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Abstract

We consider dynamic pricing with many products under an evolving but low-
dimensional demand model. Assuming the temporal variation in cross-elasticities
exhibits low-rank structure based on fixed (latent) features of the products, we
show that the revenue maximization problem reduces to an online bandit convex
optimization with side information given by the observed demands. We design
dynamic pricing algorithms whose revenue approaches that of the best fixed price
vector in hindsight, at a rate that only depends on the intrinsic rank of the demand
model and not the number of products. Our approach applies a bandit convex
optimization algorithm in a projected low-dimensional space spanned by the latent
product features, while simultaneously learning this span via online singular value
decomposition of a carefully-crafted matrix containing the observed demands.

1 Introduction

In this work, we consider a seller offering N products, where N is large, and the pricing of certain
products may influence the demand for others in unknown ways. We let p; € R denote the vector
of selected prices at which each product is sold during time period ¢ € {1,...,T}, which results
in total demands for the products over this period represented in the vector q;, € RY. Note that q,
represents a (noisy) evaluation of the aggregate demand curve at the chosen prices p;, but we never
observe the counterfactual demand that would have resulted had we selected a different price-point.
This is referred to as bandit feedback in the online optimization literature [Dani et al.,[2007]. Our
goal is find a setting of the prices for each time period to maximize the fotal revenue of the seller
(over all rounds). This is equivalent to minimizing the negative revenue over time:

T
R(p1,...,pr) = ), Ri(pt) where Ri(pt) = —(qr, Pr)

t=1

We can alternatively maximize total profits instead of revenue by simply redefining p; as the difference
between the product-prices and the cost of each product-unit. In practice, the seller can only consider
prices within some constraint set S = R”, which we assume is convex throughout. To find the
optimal prices, we introduce the following linear model of the aggregate demands, which is allowed
to change over time in a nonstationary fashion:

qt =c; — Bip: + & (D

Here, c; € RY denotes the baseline demand for each product in round t. B; € RY*¥ is an
asymmetric matrix of demand elasticities which represents how changing the price of one product
may affect the demand of not only this product, but also demand for other products as well. By
conventional economic wisdom, B; will have the largest entries along its diagonal because demand
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for a product is primarily driven by its price rather than the price of other possibly unrelated products.
Since a price increase usually leads to falling demand, it is reasonable to assume all B; > 0 are
positive-definite (but not necessarily Hermitian), which implies that at each round: R; is a convex
function of p;. The observed aggregate demands over each time period are additionally subject to
random fluctuations driven by the noise term €; € R”Y. Throughout, we suppose the noise in each
round €, is sampled i.i.d. from some mean-zero distribution with finite variance. The classic analysis
of |Houthakker and Taylor| [1970] established that historical demand data often nicely fit a linear
relationship. A wealth of past work on dynamic pricing has also posited linear demand models,
although most prior research has not considered settings where the underlying model is changing
over time [Keskin and Zeevi, 2014, [Besbes and Zeevi, [2015, |Cohen et al., 2016, Javanmard and
Nazerzadeh, 2016, Javanmard, 2017].

Unlike standard statistical approaches to this problem which rely on stationarity, we suppose c;, B,
may change every round and are possibly chosen adversarially. This consideration is particularly im-
portant in dynamic markets where the seller faces new competitors and consumers with ever-changing
preferences who are actively seeking out the cheapest prices for products [Witt,|1986]. Our goal is to
select prices p1, . . ., pr which minimize the expected regret E[R(p1,...,pr) — R(p*,...,p*)]

compared to always selecting the single best configuration of prices p* = argmin s E ZtT=1 R:(p)
chosen in hindsight after the revenue functions R; have all been revealed.

Low regret algorithms ensure that in the case of a stationary underlying model, our chosen prices
quickly converge to the optimal choice, and in nonstationary settings, our pricing procedure will natu-
rally adapt to the intrinsic difficulty of the dynamic revenue-optimization problem [Shalev-Shwartz|
2011]. While low (i.e. o(T)) regret is achievable using algorithms for online convex optimization with
bandit feedback, the regret of existing methods is bounded below by Q(\/N ), which is undesirable
large when one is dealing with a vast number of products [Dani et al.,|2007, [Shalev-Shwartz, 2011,
Flaxman et al., 2005]. To attain better bounds, we adopt a low-rank structural assumption that the
variation in demands changes over time only due to d « N underlying factors. Under this setting,
we develop algorithms whose regret depends only on d rather than N by combining existing bandit
methods with low-dimensional projections selected via online singular value decomposition. As far
as we are aware, our main result (Theorem 3] is the first online bandit optimization algorithm whose
regret provably does not scale with the action-space dimensionality.

