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Abstract

We study the design of computationally e�cient algorithms with provable
guarantees, that are robust to adversarial (test time) perturbations. While
there has been an explosion of recent work on this topic due to its connec-
tions to test time robustness of deep networks, there is limited theoretical
understanding of several basic questions like (i) when and how can one de-
sign provably robust learning algorithms? (ii) what is the price of achieving
robustness to adversarial examples in a computationally e�cient manner?
The main contribution of this work is to exhibit a strong connection between
achieving robustness to adversarial examples, and a rich class of polynomial
optimization problems, thereby making progress on the above questions.
In particular, we leverage this connection to (a) design computationally
e�cient robust algorithms with provable guarantees for a large class of
hypothesis, namely linear classifiers and degree-2 polynomial threshold
functions (PTFs), (b) give a precise characterization of the price of achieving
robustness in a computationally e�cient manner for these classes, (c) design
e�cient algorithms to certify robustness and generate adversarial attacks in
a principled manner for 2-layer neural networks. We empirically demonstrate
the e�ectiveness of these attacks on real data.

1 Introduction

The empirical success of deep learning has led to numerous unexplained phenomena about
which our current theoretical understanding is limited. Examples include the ability of
complex models to generalize well and e�ectiveness of first order methods on optimizing
training loss. The focus of this paper is on the phenomenon of adversarial robustness, that
was first pointed out by Szegedy et al. [33]. On many benchmark data sets, deep networks
optimized on the training set can often be fooled into misclassifying a test example by making
a small adversarial perturbation that is imperceptible to a human labeler. This has led to a
proliferation of work on designing robust algorithms that defend against such adversarial
perturbations, as well as attacks that aim to break these defenses.
In this work we choose to focus on perturbation defense, the most widely studied formulation
of adversarial robustness [24]. In the perturbation defense model, given a classifier f , an
adversary can take a test example x generated from the data distribution and perturb it to x̃
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such that Îx ≠ x̃Î Æ ”. Here ” characterizes the amount of power the adversary has and the
distance is typically measured in the ¸Œ norm (other norms that have been studied include
the ¸2 norm). Given a loss function ¸(·), the goal is to optimize the robust loss defined as

E(x,y)≥D

Ë
max

x̃:Îx≠x̃ÎŒÆ”
¸(f(x̃), y)

È
.

One would expect that when ” is small the label y of an example does not change, thereby
motivating the robust loss objective. Despite a recent surge in e�orts to theoretically
understand adversarial robustness [36, 37, 38, 21, 30, 13, 4, 10, 16, 34, 25, 26, 11], several
central questions remain open. How can one design provable polynomial time algorithms
that are robust to adversarial perturbations? Given a classifier and a test input, how can one
provably construct an adversarial example in polynomial time or certify that none exists?
What computational barriers exist when designing adversarially robust learning algorithms?
In this work we identify and study a natural class of polynomial optimization problems
that are intimately connected to adversarial robustness, and help us shed new light on all
three of the above questions simultaneously! As a result we obtain the first polynomial time
learning algorithms for a large class of functions that are optimally robust to adversarial
perturbations. Furthermore, we also provide nearly matching computational intractability
results that, together with our upper bounds give a sharp characterization of the price of
achieving adversarial robustness in a computationally e�cient manner. We now summarize
our main results.
Our Contributions Polynomial optimization and Adversarial Robustness. We
identify a natural class of polynomial optimization problems that provide a common and
principled framework for studying various aspects of adversarial robustness. These problems
are also closely related to a rich class of well-studied problems that include the Grothendiëck
problem and its generalizations [2, 9, 1, 22]. Given a classifier of the form sgn(g(x)) with
g : Rn æ R, input x, and budget ” > 0, the optimization problem is

max
zœRn:ÎzÎŒÆ”

g(x + z).

Usually, such problems are NP-hard and one relaxes them to find a ẑ such that g(x + ẑ)
comes as close to g(x + z

