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Abstract
The variational auto-encoder (VAE) is a popular method for learning a generative
model and embeddings of the data. Many real datasets are hierarchically structured.
However, traditional VAEs map data in a Euclidean latent space which cannot
efficiently embed tree-like structures. Hyperbolic spaces with negative curvature
can. We therefore endow VAEs with a Poincaré ball model of hyperbolic geometry
as a latent space and rigorously derive the necessary methods to work with two
main Gaussian generalisations on that space. We empirically show better gener-
alisation to unseen data than the Euclidean counterpart, and can qualitatively and
quantitatively better recover hierarchical structures.

1 Introduction

Figure 1: A regular tree isometrically embed-
ded in the Poincaré disc. Red curves are same
length geodesics, i.e. "straight lines".

Learning useful representations from unlabelled
raw sensory observations, which are often high-
dimensional, is a problem of significant importance in
machine learning. Variational auto-encoders (VAEs)
(Kingma and Welling, 2014; Rezende et al., 2014)
are a popular approach to this: they are probabilistic
generative models composed of an encoder stochas-
tically embedding observations in a low dimensional
latent space Z , and a decoder generating observations
x 2 X from encodings z 2 Z . After training, the en-
codings constitute a low-dimensional representation
of the original raw observations, which can be used
as features for a downstream task (e.g. Huang and
LeCun, 2006; Coates et al., 2011) or be interpretable
for their own sake. VAEs are therefore of interest for
representation learning (Bengio et al., 2013), a field
which aims to learn good representations, e.g. inter-
pretable representations, ones yielding better gener-
alisation, or ones useful for downstream tasks.
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It can be argued that in many domains data should be represented hierarchically. For example, in
cognitive science, it is widely accepted that human beings use a hierarchy to organise object categories
(e.g. Roy et al., 2006; Collins and Quillian, 1969; Keil, 1979). In biology, the theory of evolution
(Darwin, 1859) implies that features of living organisms are related in a hierarchical manner given
by the evolutionary tree. Explicitly incorporating hierarchical structure in probabilistic models has
unsurprisingly been a long-running research topic (e.g. Duda et al., 2000; Heller and Ghahramani,
2005).

Earlier work in this direction tended to use trees as data structures to represent hierarchies. Recently,
hyperbolic spaces have been proposed as an alternative continuous approach to learn hierarchical
representations from textual and graph-structured data (Nickel and Kiela, 2017; Tifrea et al., 2019).
Hyperbolic spaces can be thought of as continuous versions of trees, and vice versa, as illustrated in
Figure 1. Trees can be embedded with arbitrarily low error into the Poincaré disc model of hyperbolic
geometry (Sarkar, 2012). The exponential growth of the Poincaré surface area with respect to its
radius is analogous to the exponential growth of the number of leaves in a tree with respect to its
depth. Further, these spaces are smooth, enabling the use of deep learning approaches which rely on
differentiability.

We show that replacing VAEs latent space components, which traditionally assume a Euclidean metric
over the latent space, by their hyperbolic generalisation helps to represent and discover hierarchies.
Our goals are twofold: (a) learn a latent representation that is interpretable in terms of hierarchical
relationships among the observations, (b) learn a more efficient representation which generalises
better to unseen data that is hierarchically structured. Our main contributions are as follows:

1. We propose efficient and reparametrisable sampling schemes, and calculate the probability
density functions, for two canonical Gaussian generalisations defined on the Poincaré ball,
namely the maximum-entropy and wrapped normal distributions. These are the ingredients
required to train our VAEs.

2. We introduce a decoder architecture that explicitly takes into account the hyperbolic geometry,
which we empirically show to be crucial.

3. We empirically demonstrate that endowing a VAE with a Poincaré ball latent space can be
beneficial in terms of model generalisation and can yield more interpretable representations.

Our work fits well with a surge of interest in combining hyperbolic geometry and VAEs. Of these, it
relates most strongly to the concurrent works of Ovinnikov (2018); Grattarola et al. (2019); Nagano
et al. (2019). In contrast to these approaches, we introduce a decoder that takes into account the
geometry of the hyperbolic latent space. Along with the wrapped normal generalisation used in the
latter two articles, we give a thorough treatment of the maximum entropy normal generalisation and a
rigorous analysis of the difference between the two. Additionally, we train our model by maximising
a lower bound on the marginal likelihood, as opposed to Ovinnikov (2018); Grattarola et al. (2019)
which consider a Wasserstein and an adversarial auto-encoder setting, respectively. We discuss these
works in more detail in Section 4.