Appendix [D provides a glossary of notation used in this paper, and all proofs of our theorems are
relegated to Appendix [A. Throughout, C' denotes a universal constant, whose value may change from
line to line (but never depends on problem-specific constants such as 7', d, ).

2 Related Work

While bandit optimization has been successfully applied to dynamic pricing, research in this area
has been primarily restricted to stationary settings [Kleinberg and Leighton, 2003, |Besbes and
Zeevi, 2009, |[den Boer and Bert, 2013, [Keskin and Zeevi, 2014, [Cohen et al., 2016, [Misra et al.,
2017]. Most similar to our work, Javanmard [2017] recently developed a bandit pricing strategy
that presumes demand depends linearly on prices and product-specific features. High-dimensional
dynamic pricing was also addressed by [Javanmard and Nazerzadeh|[2016] using sparse maximum
likelihood. However, due to their reliance on stationarity, these approaches are less robust under
evolving/adversarial environments compared with online optimization [Bubeck and Slivkins, [2012].

Beyond pricing, existing algorithms that combine bandits with subspace estimation [|Gopalan et al.,
2016, [Djolonga et al., 2013} |Sen et al.|[2017] are solely designed for stationary (stochastic) settings
rather than general online optimization (where the reward functions can vary adversarially over time).
While the field of online bandit optimization has seen many advances since the pioneering work
of Flaxman et al. [Flaxman et al., 2005], none of the recent improvements guarantees regret that is
independent of the action-space dimension [Hazan and Levyl 2014, Bubeck et al.,|2017]. To our
knowledge, |[Hazan et al.|[2016a] is the only prior work to present online optimization algorithms
whose regret depends on an intrinsic low rank structure rather than the ambient dimensionality.
However, their approach for online learning with experts is not suited for dynamic pricing since it is
restricted to settings with: full-information (rather than bandit feedback), linear and noise-free (or
stationary) reward functions, and actions that are specially constrained within the probability-simplex.



3 Low Rank Demand Model

We now introduce a special case of model (I)) in which both c; and B, display low-rank changes over
time. In practice, each product 7 may be described by some vector of features u; € R? (with d « N),
which determine the similarity between products as well as their baseline demands. A natural method
to gauge similarity between products  and j is via their inner product {u;, u; )y = uiTVuj under
some linear transformation of the feature-space given by V > 0. For example, u; might be a binary
vector indicating that product ¢ falls into certain product-categories (where the number of categories
d is far less than the number of products N), and V might be a diagonal matrix specifying the
cross-elasticity of demand within each product category. In this example, uiTVuj - p; would thus be
the marginal effect on the demand for product ¢ that results from selecting p; as the price for product
7. Many recommender systems also assume products can be described using low-dimensional latent
features that govern their desirability to consumers [Zhao et al., 2016, [Sen et al., 2017].

By introducing time-varying metric transformations V, our model allows these product-similarities
to evolve over time. Encoding the features u; that represent each product as rows in a matrix
U e RV*4 we assume the following demand model, in which the temporal variation naturally
exhibits low-rank structure:

q = Uz — UV U'p; + & 2
Here, the €; € RN again reflect statistical noise in the observed demands, the z; € R4 explain the
variation in baseline demand over time, and the (asymmetric) matrices V; € R4*? specify latent
changes in the demand-price relationship over time. Under this model, the aggregate demand for
product ¢ at time ¢ is governed by the prices of all products, weighted by their current feature-similarity
to product 7. To ensure our revenue-optimization remains convex, we restrict the adversary to choices
that satisfy V, > 0 for all ¢. Note that while the structural variation in our model is assumed to be
low-rank, the noise in the observed demands may be intrinsically /NV-dimensional. In each round, p;
and q; are the only quantities observed, while €;, z;, V; all remain unknown (and we consider both
cases where the product features U are known or unknown). In §5.5| we verify that our low-rank
assumption accurately describes real historical demand data.