ú) in the objective value, where z
ú is the optimal solution. We

instead require the algorithm to output a ẑ such that g(x + ẑ) Ø g(x + z
ú) at the cost of

violating the ¸Œ constraint by a factor “ Ø 1. An e�cient algorithm for producing such
a ẑ leads to an adversarial attack (in the relaxed ¸Œ neighborhood of radius “”) when an
adversarial example exists. On the other hand, if the algorithm produces no ‚z, then this
guarantees that there is no adversarial example within the ¸Œ neighborhood of radius ”.
We then design such algorithms based on convex programming relaxations to get the first
provable polynomial time adversarial attacks when the given classifier is a degree-1 or a
degree-2 polynomial threshold function (PTF).
Algorithms for Learning Adversarially Robust Classifiers. Next we use the algorithm
for finding adversarial examples to design polynomial time algorithms for learning robust
classifiers for the class of degree-1 and degree-2 polynomial threshold functions (PTFs).
To incorporate robustness we introduce a parameter “, that helps clarify the tradeo�
when computational e�ciency is desired. We focus on the 0/1 error and say that a
class F of PTFs of VC dimension � is “-approximately robustly learnable if there exists
a (randomized) polynomial time algorithm that, for any given Á, ” > 0, takes as input
poly(�,

1
Á ) examples generated from a distribution and labeled by a function in F that has

zero ”-robust error (realizable case), outputs a classifier from F that has (”/“)-robust error
upper bounded by Á. See Section 2 for the formal definition. We design polynomial time
algorithms for degree-1 and degree-2 PTFs with “ = 1 and “ = O(

Ô
log n) respectively. Our

next result that we discuss below a nearly matching lower bound. Together this gives nearly
optimal approximately robust polynomial time algorithms for learning PTFs of degree at
most 2.
Computational Hardness. While our algorithm for degree-1 PTFs is optimal, i.e., has
“ = 1, for degree-2 and higher PTFs, we show that one indeed has to pay a price for
computational robustness. We establish this by proving that robust learning of degree-2
PTFs is computationally hard for “ = o(logc

n), for some constant c > 0 (see Section 5

2



for formal statements). This is in sharp contrast to the non-robust setting (” = 0), where
there exist polynomial time algorithms for constant degree PTFs (in the literature this is
referred to as proper PAC learning in the realizable setting). More importantly, our lower
bound again leverages the connection to polynomial optimization and in fact shows that
robust learning of degree-2 PTFs for “ = o(Ô÷approx) is NP-hard where ÷approx is precisely
the hardness of approximation factor of a well-studied combinatorial optimization problem
called Quadratic Programming. Hence, any significant improvement in the approximation
factor in our upper bound is unlikely. While our hardness result applies to algorithms that
output a classifier of low error, we also prove a more robust hardness result showing that for
learning degree-2 and higher PTFs without any loss in the robustness parameter, i.e, “ = 1,
it is computationally hard to even find a classifier of any constant error in the range (0,

1
4 ).

Application to Neural Networks. Finally, we show that the connection to polynomial
optimization also leads to new algorithms for generating adversarial attacks on neural
networks. We focus on 2-layer neural networks with ReLU activations. We show that given
a network and a test input, the problem of finding an adversarial example can also be
phrased as an optimization problem of the kind studied for PTFs. We design a semi-definite
programming (SDP) based polynomial time algorithm to generate an adversarial attack for
such networks and compare our attack to the state-of-the-art attack of Madry et al. [24] on
the MNIST data set.
Comparison to Related Work. Among the several recent and concurrent works on
this topic, the most relevant to our result is the work of Bubeck et al. [7, 8] that studies
computational complexity of robust learning. We defer other related work to Section C. In
the rest of the paper, we define our model formally and give an overview of our techniques in
Section 2. We then describe the connection to polynomial optimization in Section 3 and use
it to design robust learning algorithms in Section 4, and derive computational intractability
results in Section 5. In Section 6, we design adversarial attacks for 2 layer neural networks,
followed by conclusions in Section 7.

2 Model and Preliminaries

We focus on binary classification, and adversarial perturbations are measured in ¸Œ norm.
For a vector x œ Rn, we have ÎxÎŒ = maxi |xi|. We study robust learning of polynomial
threshold functions (PTFs). These are functions of the form sgn(p(x)), where p(x) is a
polynomial in n variables over the reals. Here sgn(t) equals +1, if t Ø 0 and ≠1 otherwise.
Given y, y

Õ œ {≠1, 1}, we study the 0/1 loss defined as ¸(y, y
Õ) = 1 if y ”= y

Õ and 0 otherwise.
Given a binary classifier sgn(g(x)), an input x

ú, and a budget ” > 0, we say that x
ú + z is an

adversarial example (for input x
ú) if sgn(g(xú + z)) ”= sgn(g(xú)) and that ÎzÎŒ Æ ”. One

could similarly define the notion of adversarial examples for other norms. For a classifier
with multiple outputs, we say that x

