we used the same architecture and feature channel numbers
provided by [15]. All kernel sizes are either 3×3 (for F-F) or 3×3×3 (for B-B) for all four models.
The input image frame’s spatial resolution is 64×64. The models were trained and tested on GeForce
GTX TITAN X GPUs. We evaluated the prediction performance based on two quantitative index:
Mean-Squared Error (MSE) and the Structural Similarity Index Measure (SSIM) [48] of the last 20
frames between the predicted frames and the actual frames. The values of SSIM range from -1 to 1,
with larger value indicating greater similarity between the predicted frames and the actual frames.

Figure 2: Left panel: Video prediction results on Moving-MNIST dataset, where the first row to
last row are ground truth (GT), results from three different version of HPNet (block-to-block (B-B),
frame-to-frame (F-F)), PredNet, and PredRNN++, respectively. k=1 to k=19 are predicted frames of
the models when the input frames were available. k=21 to k=39 are the "dead-reckoning" predicted
frames of the model when there is no input. Right panel: Comparison of the prediction results of the
four models for the Moving-MNIST dataset on the last 20 frames in structural similarity measures
(SSIM).

Figure 2 and Table 1 show the performance of the four models on the Moving-MNIST dataset. Figure
3 and Table 2 show the performance of the four models on the KTH dataset. In the examples shown
in Figure 2 and Figure 3, each test sequence has 40 frames but we show the results every two frames.
Actual input was provided only for the first 20 frames, where each frame or block of frames were
predicted based on the previous frame or previous block of input. The prediction for the last 20
frames (frame 21 to frame 40) were dead-reckoning prediction. The left panels of both figures show
examples of the predicted sequences generated by the four models. The right panels compare the
performance of the four models during the last 20 dead-reckoning frames.

For both the synthetic and real world datasets, HPNet using the Block-Block scheme consistently
yields the best performance. HPNet in Frame-Frame scheme performs better than PredNet, suggesting
that a feature hierarchy is better than a prediction error hierarchy for long-range prediction. However,
HPNet in Frame-Frame scheme does not perform as well as PredRNN++ on long range video
prediction. The superiority of PredRNN++ in this case is likely because its LSTM at each level
is boosted to have access to information from all layers below, rather than from just that layer as
in PredNet and HPNet. Hence, it took longer to train but can potentially encode richer movement
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Figure 3: Left panel: Video prediction results on the KTH dataset, where the first row to last
row are ground truth (GT), results from block-to-block (B-B), frame-to-frame (F-F), PredNet, and
PredRNN++, respectively, same format as Figure 2. Right panel: Comparison of the prediction
results of the four models for the KTH dataset on the last 20 frames in structural similarity measures
(SSIM).

patterns in its memories for long-term prediction. HPNet might have compensated by using 3D data
blocks with 3D convolutional LSTM to achieve better performance. Given that every area in the
visual cortex has some recurrent connections to many lower areas (levels) in addition to the adjacent
level in the hierarchy, it would be reasonable to incorporate that feature of PredRNN++ to see if
further improvement can be obtained.

Table 1: Comparison results of different meth-
ods on Moving-MNIST dataset for long time
prediction experiment.

Method SSIM MSE
Ours(B-B) 0.915 65.2
CM+ConvLSTM (F-F) 0.692 89.5
PredNet [14] 0.658 101.2
PredRNN++ [15] 0.872 69.4

Table 2: Comparison results of different meth-
ods on the KTH dataset for long time prediction
experiment.

Method SSIM MSE
Ours(B-B) 0.882 80.3
CM+ConvLSTM (F-F) 0.701 103.4
PredNet [14] 0.656 108.9
PredRNN++ [15] 0.865 86.7

It should be noted that PredNet, because of the sparse nature of the prediction errors, is very fast
to train (8 hours in our cluster), HPNet in frame-frame scheme took 9.3 hours while PredRNN++
and HPNet (B-B) take 10.6 hours and 11.8 hours to train respectively. Sparsifying the feedforward
computation in HPNet alone reduces the training of HPNet by 13%. One might expect some additional
saving if the LSTM’s representations are also sparsified.