4 Methods

Our basic dynamic pricing strategy is to employ the gradient-descent without a gradient (GDG)
online bandit optimization technique of [Flaxman et al.| [2005]. While a naive application of this
algorithm produces regret dependent on the number of products N, we ensure the updates of this
method are only applied in the d-dimensional subspace spanned by U, which leads to regret bounds
that depend only on d rather than N. When U is unknown, this subspace is simultaneously estimated
online, in a somewhat similar fashion to the approach of |Hazan et al.|[2016a] for online learning with
low-rank experts. If we define x = U”'p € R, then under the low-rank model in (2) with E[e;] = 0,
the expected value of our revenue-objective in round ¢ can be expressed as:

E[R:(p)] = p? UV, UTp — p’ Uz = x"Vix — xT'z; := fi(x) 3)

As this problem’s intrinsic dimensionality is only d, we can maximize expected revenues by merely
considering a restricted set of d-dimensional actions x and functions f; over projected constraint set:

UT(S) = {xeR?:x = U”p for some p € S} )

4.1 Products with Known Features

In certain markets, it is clear how to featurize products [Cohen et al.,|2016]. Under the low-rank
model in (2) when U is given, we can apply the OPOK method (Algorithm |I}) to select prices. This
algorithm employs subroutines FINDPRICE and PROJECTION which both solve convex optimization
problems in order to compute certain projections. Here, B; = Unif({x € R? : ||x||o = 1}) denotes a
uniform distribution over surface of the unit sphere in R

Intuitively, our algorithm adapts GDG to select low-dimensional actions x; € R? at each time point,
and then seeks out a feasible price vector p; corresponding to the chosen x;. Note that when d « N,



Algorithm 1 OPOK Algorithm 2 FINDPRICE(x; U, S, p;—1)

(Online Pricing Optimization with Known Features) Input: x € R%, U e RVx4
Input: 7,6, > 0, U e RV*4 initial prices pg € S convex S RN, p;_; e RN
Output: Prices py, ..., pr to maximize revenue Output: argmin ||p — p;_1||2

pPeS

1: Set prices to pg € S and observe qo(po), Ro(po)

subject to: UTp = x
2: Define x; = UTpg : P

for t=1,...,T: Algorithm 3 PROJECTION(x, a, U, S)
4: Et ~ Un1f({x € Rd : HXHQ = 1}) Il'lpllt: x e Rd, a > 0’ Ue RNxd’
: X = Xy + 0&; convex set S ¢ RV

5:
6: Set prices: p; = FINDPRICE(X;, U, S, p;_1) Output: (1 —a)UTpH
and observe q;(p:), R:(p:)

with p := argmin||(1 — a)UTp —x
7. X411 = PROIECTION(x; —Ri(p¢ )€, v, U, S) e 1 —a) I,

there are potentially many price-vectors p € R™ that map to the same low-dimensional vector
x € R? via UT. Out of these, we select the one that is closest to our previously-chosen prices (via
FINDPRICE), ensuring additional stability in our dynamic pricing procedure. In practice, the initial
prices pg should be selected based on external knowledge or historical demand data.

Under mild conditions, Theorembelow states that the OPOK algorithm incurs O(7%/4+/d) regret
when product features are a priori known. This result is derived from Lemma [A.T] which shows
that Step 7 of our algorithm corresponds (in expectation) to online projected gradient descent on a
smoothed version of our objective defined as:

fox) = E¢[fo(x + ¢)] (5)

where ¢ is sampled uniformly from within the unit sphere in R?, and f; is defined in . We bound
the regret of our pricing algorithm under the following assumptions (which ensure the revenue
functions are bounded/smooth and the set of feasible prices is bounded/well-scaled):

(AD) ||ze]]l2 <b fort=1,...,T

(A2) ||V¢l|lop < b forallt (|| - ||op denotes spectral norm)
(A3) T > §d?