ú + z is an adversarial example i� the largest co-ordinate
of g(xú + z) di�ers from the largest co-ordinate of g(xú). We now define the notion of robust
error of a classifier.
Definition 2.1 (”-robust error). Let f(x) be a Boolean function mapping Rn to {≠1, 1}.
Let D be a distribution over Rn ◊ {≠1, 1}. Given ” > 0, we define the ”-robust error of
f with respect to D as err”,D(f) = E(x,y)≥D

#
supzœBn

Œ(0,”) ¸(f(x + z), y)
$
. Here B

n
Œ(0, ”)

denotes the ¸Œ ball of radius ”, i.e., B
n
Œ(0, ”) = {x œ Rn : ÎxÎŒ Æ ”}.

Analogous to empirical error in PAC learning, we denote ˆerr”,S(f) to be the ”-robust empirical
error of f , i.e., the robust error computed on the given sample S. To bound generalization gap,
we will use the notion of adversarial VC dimension as introduced in [10] (See Appendix A).
Next we define robust learning for PTFs.
Definition 2.2 (“-approximately robust learning). Let F be the class of degree-d PTFs
from Rn ‘æ {≠1, 1} of VC dimension � = O(nd). For “ Ø 1, an algorithm A “-approximately
robustly learns F if the following holds for any Á, ”, ÷ > 0: Given m = poly(�,

1
Á ,

1
÷ ) samples

from a distribution D over Rn ◊{≠1, 1}, if F contains a function f
ú such that err”,D(fú) = 0,

then with probability at least 1 ≠ ÷, A runs in time polynomial in m and outputs f œ F such
that err”/“,D(f) Æ Á. If F admits such an algorithm then we say that F is “-approximately
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robustly learnable. Here “ quantifies the price of achieving computationally e�cient robust
learning, with “ = 1 implying optimal learnability.

A Note about the Model and the Realizability Assumption Our definition of an
adversarial example requires that sgn(g(xú + z)) ”= sgn(g(xú)), whereas for robust learning
we require a classifier that satisfies sgn(g(xú + z)) ”= y, where y is the given label of x

ú. This
might create two sources of confusion to the reader: a) In general the two requirements
might be incompatible, and b) It might happen that initially sgn(g(xú)) predicts the true
label incorrectly but there is a perturbation z such that sgn(g(xú + z)) predicts the true
label correctly. In this case one should not count z as an adversarial example. To address
(a) we would like to stress that all our guarantees hold under the realizability assumption,
i.e., we assume that there is true function c

ú such that for all examples x in the support of
the distribution and all perturbations of magnitude upto ”, sgn(cú(xú + z)) = sgn(cú(xú)).
Hence, there will indeed be a target concept for which no adversarial example exists and as a
result will have zero robust error. To address (b) we would like to point out that in Section 4
where we use the subroutine for finding adversarial examples to learn a good classifier sgn(g),
we always enforce the constraint that on the training set sgn(g(xú)) = sgn(cú(xú)) and g is as
robust as possible. Hence when we find an adversarial example for a point x

ú in our training
set, it will indeed satisfy that sgn(g(xú + z)) ”= sgn(cú(x)) and correctly penalize g for the
mistake. More generally, we could also define an adversarial example as one where given pair
(xú

, y) the goal is to find a z such that sgn(g(xú+z)) ”= y. All of our guarantees from Section 3
apply to this definition as well. Finally, in the non-realizable case, the distinction between
defining adversarial robustness as either sgn(g(xú + z)) ”= sgn(g(xú)), or sgn(g(xú + z)) ”= y,
or even sgn(g(xú + z)) ”= sgn(cú(x)) matters and has di�erent computational and statistical
implications [11, 18]. Understanding when one can achieve computationally e�cient robust
learning in the non-realizable case is an important direction for future work.
The definition of “-approximately robustly learnability has the realizability assumption built
into it. So, when we prove that a class F is “-approximately robustly learnable, we find an
approximate robust learner from F under the realizability assumption on F i.e. for a set
of points from the distribution, the algorithm guarantees to return an approximate robust
learner only if there exists a perfect robust learner in the class F of learners.