4.2 Evaluation of the Latent Representation in the Hierarchy

To understand how the recurrent feedback might have changed the hierarchical representation of
HPNet, We trained the HPNet networks in the Block-to-Block (B-B) scheme with variable numbers of
modules. First, we found that adding cortical modules tends to improve performance. Second, when
we used t-SNE [50] to visualize the representation R in the different modules of the networks for the
last 20 dead-reckoning predicted frames of 600 testing sequences belonging to the six movements in
the KTH dataset, we found that adding higher modules lead to the formation of more distinct clusters
of global movement patterns in the representation units of the lower modules (Figure 4a versus Figure
4d&e; Figure 4c versus Figure 4e&h.). Better encoding of these global movement patterns in the
population codes of the earlier modules manifest in the improvement of their accuracy of decoding
the six movement patterns.

Table 3 compares the accuracy of decoding the six movement patterns based on the representations
at four different layers (modules) of HPNet, PredNet and PredRNN++. Chance accuracy is 16%.
Decoding accuracy of PredNet is close to chance because its lacking hierarchical feature represen-
tations. Decoding accuracy of PredRNN++ peaks at layer (module) 2 and 3 at 30%. For HPNet,
semantic clustering and decoding accuracy improves progressively as one moves up the hierarchy,
from 26% in the first layer (module) to 63% for the top module of the 4-module network. Thus, the
better performance of HPNet in long range video predictions might be attributed to its ability to
learn semantically meaningful hierarchical spatiotemporal feature representations and movement to
movement relationships (see also [51]).
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Figure 4: Visualization of R representational units of the different modules in (a) a one-module
network; (b)-(c) a two-module network; (d)-(f) a three-module network; and (g)-(j) a four-module
network. "Module 2_1" means Module 1 in a two-module network.

Table 3: Models’ decoding results of six movement classes in the KTH dataset based on representa-
tions in the different layers of the network.

Model with mean decoding accuracy Layer 1 Layer 2 Layer 3 Layer 4
HPNet 0.26 0.41 0.57 0.63
PredNet 0.19 0.18 0.16 0.16
PredRNN++ 0.19 0.30 0.28 0.18

4.3 Visual Sequence Learning in the Visual Cortex

The recurrent feedback in HPNet allows the representational (R) units in even the lower Cortical
Modules to develop sensitivity to global movement and image patterns, despite these units’ very
localized receptive fields (Figure 4). Assuming HPNet is a plausible cortical model at least at a
functional level, it predicts that neurons in the early visual areas such as V1 and V2 would exhibit
sensitivity to the memory of global movement patterns.

To test this prediction, we performed a video learning neurophysiological experiment on V2 neurons
in two awake behaving monkeys with Gray-Matter semi-chronic multielectrode arrays (SC32 and
SC96) implanted over their V1 operculum3. Six experiments were carried out. Each lasted over 7
days, with daily recording sessions. In each daily session, we presented a set of 20, 800-ms long
movie clips to the monkey, 20-25 times a day, so that over time, this set of movies became familiar
(and predictable) to the monkey. This set is called the Predicted set or Familiar set. Every day,
we also tested another set of 20 movie clips that were different daily. These sets are called the
Unpredicted sets or Novel sets. Both sets of movies (through an aperture of 8o in diameter over
all the receptive fields of recorded neurons) were presented daily, one clip per trial, at the same
location on the computer monitor relative to the red spot the monkeys fixated on during each trial.
With this experimental paradigm, we can compute and compare the daily temporal responses (PSTH
or peri-stimulus histogram) of all the neurons across all the movies in the Predicted set and in the
Unpredicted set to monitor the development of sensitivity to memory of the familiar or predicted
movies.