(A4) U is an orthogonal matrix such that UTU = I ;.4
(AS) S={peRY :|lp|la <7} (withr>1)

Requiring that the columns of U form an orthonormal basis for R?, condition (AE) can be easily
enforced (when d < N) by first orthonormalizing the product features. Note that this orthogonality
condition does not restrict the overall class of models specified in , and describes the case where the
features used to encode each product are uncorrelated between products (i.e. a minimally-redundant
encoding) and have been normalized across all products. To see why (AH) does not limit the allowed
price-demand relationships, consider that we can re-express any (non-orthogonal) U = OP in terms
of orthogonal O € RY*¢, The demand model in (IZ) can then be equivalently expressed in terms
of z, = Pz, V, = PV, PT (after appropriately redefining the constant b in (AE)-(AlZ)), since:
Uz, — UV, UTp, = Oz, — OV;OTpt. To further simplify our analysis, we also from now adopt
(Al5) presuming the constraint set of feasible product-prices is a centered Euclidean ball (implying
our py, q; vectors now represent appropriately shifted/scaled prices and demands).

Theorem 1. Under assumptions (AE)—(AE), if we choose 1 = m, § =T 14 %,
o= g, then there exists C' > 0 such that for any p € S:

T T
Z Ri(pt) — Z Ri(p)

for the prices p1, . .., pr selected by the OPOK algorithm.

Eee < Cbr(r + 1)T%*d"?

Theorem shows the same O(T3/ 4 \/E) regret bound holds for the OPOK algorithm under relaxed
conditions solely based on the revenue functions and feasible prices rather than the specific properties
of our low-rank structure assumed in (A[T)-(A3).



4.2 Products with Latent Features

In many settings, it is not clear how to best represent products as feature-vectors. Once again adopting
the low-rank demand model in (2), we now consider the case where U is unknown and must be
estimated. We presume the orthogonality condition (A4) holds throughout this section (recall this
does not restrict the class of allowed models), which implies U is both an isometry as well as the right-
inverse of U”. Thus, given any low-dimensional action x € UT'(S), we can set the corresponding
prices as p = Ux such that UTp = x. LemmaEshows that this price selection-method is feasible
and corresponds to changing Step 6 in the OPOK algorithm to p; = FINDPRICE(X;, U, S, 0), where
the next price is regularized toward the origin rather than the previous price p;_;. Because prices
p: are multiplied by the noise term €, within each revenue-function R, choosing minimum-norm
prices can help reduce variance in the total revenue generated by our approach. As U is unknown,

we instead employ an estimate U e RV >4, which is always restricted to be an orthogonal matrix.

Lemma 1. For any orthogonal matrix U and any x € UT (8S), define p = Ux € RY. Under (AE):
p € S and p = FINDPRICE(x, U, S, 0).

Product Features with Known Span. In Theorem [2, we consider a minorly modified OPOK
algorithm where price-selection in Step 6 is done using p; = ﬁit rather than being regularized
toward the previous price p;—1. Even without knowing the true latent features, this result implies that
the regret of our modified OPOK algorithm may still be bounded independently of the number of
products N, as long as U accurately estimates the column span of U.

~

Theorem 2. Suppose span(U) = span(U), i.e. our orthogonal estimate has the same column-span
as the underlying (rank d) latent product-feature matrix. Let p1,...,pr € S denote the prices
selected by our modified OPOK algorithm with U used in place of the underlying U and 1, 6§,
chosen as in Theorem([I| Under conditions (AI)-(AD), there exists C' > 0 such that for any p € S:

T T
Ece | >, Re(p:) = ), Re(p) | < Cbr(r + 1)T3d"/?
t=1 t=1

Features with Unknown Span and Noise-free Demands. In practice, span(U) may be entirely
unknown. If we assume the adversary is restricted to strictly positive-definite V; > 0 for all ¢ and
there is no statistical noise in the observed demands (i.e. q; = Uz, — UV, UTp, in each round),
then Lemmagbelow shows we can ensure span(U) is revealed within the first d observed demand
vectors by simply adding a minuscule random perturbation to all of our initial prices selected in the
first d rounds. Thus, even without knowing the latent product feature subspace, an absence of noise
in the observed demands enables us to realize a low regret pricing strategy via the same modified
OPOK algorithm (applied after the first d rounds).

Lemma 2. Suppose that fort = 1,...,T: ¢ = 0and V, > 0. If each p; is independently
uniformly distributed within some (uncentered) Euclidean ball of strictly positive radius, then
span(qy, - . . ,qq) = span(U) almost surely.