3 Finding Adversarial Examples using Polynomial Optimization

In this section we introduce the broad class of polynomial optimization problems which are
useful in designing algorithms with provable guarantees for generating adversarial examples
for large classes like PTFs, and will later be useful for two layer neural networks in Section 6.
These polynomial optimization problems are generalizations of well-studied combinatorial
optimization problems like the Grothëndieck problem and computing operator norms of
matrices [19, 2, 9]. We then design algorithms with provable guarantees for some of these
classes. The following simple proposition illustrates the connection.
Proposition 3.1. Let “ Ø 1. There is an e�cient algorithm that given a classifier sgn(f(x))
and a point x

ú, guarantees to either (a) find an adversarial example in B
n
Œ(xú

, “”), or (b)
certify the absence of any adversarial example in B

n
Œ(xú

, ”), given an e�cient algorithm
that given x and a polynomial g(z) œ { f(xú + z), ≠f(xú + z) } finds a ‚z such that g(‚z) Ø
maxÎzÎŒÆ” g(z) with Î‚zÎŒ Æ “”.

When the classifier is a degree-d PTF of the form sgn(f), we get the following problem:
given as input a degree d polynomial g (potentially di�erent from f), and any ÷, ” > 0, find
in time poly(n, log( 1

÷ )) and with probability at least 1 ≠ ÷, outputs a point x̂ s.t.

g(x̂) Ø max
xœBn

Œ(0,”)
g(x) and ‚x œ B

n
Œ(0, “”). (1)

This is closely related to the standard approximation variant of polynomial maximization
problem where the goal is to obtain, in polynomial time, an objective value as close to the
optimal one, without violating the B

n
Œ ball constraint. Instead, our problem asks for the

same objective value at the cost of an increase in the radius of the optimization ball (this is
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1. Given (A, b, c) that defines the polynomial g(z) := z
T

Az + b
T

z + c.
2. Solve the SDP given by following vector program:

max
q

i,j AijÈui, ujÍ +
q

i biÈui, u0Í + c subject to ÎuiÎ2
2 Æ ”

2 ’i œ [n], Îu0Î2
2 = 1.

3. Let u
‹
i represent the component of ui orthogonal to u0. Draw ’ ≥ N(0, I) a

standard Gaussian vector, and set ‚zi := Èui, u0Í+Èu‹
i , ’Í for each i œ { 0, 1, . . . , n }.

4. Repeat rounding O(log(1/÷)) random choices of ’ and pick the best choice.

Figure 1: The SDP-based algorithm for the degree-2 optimization problem.

sometimes called a (1, “)-bicriteria approximation). This changes the flavor of the problem,
and introduces new challenges particularly when the polynomial g is non-homogenous. We
begin with the following simple claim.
Claim 3.2. There is a deterministic linear-time algorithm that given any linear threshold
function sgn(bT

x + c), a point x
ú and ” > 0, provably finds an adversarial example ¸Œ ball

of ” around x
ú when it exists.

In Section 4, this will be used to give robust learning algorithms for linear classifiers. Our
main result of this section is a provable algorithm for degree-2 PTFs.
Theorem 3.3. For any ”, ÷ > 0, there is a polynomial time algorithm that given a degree-2
PTF sgn(f(x)) and a example (xú

, sgn(f(xú))), guarantees at least one of the following holds
with probability at least (1 ≠ ÷): (a) finds an adversarial example (xú + ‚z) i.e., sgn(f(xú)) ”=
sgn(f(xú + ‚z)), with Î‚zÎŒ Æ C”

Ô
log n, or (b) certifies that ’z : ÎzÎŒ Æ ”, sgn(f(xú)) =

sgn(f(xú + z)) for some constant C > 0.

To establish the above theorem using Proposition 3.1, we need to design a polynomial time
algorithm that given any degree-2 polynomial g(x) = x

T
Ax + b

T
x + c with A œ Rn◊n

, b œ
Rn

, c œ R, finds a solution ‚x with Î‚xÎŒ Æ O(
Ô

log n) · ” such that g(‚x) Ø maxÎxÎŒÆ” g(x).
We design such an algorithm via an semi-definite programming (SDP) based approach that
is directly inspired by the algorithm for quadratic programming (QP) by [27, 9]. However,
further complications arise due to non-homogeneity, and as our goal is to preserve the
objective function while potentially relaxing the constraint. We defer to the appendix for
a detailed discussion. In Fig. 1 we describe the SDP that we use and the corresponding
rounding algorithm to solve the optimization problem. The vector program given in step
2 of Algorithm 1 is an SDP where the variables are Xij = Èui, ujÍ, and can be solved in
polynomial time up to any additive error (using the Ellipsoid algorithm). We defer the the
details Appendix D.