Since we were averaging across many neurons (over 30+ per session) with different feature preferences
or tuning properties over 20 different movies, the average PSTH responses (across neurons and
movies) were expected to be the same for the Predicted set and the daily Unpredicted set. Indeed,
we found the averaged PSTHs for the Predicted set and the Unpredicted set to be the same for the
first two or three days (Figure 5b (top row)), but they started to bifurcate at the later part of their
responses in subsequent days (Figure 5b (bottom row)) with suppression for the Predicted Movies.
Similar predictive suppression effects have been observed in IT neurons, and were considered as
a biomarker for sequence memory. What is novel and unanticipated about our finding is that V2
neurons’ receptive fields are very local, yet this "memory effect" depends on the presence of the
global context of the entire movie – reducing the movie aperture from 8o to 3o, barely larger than the

3 All experimental procedures were approved by Carnegie Mellon University’s Institutional Animal Care and Use
Committee, in compliance with the guidelines set forth in the United States Public Health Service Guide for the
Care and Use of Laboratory Animals.
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receptive fields of the individual neurons, would annihilate the predictive suppression effects. Thus,
this predictive suppression effects were not due to adaptation of local receptive field features, but
reflected a sensitivity to the memory of the global context of the movies or movement. Such memories
are likely mediated by horizontal or recurrent feedback mechanisms or both. To better assess the
evolution of the memory effect of the neuronal populations, we computed the predictive suppression
index for each individual neuron as (P − U)/(P − U) where P and U are the daily average spike
counts of the neuron in the later part of responses for the Predicted set and the Unpredicted set,
respectively. Figure 5a traced the development of this predictive suppression effect in one experiment,
showing that the most neurons exhibit predictive suppression on the average after 3 days of exposure
to the movies.

Figure 5: (a) The development of the prediction suppression effect across days in one experiment.
Each dot is the prediction suppression index of a neuron. Color indicates whether the effect was
significant or not (red - significant, blue - insignificant, green - significant in the opposite way) based
on t-test with p < 0.05 as statistical significance threshold. (b) Averaged temporal responses of the
V2 neurons (averaged across 3 experiments) of one monkey to Predicted set and the Unpredicted sets
in the first two days (top row). Their averaged responses ( from day 5 to day 12) to the Predicted
set and the Unpredicted sets, exhibiting significant prediction suppression. Module 2’s normalized
averaged population responses of the three types of units to the Predicted set and the Unpredicted set
before (c)-(e) and after (f)-(h) training.

We performed a similar experiment on our network, pre-trained with the KTH dataset. We randomly
extracted 20 sequences from the BAIR dataset [65], resized the sequence length to 40 frames and
frame size to 64×64. We separated the 20 sequences into two sets – the Predicted set and the
Unpredicted set. We averaged the responses to the two movie sets respectively of each type of
neurons in the network (E (prediction error units), P (prediction units), and R (representation units))
in each CM within the center 8×8 hypercolumns. Before familiarity training, the responses of each
type of neurons are indeed the same for both movie sets (top row). After the network was trained with
the Predicted set for 2000 epochs, prediction suppression effect can be observed in all three types
of neurons (Prediction error neurons E, Representation neurons R, Prediction neurons P) in all the
modules in the hierarchy, with the higher modules showing a stronger effect (see the Supplementary
Material). Figure 5 (c)-(h) show the effects in CM2, corresponding roughly to V2 in the hierarchy.

It is not surprising that the prediction error neurons E would decrease their responses as the network
learns to predict the familiar movies better. However, it is rather interesting to find the representation
neurons R and the prediction neurons P also exhibit prediction suppression, even though these
neurons represent features rather than prediction errors. The precise reasons remain to be determined,
but the fact that all neuron types in the model exhibited the prediction suppression effect might explain
why the prediction suppression effects were commonly observed in most of the randomly sampled
neurons in the visual cortex. We also performed the same experiment on PredNet and PredRNN++
and found that their corresponding R neurons would also exhibit predictive suppression effect to a
certain extent, but much smaller in magnitude. Thus, we can only claim that the neurophysiological
finding is consistent with this genre of self-supervised predictive learning models, though HPnet
might be a better approximation. Further experiments and analysis are needed to obtain a better model
approximation of the cortical mechanisms. Given PredRNN++ has no explicit feedback between
LSTMs in the hierarchy, the fact that some small predictive suppression effect can be observed in
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layer 2 of their R units suggests that at least part of the suppression effect is mediated by horizontal
recurrent connections, which is then further enhanced by feedback.