2 The Poincaré Ball model of hyperbolic geometry
2.1 Review of Riemannian geometry

Throughout the paper we denote the Euclidean norm and inner product by k·k and h·, ·i respectively.
A real, smooth manifold M is a set of points z, which is "locally similar" to a linear space. For every
point z of the manifold M is attached a real vector space of the same dimensionality as M called the
tangent space TzM. Intuitively, it contains all the possible directions in which one can tangentially
pass through z. For each point z of the manifold, the metric tensor g(z) defines an inner product
on the associated tangent space : g(z) = h·, ·iz : TzM⇥ TzM! R. The matrix representation of

the Riemannian metric G(z), is defined such that 8u,v 2 TzM⇥ TzM, hu,viz = g(z)(u,v) =
uTG(z)v. A Riemannian manifold is then defined as a tuple (M, g) (Petersen, 2006). The metric
tensor gives a local notion of angle, length of curves, surface area and volume, from which global

quantities can be derived by integrating local contributions. A norm is induced by the inner product
on TzM: k·kz =

p
h·, ·iz . An infinitesimal volume element is induced on each tangent space TzM,

and thus a measure dM(z) =
p
|G(z)|dz on the manifold, with dz being the Lebesgue measure.
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The length of a curve � : t 7! �(t) 2 M is given by L(�) =
R 1
0 k�

0(t)k1/2�(t)dt. The concept of
straight lines can then be generalised to geodesics, which are constant speed curves giving the shortest
path between pairs of points z,y of the manifold: �⇤ = argminL(�) with �(0) = z, �(1) = y and
k�0(t)k�(t) = 1. A global distance is thus induced on M given by dM(z,y) = inf L(�). Endowing
M with that distance consequently defines a metric space (M, dM). The concept of moving along a
"straight" curve with constant velocity is given by the exponential map. In particular, there is a unique
unit speed geodesic � satisfying �(0) = z with initial tangent vector �0(0) = v. The corresponding
exponential map is then defined by expz(v) = �(1), as illustrated on Figure 2. The logarithm map is
the inverse logz = exp�1

z : M! TzM. For geodesically complete manifolds, such as the Poincaré
ball, expz is well-defined on the full tangent space TzM for all z 2M.

2.2 The Poincaré ball model of hyperbolic geometry

Figure 2: Geodesics and exponen-
tial maps in the Poincaré disc.

A d-dimensional hyperbolic space, denoted H
d, is a complete,

simply connected, d-dimensional Riemannian manifold with con-
stant negative curvature c. In contrast with the Euclidean space
R
d, H

d can be constructed using various isomorphic models (none
of which is prevalent), including the hyperboloid model, the
Beltrami-Klein model, the Poincaré half-plane model and the
Poincaré ball Bd

c (Beltrami, 1868). The Poincaré ball model
is formally defined as the Riemannian manifold B

d
c = (Bd

c , g
c
p),

where Bd
c is the open ball of radius 1/

p
c, and gcp its metric tensor,

which along with its induced distance are given by

gcp(z) = (�c
z)

2 ge(z), dcp(z,y) =
1p
c
cosh�1

 
1 + 2c

||z � y||2

(1� c kzk2)(1� c kyk2)

!
,

where �c
z = 2

1�ckzk2 and ge denotes the Euclidean metric tensor, i.e. the usual dot product. The
Möbius addition (Ungar, 2008) of z and y in B

d
c is defined as

z �c y =
(1 + 2c hz,yi+ ckyk2)z + (1� ckzk2)y

1 + 2c hz,yi+ c2kzk2kyk2 .

One recovers the Euclidean addition of two vectors in R
d as c ! 0. Building on that framework,

Ganea et al. (2018) derived closed-form formulations for the exponential map (illustrated in Figure 2)

expcz(v) = z �c

✓
tanh

✓p
c
�c
zkvk
2

◆
vp
ckvk

◆

and its inverse, the logarithm map

logcz(y) =
2p
c�c

z

tanh�1 �pck � z �c yk
� �z �c y

k � z �c yk
.