4 From Adversarial Examples to Robust Learning Algorithms

In this section we show how to leverage algorithms for finding adversarial examples to design
polynomial time robust learning algorithms for degree-1 and degree-2 PTFs. We obtain our
upper bounds by establishing a general algorithmic framework that relates robust learnability
of PTFs to the polynomial maximization problem studied in Section 3.
Definition 4.1 (“-factor admissibility). For “ Ø 1, we say that a class F of PTFs is “-factor
admissible if F has the following properties:
(1) For any a, b, c œ R s.t. sgn(f(x)), sgn(g(x)) œ F , we have sgn(af(x) + bg(x) + c) œ F .
Further for any r œ Rn, we have sgn(g(x + r)) œ F .
(2) There is a polynomial time algorithm that solves the optimization problem of maximizing
g(x + z) around any point x, i.e., given a g œ F , an x and ” > 0, the algorithm outputs a ẑ

such that g(x + ẑ) Ø maxzœBŒ(0,”) g(x + z)and ÎzÎŒ Æ “”.

The first two conditions above are natural and are satisfied by many classes of PTFs. The
third condition in the above definition concerns the optimization problem studied in Section 3.
The main result of this section, stated below, is the claim that any admissible class of PTFs
is also robustly learnable in polynomial time.
Theorem 4.2. Let F be a class of PTFs that is “-factor admissible for “ Ø 1. Then F is
“-approximate robustly learnable.
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1. Let S = (x1, y1), (x2, y2), . . . , (xm, ym) be the given training set.
2. Find a degree-d polynomial g with sgn(g(x)) œ F that satisfies:

’i œ [m], sup
zœBn

Œ(0,”)
(≠yi)g(xi + z) < 0.

Figure 2: Convex program to find a PTF sgn(g(x)) œ F with zero robust empirical error.

To learn a g œ F we formulate robust empirical risk minimization as a convex program,
shown in Figure 2. Here we use the fact that the value of any polynomial g of degree d at a
given point x can be expressed as the inner product between the co-e�cient vector of g and
an appropriate vector Â(x) œ RD where D =

!n+d≠1
d

"
. It is easy to see that the constraints

in the program above are linear in the coe�cients of g. Furthermore, checking the validity of
each constraint is really asking to check the robustness of g at a given point (xi, yi), which is
an NP-hard problem [9]. Instead, we will use the fact that F is “-factor admissible to design
an approximate separation oracle for the type of constraints enforced in the program. Below
we give a proof sketch of Theorem 4.2 and defer the full proof to Appendix E.

Proof Sketch of Theorem 4.2. Let B be an algorithm that achieves the “-factor admissibility
for the class F . Given S, we will run the Ellipsoid algorithm on the convex program in
Figure 2. In each iteration, for each i œ [m], we run B on the polynomial yig(xi + z), where z

is the variable and xi is fixed to be the ith data point. From the guarantee of B we get that
if there exists an i and z with ÎzÎŒ Æ ”/“, such that (≠yi)g(xi + z) > 0, then with high
probability, B will output a violated constraint of the convex program, i.e., an index i œ [m]
and ẑ œ B

n
Œ(0, ”) such that (≠yi)g(xi + ẑ) > 0. This gives us a separating hyperplane of the

form sgn(≠yig(xi + ẑ)), and the algorithm continues. This means that when the algorithm
terminates, we would have the empirical robust error ˆerr”/“,S(sgn(g)) = 0. Using the uniform
convergence bound from Lemma A.1, this would imply that err”/“,D(sgn(g)) Æ Á.
As a result we get the following corollaries about linear classifier and degree-2 PTFs. The
proof for linear classifiers just follows from Claim 3.2, and Theorem 3.3 immediately implies
the result for degree-2 PTFs.
Corollary 4.3. The class of linear classifiers is optimally robustly learnable. The class of
degree-2 PTFs is O(

Ô
log n)-approximately robustly learnable.

5 Computational Intractability of Learning Robust Classifiers

In this section, we leverage the connection to polynomial optimization to complement
our upper bound with the following nearly matching lower bound.We give a reduction
from Quadratic Programming (QP) where given a polynomial p(x) =

q
i<j aijxixj , and

a value s, the goal is to distinguish whether maxxœ{≠1,1}np(x) < s or whether exists an
x such that p(x) > s÷approx. It is known that the distinguishing problem is hard for
÷approx = O(logc