An important question is whether the observed video prediction suppression effect in macaque might
arise from the same mechanism underlying the static image familiarity suppression effects that
have been long observed in the inferotemporal cortex [53,55,56] and recently in V2 [2] of macaque
monkeys. The experimental paradigms are similar to the video prediction experiment we presented
except that static images rather than videos were used. Similar to our video prediction experiments,
after several days of exposure training, it was found that neural responses to the familiar images were
significantly suppressed relative to the novel images in the later part of their responses in both IT
[53,55,56] and V2 [2], with the temporal response profiles (PSTH) very similar to the ones shown
in Figure 5b. It is important to note that neurons in monkey V1 and V2 have very small receptive
fields, yet they show familiarity suppression effects to large object images much larger than the
size of their classical receptive fields, hence there is no response difference between the averaged
responses to familiar and novel when the stimuli are presented in an aperture slightly larger than the
receptive fields of the neurons [2]. Together with the observation that the latency of the familiarity
suppression effect was 100 ms after stimulus onset, these findings implicate the encoding of global
image memories in local recurrent circuits within each visual area. We found that HPNet also
exhibited the static image familiarity suppression effect when tested with static images, suggesting
static image familiarity suppression effect and prediction suppression effect can both arise from the
same network mechanisms. This allows us to investigate whether other deep networks trained for
ImageNet image classification also exhibit familiarity suppression effects. We evaluated several
supervised-learning models: standard VGG [66], and a recurrent network called deep Predictive
coding networks (PCN) [67]. PCN, also inspired by predictive coding theory, used predition error
minimization to derive a recurrent network architecture to be trained by backpropagation, but did not
use it as a part of its objective function. Remarkably, it can achieve, with only 9 layers, ImageNet
classificaiton performance comparable to a 100+-layer ResNet [68]. Nevertheless, both VGG and
PCN’s neurons did not exhibit the static image familiarity effect. We also experimented with
a recurrent network [69] our group developed with biologically inspired top-down and horizontal
recurrent connections between different stages of the VGG16. While this network yields improvement
in its robustness against noises and occlusion in image classification, it also does not produce static
image familiarity effect. These findings suggest that having prediction error minimization in the
objective function might be an important factor for the emergence of prediction suppression or image
familiarity suppression effects.

5 Conclusion

In this paper, we report a novel neurophysiological finding suggesting repeated exposure can induce
encoding of global video memory in the early visual cortex of primates with repeated exposure. We
show that a class of self-supervised prediction learning models also exhibits similar neurophysiologi-
cal phenomenon. In developing the proposed hierarchical prediction network (HPNet), we found,
first, sparse coding can considerably speed up computation and learning; second, processing videos
by spatiotemporal blocks rather than by frame as in other models allow the LSTMs to learn relation-
ships between movement patterns; and third, having a feature hierarchy allows explicit encoding of
more and more complex movement patterns, yielding significant improvement in long-range video
prediction. We found that the recurrent feedback imbued better semantic clustering of movement
patterns in the early levels of hierarchical representations of HPNet, resulting in better movement
pattern decoding and action recognition, even though the network was not trained to do that. To
compare with representations in the visual cortex in more fine-grained details, HPNet will need to
be trained with more complex and naturalistic movies. Taken together, the findings in this paper
suggest the relevance of a class of predictive learning models for understanding the principles and
mechanisms of learning and computation in the visual cortex.
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