3 The Poincaré VAE
We consider the problem of mapping an empirical distribution of observations to a lower dimensional
Poincaré ball B

d
c , as well as learning a map from this latent space Z = B

d
c to the observation space

X . Building on the VAE framework, this Poincaré-VAE model, or Pc-VAE for short, differs by the
choice of prior and posterior distributions being defined on B

d
c , and by the encoder g� and decoder

f✓ maps which take into account the latent space geometry. Their parameters {✓,�} are learned
by maximising the evidence lower bound (ELBO). Our model can be seen as a generalisation of a
classical Euclidean VAE (Kingma and Welling, 2014; Rezende et al., 2014) that we denote by N -VAE,
i.e. Pc-VAE ���!

c!0
N -VAE.

3.1 Prior and variational posterior distributions

In order to parametrise distributions on the Poincaré ball, we consider two canonical generalisations of
normal distributions on that space. A more detailed review of Gaussian generalisations on manifolds
can be found in Appendix B.1.
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Riemannian normal One generalisation is the distribution maximising entropy given an expec-
tation and variance (Said et al., 2014; Pennec, 2006; Hauberg, 2018), often called the Riemannian

normal distribution, which has a density w.r.t. the metric induced measure dM given by

N R
Bd
c
(z|µ,�2) =

d⌫R(z|µ,�2)

dM(z)
=

1

ZR exp

 
�
dcp(µ, z)

2

2�2

!
, (1)

where � > 0 is a dispersion parameter, µ 2 B
d
c is the Fréchet mean , and ZR is the normalising

constant derived in Appendix B.4.3.

Riemannian

p
ck
µ
k 2

=
0

Wrapped

p
ck
µ
k 2

=
0.
4

p
ck
µ
k 2

=
0.
8

Figure 3: Hyperbolic normal probability
density for different Fréchet mean, same
standard deviation and c = 10. The Rie-

mannian hyperbolic radius has a slightly
larger mode.

Wrapped normal An alternative is to consider the push-
forward measure obtained by mapping a normal distribu-
tion along the exponential map expµ. That probability
measure is often referred to as the wrapped normal dis-
tribution, and has been used in auto-encoder frameworks
with other manifolds (Grattarola et al., 2019; Nagano et al.,
2019; Falorsi et al., 2018). Samples z 2 B

d
c are obtained

as z = expcµ
�
v/�c

µ

�
with v ⇠ N (·|0,⌃) and its density

is given by (details given in Appendix B.3)

NW
Bd
c
(z|µ,⌃) = d⌫W(z|µ,⌃)

dM(z)
(2)

= N
�
�c
µ logµ(z)

��0,⌃
�✓ p

c dcp(µ, z)

sinh(
p
c dcp(µ, z))

◆d�1

.

The (usual) normal distribution is recovered for both gen-
eralisations as c ! 0. We discuss the benefits and draw-
backs of those two distributions in Appendix B.1. We
refer to both as hyperbolic normal distributions with pdf
NBd

c
(z|µ,�2). Figure 8 shows several probability densi-

ties for both distributions.

The prior distribution defined on Z is chosen to be a
hyperbolic normal distribution with mean zero, p(z) =
NBd

c
(·|0,�2

0), and the variational family is chosen to be
parametrised as Q = {NBd

c
(·|µ,�2) | µ 2 B

d
c ,� 2 R

+
⇤ }.

3.2 Encoder and decoder

We make use of two neural networks, a decoder f✓ and an encoder g�, to parametrise the likelihood
p(·|f✓(z)) and the variational posterior q(·|g�(x)) respectively. The input of f✓ and the output of g�
need to respect the hyperbolic geometry of Z . In the following we describe appropriate choices for
the first layer of the decoder and the last layer of the encoder.

Figure 4: Illustration of an orthogonal projection on a
hyperplane in a Poincaré disc (Left) and an Euclidean
plane (Right).