Features with Unknown Span and Noisy Demands. When the observed demands are noisy and
span(U) is unknown, we select prices using the OPOL algorithm on the next page. The approach is
similar to our previous OPOK algorithm, except we now additionally maintain a changing estimate
of the latent product features’ span. Our estimate is updated in an online fashion via an averaged
singular value decomposition (SVD) of the previously observed demands.

Step 9 in our OPOL algorithm corresponds to online averaging of the currently observed demand
vector q; with the historical observations stored in the 5™ column of matrix Q After computing the
singular value decomposition of Q = I~J§\7T, Step 10 is performed by setting U equal to the first d
columns of U (presumed to be the indices corresponding to the largest singular values in §). Since
Q is only minorly changed within each round, the update operation in Step 10 can be computed more
efficiently by leveraging existing fast SVD-update procedures [Brand, 2006, Stangel [2008]. Note
that by their definition as singular vectors, the columns of U remain orthonormal throughout the
execution of our algorithm.



Algorithm 4 OPOL (Online Pricing Optimization with Latent Features)

Input: 7,4, « > 0, rank d € [1, N], initial prices pp € S
Qutput: Prices py, ..., pr to maximize overall revenue

Initialize Q as N x d matrix of zeros

Initialize U as random N x d orthogonal matrix
Set prices to pg € S and observe qo(po), Ro(po)

Define x; = UTpo
fort=1,...,T:
%, = x; + 0, & ~ Unif({x e R : [|x[[> = 1})
Set prices: p; = Uxt and observe q;(p¢), R¢(pt)
X¢41 = PROJECTION(x; — nRy(p¢)&s, o, U, S)
Withj =1+ [(t — 1) mod d], k = floor(t/d), update Q. g rat %Q*j
Set columns of U as top d left singular vectors of Q

R A A S

_.
e

To quantify the regret incurred by this algorithm, we assume the noise vectors €, follow a sub-
Gaussian distribution for each t = 1, ..., 7. The assumption of sub-Gaussian noise is quite general,
covering common settings where the noise is Gaussian, bounded, of strictly log-concave density, or
any finite mixture of sub-Gaussian variables [Mueller et al., 2018]. Intuitively, the averaging in step 9
of our OPOL algorithm ensures statistical concentration of the noise in our observed demands, such
that the true column span of the underlying U may be better revealed. More concretely, if we let
s; = z; — V,UTp, and qf = Usy, then the observed demands can be written as: q; = qf + €,
where q} are the (unobserved) expected demands at our chosen prices. Thus, the 5 column of Q at
round 7' is given by:

N o

Q:j = Qi + \I | > e, with Q= 7 |UZ s; (6)
i€ZL; €L

where we assume for notational simplicity that 7T is divisible by d and define 7; = {j +d(i—1) : i =

1,..., L} (s0|Z;| = T). Because the average ﬁ Ziezj €; exhibits concentration of measure, results

from random matrix theory imply that the span-estimator obtained from the first d singular vectors

of Q in Step 10 of our OPOL algorithm will rapidly converge to the column span of Q* € RVN*?, a
matrix of averaged underlying expected demands. This is useful since Q* shares the same span as
the underlying U.

Theorem [3] below shows that our OPOL algorithm achieves low-regret in the setting of unknown
product features with noisy demands, and the regret again depends only on the intrinsic rank d (rather
than the number of products N).

Theorem 3. For unknown U, let p1,...,pr be the prices selected by the OPOL algorithm with
7,0, « set as in Theorem Suppose €; follows a sub-Gaussian(c?) distribution and has statistically
i.i.d. dimensions for each t. If (AI)-(AD) hold, then there exists C > 0 such that for any p € S:

> Ri(pi) = X Ri(p)

Here, () = max {1, o? (%0172“) } with oy (and 04) defined as the largest (and smallest) nonzero
d

singular values of the underlying rank d matrix Q* defined in (@

Bee < CQrb(4r + 1)dT**

Our proof of this result relies on standard random matrix concentration inequalities [Vershynin,
2012] and Theorem a useful variant of the Davis-Kahan theory introduced by [Yu et al. [2015].
Intuitively, we show that span(U) can be estimated to sufficient accuracy within sufficiently few
rounds, and then follow similar reasoning to the proof of Theorem [2] Note that the regret in Theorem
[3|depends on the constant () whose value is determined by the noise-level o and the extreme singular
values of Q* defined in (6). In general, these quantities thus measure just how adversarial of an
environment the seller is faced with. For example, when the underlying low-rank variation is of
much smaller magnitude than the noise in our observations, it will be difficult to accurately estimate



the span of the latent product features. In control theory, a signal-to-noise expression similar to @)
has also been recently proposed to quantify the intrinsic difficulty of system identification for the
linear quadratic regulator [Dean et al.,[2017]. A basic setting in which ) can be explicitly bounded is
illustrated in Appendix (B, where we suppose the underlying demand model parameters can only be
imprecisely controlled by an adversary over time.