Decoder In the Euclidean case, an affine
transformation can be written in the form
fa,p(z) = ha, z � pi, with orientation and
offset parameters a,p 2 R

d. This can be
rewritten in the form
fa,p(z) = sign(ha, z � pi) kak dE(z, Hc

a,p)

where Ha,p = {z 2 R
p | ha, z � pi =

0} = p + {a}? is the decision hyperplane.
The third term is the distance between z and
the decision hyperplane Hc

a,p and the first
term refers to the side of Hc

a,p where z lies.
Ganea et al. (2018) analogously introduced
an operator f c

a,p : B
d
c ! R

p on the Poincaré
ball,

f c
a,p(z) = sign(

⌦
a, logcp(z)

↵
p
) kakp d

c
p(z, H

c
a,p)
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with Hc
a,p = {z 2 B

d
c |

⌦
a, logcp(z)

↵
= 0} = expcp({a}?). A closed-formed expression for

the distance dcp(z, H
c
a,p) was also derived, dcp(z, Hc

a,p) = 1p
c
sinh�1

⇣
2
p
c|h�p�cz,ai|

(1�ck�p�czk2)kak

⌘
. The

hyperplane decision boundary Hc
a,p is called gyroplane and is a semi-hypersphere orthogonal to

the Poincaré ball’s boundary as illustrated on Figure 4. The decoder’s first layer, called gyroplane

layer, is chosen to be a concatenation of such operators, which are then composed with a standard
feed-forward neural network.

Encoder The encoder g� outputs a Fréchet mean µ 2 B
d
c and a distortion � 2 R

+
⇤ which

parametrise the hyperbolic variational posterior. The Fréchet mean µ is obtained as the image
of the exponential map expc0, and the distortion � through a softplus function.

3.3 Training

We follow a standard variational approach by deriving a lower bound on the marginal likelihood.
The ELBO is optimised via an unbiased Monte Carlo (MC) estimator thanks to the reparametrisable
sampling schemes that we introduce for both hyperbolic normal distributions.

Objective The evidence lower bound (ELBO) can readily be extended to Riemannian latent spaces
by applying Jensen’s inequality w.r.t. dM (see Appendix A)

log p(x) � LM(x; ✓,�) ,
Z

M
ln

✓
p✓(x|z)p(z)
q�(z|x)

◆
q�(z|x) dM(z).

Densities have been introduced earlier in Equations 1 and 2.

Algorithm 1 Hyperbolic normal sampling
scheme
Require: µ, �2, dimension d, curvature c

if Wrapped normal then v ⇠ N (0d,�2)
else if Riemannian normal then

Let g be a piecewise exponential proposal
while sample r not accepted do

Propose r ⇠ g(·), u ⇠ U([0, 1])
if u < ⇢R(r)

g(r) then Accept sample r

Sample direction ↵ ⇠ U(Sd�1)
v  r↵

Return z = expcµ
�
v/�c

µ

�

Reparametrisation In the Euclidean setting, by
working in polar coordinates, an isotropic normal
distribution centred at µ can be described by a
directional vector ↵ uniformly distributed on the
hypersphere and a univariate radius r = dE(µ, z)
following a �-distribution. In the Poincaré ball
we can rely on a similar representation, through a
hyperbolic polar change of coordinates, given by

z = expcµ

⇣
G(µ)�

1
2 v
⌘
= expcµ

✓
r

�c
µ

↵

◆
(3)

with v = r↵ and r = dcp(µ, z). The direction
↵ is still uniformly distributed on the hypersphere
and for the wrapped normal, the radius r is still
�-distributed, while for the Riemannian normal its
density ⇢R(r) is given by (derived in Appendix B.4.1)

⇢W(r) / 1R+(r) e
� r2

2�2 rd�1, ⇢R(r) / 1R+(r)e
� r2

2�2

✓
sinh(

p
cr)p

c

◆d�1

.

The latter density ⇢R(r) can efficiently be sampled via rejection sampling with a piecewise exponential
distribution proposal. This makes use of its log-concavity. The Riemannian normal sampling scheme
is not directly affected by dimensionality since the radius is a one-dimensional random variable. Full
sampling schemes are described in Algorithm 1, and in Appendices B.4.1 and B.4.2.

Gradients Gradients rµz can straightforwardly be computed thanks to the exponential map
reparametrisation (Eq 3), and gradients w.r.t. the dispersion r�z are readily available for the
wrapped normal. For the Riemannian normal, we additionally rely on an implicit reparametrisation
(Figurnov et al., 2018) of ⇢R via its cdf FR(r;�).

Optimisation Parameters of the model living in the Poincaré ball are parametrised via the expo-
nential mapping: �i = expc0(�

0
i ) with �0

i 2 R
m, so we can make use of usual optimisation schemes.

Alternatively, one could directly optimise such manifold parameters with manifold gradient descent
schemes (Bonnabel, 2013).
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4 Related work
Hierarchical models The Bayesian Nonparametric literature has a rich history of explicitly mod-
elling the hierarchical structure of data (Teh et al., 2008; Heller and Ghahramani, 2005; Griffiths
et al., 2004; Ghahramani et al., 2010; Larsen et al., 2001; Salakhutdinov et al., 2011). The discrete
nature of trees used in such models makes learning difficult, whereas performing optimisation in a
continuous hyperbolic space is an attractive alternative. Such an approach has been empirically and
theoretically shown to be useful for graphs and word embeddings (Nickel and Kiela, 2017, 2018;
Chamberlain et al., 2017; Sala et al., 2018; Tifrea et al., 2019).

Distributions on manifold Probability measures defined on manifolds are of interest to model
uncertainty of data living (either intrinsically or assumed to) on such spaces, e.g. directional
statistics (Ley and Verdebout, 2017; Mardia and Jupp, 2009). Pennec (2006) introduced a maximum
entropy generalisation of the normal distribution, often referred to as Riemannian normal, which
has been used for maximum likelihood estimation in the Poincaré half-plane (Said et al., 2014)
and on the hypersphere (Hauberg, 2018). Another class of manifold probability measures are
wrapped distributions, i.e. push-forward of distributions defined on a tangent space, often along the
exponential map. They have recently been used in auto-encoder frameworks on the hyperboloid

model (of hyperbolic geometry) (Grattarola et al., 2019; Nagano et al., 2019) and on Lie groups
(Falorsi et al., 2018). Rey et al. (2019); Li et al. (2019) proposed to parametrise a variational family
through a Brownian motion on manifolds such as spheres, tori, projective spaces and SO(3).

VAEs with Riemannian latent manifold VAEs with non Euclidean latent space have been recently
introduced, such as Davidson et al. (2018) making use of hyperspherical geometry and Falorsi
et al. (2018) endowing the latent space with a SO(3) group structure. Concurrent work considers
endowing auto-encoders (AEs) with a hyperbolic latent space. Grattarola et al. (2019) introduces a
constant curvature manifold (CCM) (i.e. hyperspherical, Euclidean and hyperboloid) latent space
within an adversarial auto-encoder framework. However, the encoder and decoder are not designed to
explicitly take into account the latent space geometry. Ovinnikov (2018) recently proposed to endow
a VAE latent space with a Poincaré ball model. They choose a Wasserstein Auto-Encoder framework
(Tolstikhin et al., 2018) because they could not derive a closed-form solution of the ELBO’s entropy
term. We instead rely on a MC estimate of the ELBO by introducing a novel reparametrisation of the
Riemannian normal. They discuss the Riemannian normal distribution, yet they make a number of
heuristic approximations for sampling and reparametrisation. Also, Nagano et al. (2019) propose
using a wrapped normal distribution to model uncertainty on the hyperboloid model of hyperbolic
space. They derive its density and a reparametrisable sampling scheme, allowing such a distribution
to be used in a variational learning framework. They apply this wrapped normal distribution to
stochastically embed graphs and to parametrise the variational family in VAEs. Ovinnikov (2018) and
Nagano et al. (2019) rely on a standard feed-forward decoder architecture, which does not take into
account the hyperbolic geometry.

5 Experiments
We implemented our model and ran our experiments within the automatic differentiation framework
PyTorch (Paszke et al., 2017). We open-source our code for reproducibility and to benefit the
community 1. Experimental details are fully described in Appendix C.