S Experiments

We evaluate the performance of our methodology in settings where noisy demands are generated
according to equation (2)), and the underlying structural parameters of the demand curves are randomly
sampled from Gaussian distributions (details in Appendix [C.2). Throughout, p; and q; represent
rescaled rather than absolute prices/demands, such that the feasible set S can be simply fixed as a
centered sphere of radius » = 20. Noise in the (rescaled) demands for each individual product is
always sampled as: ¢; ~ N(0,10).

Our proposed algorithms are compared against the GDG online bandit algorithm of [Flaxman et al.
[2005], as well as a simple explore-then-exploit (Exploj;) technique. The latter method randomly
samples p; during the first 7%/% rounds (uniformly over S) and for all remaining rounds, p; is fixed at
the best price vector found during exploration. Exploj; reflects a standard pricing technique: initially
experiment with prices and eventually settle on those that previously produced the most profit.

5.1 Stationary Demand Model

First, we consider a stationary setting where underlying structural parameters z;, = z, V; = V remain
fixed. Before each experiment, we sample the entries of z, V independently as z,;; ~ N (100, 20),
V;;j ~ N(0,2), and U is fixed as a random sparse binary matrix that reflects which of d possible
categories each product belongs to. Subsequently, we orthogonalize the columns of U and project
Vinto V = {V : VI + V > )M} with A = 10 to ensure positive definite cross-product price
elasticities. Here, z, V, A are chosen to reflect properties of real-world demand curves: different
products’ baseline demands and elasticities should be highly diverse (wide range of 2), and prices
should significantly influence demands such that price-increases severely decrease demand and affect
demand for the same product more than other products (large value of A, which in turn induces large
values for certain entries of V). We find the optimal price vector does not lie near the boundary of S
(||p*||2 =~ 8 rather than 20), which shows that prices strongly influence demands under our setup.

Figures[IA and[IB show that our OPOK and OPOL algorithms are greatly superior to GDG when
the dimensionality IV exceeds the intrinsic rank d. When N = d (no low-rank structure to exploit),
our OPOK/OPOL algorithms closely match GDG (blue, green, and red curves overlap). Note that
in this case: GDG and OPOK are nearly mathematically equivalent (same regret bound applies to
both, but their empirical performance slightly differs in this case due to the internal stochasticity of

each bandit algorithm), as are OPOL and OPOK (since d = N implies U is an orthogonal N x N
matrix and hence invertible). For small NV, all online bandit optimization techniques outperform
Exploj;, but GDG scales poorly to large N unlike our methods. Interestingly, OPOL (which must
infer latent product features alongside the pricing strategy) performs slightly better than the OPOK
approach, which has access to the ground-truth features. This is because in the presence of noise, our
SVD-computed features can more robustly represent the subspace where projected pricing variation
can maximally impact the overall observed demands. In contrast, the dimensionality-reduction in
OPOK does not lead to any denoising.

5.2 Model with Demand Shocks

Next, we study a non-stationary setting where the underlying demand model changes drastically
at times 7'/3 and 27'/3. At the start of each period [0,7/3], [T/3,2T/3], [2T/3,T]: we simply
redraw the underlying structural parameters z;, V; from the same Gaussian distributions used for the
stationary setting. Figures|1|C and [1D show that our bandit techniques quickly adapt to the changes in
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Figure 1: Average cumulative regret (over 10 repetitions with standard-deviations shaded) of various
pricing strategies when underlying demand model is: (A)-(B) stationary over time, (C)-(D): altered
by structural shocks at times 7'/3 and 27'/3, (E)-(F): drifting over time.

the underlying demand curves. The regret of the bandit algorithms decreases over time, indicating
they begin to outperform the optimal fixed price chosen in hindsight (recall that our bandits may vary
price over time, whereas regret is measured against the best fixed price-configuration which may
fare much worse than a dynamic schedule in nonstationary environments). Once again, our low-rank
methods achieve low regret for a large number of products unlike the existing approaches, while
retaining the same strong performance as the GDG algorithm in the absence of low-rank structure.