5.1 Branching diffusion process

We assess our modelling assumption on data generated from a branching diffusion process which
explicitly incorporate hierarchical structure. Nodes yi 2 R

n are normally distributed with mean
given by their parent and with unit variance. Models are trained on a noisy vector representations
(x1, . . . ,xN ), hence do not have access to the true hierarchical representation. We train several
Pc-VAEs with increasing curvatures, along with a vanilla N -VAE as a baseline. Table 1 shows that
the Pc-VAE outperforms its Euclidean counterpart in terms of test marginal likelihood. As expected,
we observe that the performance of the N -VAE is recovered as the curvature c tends to zero. Also,
we notice that increasing the prior distribution distortion �0 helps embeddings lie closer to the border,

1https://github.com/emilemathieu/pvae
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Figure 5: Latent representations learned by – P1-VAE (Leftmost), N -VAE (Center-Left), PCA
(Center-Right) and GPLVM (Rightmost) trained on synthetic dataset. Embeddings are represented by
black crosses, and colour dots are posterior samples. Blue lines represent true hierarchy.

and as a consequence improved generalisation performance. Figure 5 represents latent embeddings
for P1-VAE and N -VAE, along with two embedding baselines: principal component analysis (PCA)
and a Gaussian process latent variable model (GPLVM). A hierarchical structure is somewhat learned
by all models, yet Pc-VAE’s latent representation is the least distorted.

Table 1: Negative test marginal likelihood estimates LIWAE (Burda et al., 2015) (computed with 5000
samples) on the synthetic dataset. 95% confidence intervals are computed over 20 trainings.

Models

�0 N -VAE P0.1-VAE P0.3-VAE P0.8-VAE P1.0-VAE P1.2-VAE

LIWAE 1 57.1±0.2 57.1±0.2 57.2±0.2 56.9±0.2 56.7±0.2 56.6±0.2

LIWAE 1.7 57.0±0.2 56.8±0.2 56.6±0.2 55.9±0.2 55.7±0.2 55.6±0.2

5.2 Mnist digits

The MNIST (LeCun and Cortes, 2010) dataset has been used in the literature for hierarchical
modelling (Salakhutdinov et al., 2011; Saha et al., 2018). One can view the natural clustering in
MNIST images as a hierarchy with each of the 10 classes being internal nodes of the hierarchy.
We empirically assess whether our model can take advantage of such simple underlying hierar-
chical structure, first by measuring its generalisation capacity via the test marginal log-likelihood.
Table 2 shows that our model outperforms its Euclidean counterpart, especially for low latent
dimension. This can be interpreted through an information bottleneck perspective; as the latent
dimensionality increases, the pressure on the embeddings quality decreases, hence the gain from
the hyperbolic geometry is reduced (as observed by Nickel and Kiela (2017)). Also, by using the
Riemannian normal distribution, we achieve slightly better results than with the wrapped normal.

Table 2: Negative test marginal likelihood estimates computed with 5000 samples. 95% confidence
intervals are computed over 10 runs. * indicates numerically unstable settings.

Dimensionality
c 2 5 10 20

N -VAE (0) 144.5±0.4 114.7±0.1 100.2±0.1 97.6±0.1

P -VAE (Wrapped)
0.1 143.9±0.5 115.5±0.3 100.2±0.1 97.2±0.1

0.2 144.2±0.5 115.3±0.3 100.0±0.1 97.1±0.1

0.7 143.8±0.6 115.1±0.3 100.2±0.1 97.5±0.1

1.4 144.0±0.6 114.7±0.1 100.7±0.1 98.0±0.1

P -VAE (Riemannian)
0.1 143.7±0.6 115.2±0.2 99.9±0.1 97.0±0.1

0.2 143.8±0.4 114.7±0.3 99.7±0.1 97.4±0.1

0.7 143.1±0.4 114.1±0.2 101.2±0.2 *
1.4 142.5±0.4 115.5±0.3 * *
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Figure 6: Decoder ablation study on MNIST
with wrapped normal P1-VAE. Baseline de-
coder is a MLP.

We conduct an ablation study to assess the usefulness
of the gyroplane layer introduced in Section 3.2. To
do so we estimate the test marginal log-likelihood
for different choices of decoder. We select a multi-
layer perceptron (MLP) to be the baseline decoder.
We additionally compare to a MLP pre-composed by
log0, which can be seen as a linearisation of the space
around the centre of the ball. Figure 6 shows the rel-
ative performance improvement of decoders over the
MLP baseline w.r.t. the latent space dimension. We
observe that linearising the input of a MLP through
the logarithm map slightly improves generalisation,
and that using a gyroplane layer as the first layer
of the decoder additionally improves generalisation.
Yet, these performance gains appear to decrease as
the latent dimensionality increases.

Second, we explore the learned latent representations
of the trained P -VAE and N -VAE models shown in Figure 7. Qualitatively our P -VAE produces
a clearer partitioning of the digits, in groupings of {4, 7, 9}, {0, 6}, {2, 3, 5, 8} and {1}, with right-
slanting {5, 8} being placed separately from the non-slanting ones. Recall that distances increase
towards the edge of the Poincaré ball. We quantitatively assess the quality of the embeddings by
training a classifier predicting labels. Table 3 shows that the embeddings learned by our P -VAE
model yield on average an 2% increase in accuracy over the digits. The full confusion matrices are
shown in Figure 12 in Appendix.

Table 3: Per digit accuracy of a classifier trained on the learned latent 2-d embeddings. Results are
averaged over 10 sets of embeddings and 5 classifier trainings.

Digits 0 1 2 3 4 5 6 7 8 9 Avg
N -VAE 89 97 81 75 59 43 89 78 68 57 73.6
P1.4-VAE 94 97 82 79 69 47 90 77 68 53 75.6

Figure 7: MNIST Posteriors mean (Left) sub-sample of digit images associated with posteriors mean
(Middle) Model samples (Right) – for P1.4-VAE (Top) and N -VAE (Bottom).
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5.3 Graph embeddings

We evaluate the performance of a variational graph auto-encoder (VGAE) (Kipf and Welling, 2016)
with Poincaré ball latent space for link prediction in networks. Edges in complex networks can
typically be explained by a latent hierarchy over the nodes (Clauset et al., 2008). We believe the
Poincaré ball latent space should help in terms of generalisation. We demonstrate these capabilities
on three network datasets: a graph of Ph.D. advisor-advisee relationships (Nooy et al., 2011), a
phylogenetic tree expressing genetic heritage (Hofbauer et al., 2016; Sanderson and Eriksson, 1994)
and a biological set representing disease relationships (Goh et al., 2007; Rossi and Ahmed, 2015).

We follow the VGAE model, which maps the adjacency matrix A to node embeddings Z through
a graph convolutional network (GCN), and reconstructs A by predicting edge probabilities from
the node embeddings. In order to take into account the latent space geometry, we parametrise the
probability of an edge by p(Aij = 1|zi, zj) = 1 � tanh(dM(zi, zj)) 2 (0, 1] with dM the latent
geodsic metric. We use a Wrapped Gaussian prior and variational posterior for the P1-VAE.

We set the latent dimension to 5. We follow the training and evaluation procedures introduced in
Kipf and Welling (2016). Models are trained on an incomplete adjacency matrix where some of the
edges have randomly been removed. A test set is formed from previously removed edges and an
equal number of randomly sampled pairs of unconnected nodes. We report in Table 4 the area under

the ROC curve (AUC) and average precision (AP) evaluated on the test set. It can be observed that
the P -VAE performs better than its Euclidean counterpart in terms of generalisation to unseen edges.

Table 4: Results on network link prediction. 95% confidence intervals are computed over 40 runs.
Phylogenetic CS PhDs Diseases

AUC AP AUC AP AUC AP
N -VAE 54.2±2.2 54.0±2.1 56.5±1.1 56.4±1.1 89.8±0.7 91.8±0.7

P -VAE 59.0±1.9 55.5±1.6 59.8±1.2 56.7±1.2 92.3±0.7 93.6±0.5

6 Conclusion
In this paper we have explored VAEs with a Poincaré ball latent space. We gave a thorough treatment
of two canonical – wrapped and maximum entropy – normal generalisations on that space, and
a rigorous analysis of the difference between the two. We derived the necessary ingredients for
training such VAEs, namely efficient and reparametrisable sampling schemes, along with probability
density functions for these two distributions. We introduced a decoder architecture explicitly taking
into account the hyperbolic geometry, and empirically showed that it is crucial for the hyperbolic
latent space to be useful. We empirically demonstrated that endowing a VAE with a Poincaré ball
latent space can be beneficial in terms of model generalisation and can yield more interpretable
representations if the data has hierarchical structure.

There are a number of interesting future directions. There are many models of hyperbolic geometry,
and several have been considered in a gradient-based setting. Yet, it is still unclear which models
should be preferred and which of their properties matter. Also, it would be useful to consider
principled ways of assessing whether a given dataset has an underlying hierarchical structure, in the
same way that topological data analysis (Pascucci et al., 2011) attempts to discover the topologies
that underlie datasets.
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