5.3 Drifting Demand Model

Finally, we consider another non-stationary setting where underlying demand curves slowly change
over time. Here, the underlying structural parameters z;, V; are initially drawn from the same
previously used Gaussian distributions at ¢ = 0, but then begin to stochastically drift over time
according to: z;11 = z; + w, Vi1 = Iy (Vy + W). Here, the entries of w and W are i.i.d.
samples from N (0,1) and N(0,0.1) distributions, respectively, and IT,, denotes the projection of a
matrix into the strongly positive-definite set )V we previously defined. Figures[IE and[IF illustrate how
our bandit pricing approach can adapt to ever-changing demand curves. Again, our low-rank methods
exhibit much stronger performance than GDG and Exploj; in the settings with many products.



(A) Model (1) without temporal change (B) Model (1) with demand shocks
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Figure 2: Regret of pricing strategies (for N = 100) when underlying demand model has no low-rank
structure (see Appendix [C.T) and is: (A) stationary, (B) altered by shocks at 7/3 and 27'/3 as in 5.2

5.4 Misspecified Demand Model

Appendix [C.T]investigates the robustness of our algorithms in misspecified settings with full-rank
or log-linear demands, where the assumptions of our demand model are explicitly violated. Even
in the absence of explicit low-rank structure, running the OPOL algorithm with low values of d
substantially outperforms other pricing strategies (Figure[2). These empirical results suggest that our
OPOL algorithm is practically useful for various high-dimensional pricing problems, beyond those
that exactly satisfy the low-rank/linearity assumptions in (2)).

5.5 Rank of Historical Demand Data

While the aforementioned robustness analysis indicates our approach works well even when key
assumptions are violated, it remains of interest whether our assumptions accurately describe actual
demand variation for real products. One key implication of our assumptions in (2) is that the N x T'
matrix Q = [q1;q2; . - .;qr], whose columns contain the observed demands in each round, should
be approximately low-rank when there is limited noise in the demand-price relationship. This is
because under our assumptions, qq, . . ., g7 only span a d-dimensional subspace in the absence of
noise (see proof of Lemma2).

Here, we study historical demand dataﬂ for 1,340 products sold at various prices over 7 weeks by the
baking company Grupo Bimbo. Using this data, we form a matrix Q whose columns contain the total
weekly demands for each product across all stores. The SVD of Q reveals the following percentages
of variation in the observed demands are captured within the top k singular vectors: k = 1: 97.1%,
k = 2:99.1%, k = 3: 99.9%. This empirical analysis thus suggests that our low-rank assumption on
the expected demand variation remains reasonable in practice.

6 Discussion

By exploiting a low-rank structural condition that naturally emerges in dynamic pricing problems, this
work introduces an online bandit optimization algorithm whose regret provably depends only on the
intrinsic rank of the problem rather than the ambient dimensionality of the action space. Our low-rank
bandit approach to dynamic pricing scales to a large number of products with intercorrelated demand
curves, even if the underlying demand model varies over time in an adversarial fashion. When
applied to various high-dimensional dynamic pricing systems involving stationary, fluctuating, and
misspecified demand curves, our approach empirically outperforms standard bandit methods. Future
extensions of this work could include adaptations for predictable sequences in which future demands
can be partially forecasted [Rakhlin and Sridharan, 2013], or generalizing our convex formulation
and linear demand model to more general subspace structures [Hazan et al.,|2016b].

'Historical demand data obtained from: www .kaggle . com/c/grupo-bimbo-inventory-demand/


www.kaggle.com/c/grupo-bimbo-inventory-demand/

References

0. Besbes and A. Zeevi. Dynamic pricing without knowing the demand function: Risk bounds and
near-optimal algorithms. Operations Research, 57:1407-20, 2009.

O. Besbes and A. Zeevi. On the surprising sufficiency of linear models for dynamic pricing with
demand learning. Management Science, 61:723-39, 2015.

M. Brand. Fast low-rank modifications of the thin singular value decomposition. Linear Algebra and
its Applications, 415:20-30, 2006.

S. Bubeck and A. Slivkins. The best of both worlds: Stochastic and adversarial bandits. Conference
on Learning Theory, 2012.

S. Bubeck, Y. T. Lee, and R. Eldan. Kernel-based methods for bandit convex optimization. Proceed-
ings of 49th Annual ACM SIGACT Symposium on the Theory of Computing, 2017.

M. Cohen, I Lobel, and R. P. Leme. Feature-based dynamic pricing. ACM Conference on Economics
and Computation, 2016.

V Dani, T. P. Hayes, and S. M. Kakade. The price of bandit information for online optimization.
Neural Information Processing Systems, 2007.

S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu. On the sample complexity of the linear quadratic
regulator. arXiv:1710.01688, 2017.

A. V. den Boer and Z. Bert. Simultaneously learning and optimizing using controlled variance pricing.
Management Science, 60:770-83, 2013.

J. Djolonga, A. Krause, and V. Cevher. High-dimensional gaussian process bandits. Neural Informa-
tion Processing Systems, 2013.

A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit setting:
Gradient descent without a gradient. Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2005.

A. Gopalan, O. Maillard, and M. Zaki. Low-rank bandits with latent mixtures. arXiv:1609.01508,
2016.

E. Hazan and K. Y. Levy. Bandit convex optimization: Towards tight bounds. Neural Information
Processing Systems, 2014.

E. Hazan, T. Koren, R. Livni, and Y. Mansour. Online learning with low rank experts. Conference on
Learning Theory, 2016a.

E. Hazan, K. Y. Levy, and S. Shalev-Shwartz. On graduated optimization for stochastic non-convex
problems. International Conference on Machine Learning, 2016b.

H. S. Houthakker and L. D. Taylor. Consumer demand in the United States. Harvard University
Press, 1970.

A. Javanmard. Perishability of data: Dynamic pricing under varying-coefficient models. Journal of
Machine Learning Research, 18:1-31, 2017.

A. Javanmard and H. Nazerzadeh. Dynamic pricing in high-dimensions. arXiv:arXiv:1609.07574,
2016.

N. B. Keskin and A. Zeevi. Dynamic pricing with an unknown demand model: asymptotically
optimal semi-myopic policies. Operations Research, 62:1142-67, 2014.

R. Kleinberg and T. Leighton. The value of knowing a demand curve: Bounds on regret for online
posted-price auctions. Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, 2003.

10



K. Misra, E. M. Schwartz, and J. Abernethy. Dynamic online pricing with incomplete information
using multi-armed bandit experiments. Available at SSRN: http: //ssrn. com/ abstract=
2981814, 2017.

J. Mueller, T. Jaakkola, and D. Gifford. Modeling persistent trends in distributions. Journal of the
American Statistical Association, 113:1296-1310, 2018.

A. Rakhlin and K. Sridharan. Online learning with predictable sequences. Conference on Learning
Theory, 2013.

P. Rigollet. High dimensional statistics, 2015. MIT Opencourseware: ocw.mit.edu/courses/
mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/.

M. Rudelson and R. Vershynin. The Littlewood-Offord problem and invertibility of random matrices.
Advances in Mathematics, 218:600-33, 2008.

R. Sen, K. Shanmugam, M. Kocaoglu, A. Dimakis, and S. Shakkottai. Contextual bandits with latent
confounders: An NMF approach. Artificial Intelligence and Statistics, 2017.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in
Machine Learning, 4:107-194, 2011.

P. Stange. On the efficient update of the singular value decomposition. Proceedings in Applied
Mathematics and Mechanics, 8:10827-28, 2008.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. Eldar and
G. Kutyniok, editors, Compressed Sensing, Theory and Applications, pages 210-268. Cambridge
University Press, 2012.

U. Witt. How can complex economical behavior be investigated? The example of the ignorant
monopolist revisited. Behavioral Science, 31:173—-188, 1986.

Y. Yu, T. Wang, and R. Samworth. A useful variant of the Davis-Kahan theorem for statisticians.
Biometrika, 102:315-323, 2015.

F. Zhao, M. Xiao, and Y. Guo. Predictive collaborative filtering with side information. International
Joint Conference on Artificial Intelligence, 2016.

11


http://ssrn.com/abstract=2981814
http://ssrn.com/abstract=2981814