n) for some constant c > 0 [3]; moreover the state-of-the-art algorithms
give a ÷approx = O(log n) factor approximation [9] and improving upon this factor is a major
open problem. By appropriately scaling the instance, this immediately implies the hardness
of checking whether a given degree-2 PTF is robust around a given point.
However, this does not su�ce for hardness of learning, since given a distribution supported
at a single point, there is a trivial constant classifier that robustly classifies the instance
correctly. More generally, there could exist a di�erent degree-2 PTF that could be easy to
certify for the given point. Instead, given a degree-2 PTF sgn(p(x)), we carefully construct
a set of O(n2) points such that any classifier that is robust on an instance supported on
the set will have to be close to the given polynomial p. Having established this, we can
distinguish between the two cases of the QP problem by whether the learning algorithm is
able to output a robust classifier or not. This is formalized below.
Theorem 5.1. There exists ”, Á > 0, such that assuming NP ”= RP there is no algorithm
that given a set of N = poly(n,

1
Á ) samples from a distribution D over Rn ◊ {≠1, +1}, runs

in time poly(N) and distinguishes between the following two cases for any ”
Õ = o(Ô÷approx”):

• Yes: There exists a degree-2 PTF that has ”-robust error of 0 w.r.t. D.
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• No: There exists no degree-2 PTF that has ”
Õ-robust error at most Á w.r.t. D.

Here ÷approx is the hardness of approximation factor of the QP problem.
Remark 5.2. The above theorem proves that any polynomial time algorithm that always
outputs a robust classifier (or declares failure if it does not find one) will have to incur an
extra factor of �(Ô÷approx) in the robustness parameter ”. Our upper bound in Section 4
on the other hand matches this bound. While our lower bound applies to algorithms that
output a classifier of low error, in Appendix (see Theorem G.6) we also prove a more robust
lower bound that rules out the possibility of an e�cient robust learner that incurs an error
less than 1/4.

6 Finding Adversarial Examples for Two Layer Neural Networks

Next we use the framework in Section 3 to design new algorithms for finding adversarial
examples in two layer neural networks with ReLU activations. We describe the setting
for binary classification below. A two layer neural network with ReLU gates is given
by parameters (v1, v2, W ) and outputs f1(x) = v

T
1 ‡(Wx), f2(x) = v

T
2 ‡(Wx) where x œ

Rn
, v1, v2 œ Rk and W œ Rk◊n. Here ‡ : Rm æ Rm is a co-ordinate wise non-linear operator

‡(yi) = max { 0, yi } for each i œ [m]. The binary classifier corresponding to the network
is sgn(f1(x) ≠ f2(x)) = sgn(vT

‡(Wx)) where v = v1 ≠ v2. The optimization problem that
arises is the following: given an instance with A œ Rm1◊n

, — œ Rm2 , B œ Rm2◊n
, c1 œ

Rn
, c2 œ Rm1 , c0 œ R, the goal is to find opt(A, B, —, c), defined as :

opt(A, B, —, c) := max
z:ÎzÎŒÆ”

Îc2 + AzÎ1 + c
T
1 z ≠ Î— + BzÎ1 + c0

= max
z:ÎzÎŒÆ”

max
y:ÎyÎŒÆ1

y
T

Az + c
T
1 z + c

T
2 y ≠

m2ÿ

j=1
|—j + B

T
j z|. (2)

Here Bj is the jth row of B. Let c denote (c0, c1, c2), and let opt(A, B, —, c) be the optimal
value of the above problem. The following proposition holds in a slightly more general setting
where there can be an extra linear term as described below.
Proposition 6.1. Let “ Ø 1. Suppose there is an e�cient algorithm that given an instance
of problem (2) finds a solution ‚z, ‚y with Î‚zÎŒ Æ “”, Î‚yÎŒ Æ 1 such that f(‚y, ‚z) > 0 when
opt(A, b, —, c) > 0. Then there is an e�cient algorithm that given a two layer neural net
sgn(f(x)) where f(x) := v

T
‡(Wx) + (vÕ)T

x and an example x
ú, guarantees to either (a)

find an adversarial example in the B
n
Œ(xú

, “”) around x
ú, or (b) certify the absence of any

adversarial example in B
n
Œ(xú

, ”).

Our algorithm for solving (2) given in Figure 3 is inspired by Algorithm 1 for polynomial
optimization. However, the rounding algorithm di�ers because the variables yj and variables
zi serve di�erent purposes in (2), and we need to simultaneously satisfy di�erent constraints
on them to produce a valid perturbation. Moreover when the SDP is negative, then this
gives a certificate of robustness around x.
Please see Section F for a simple proof and more details. We remark that one can obtain
provable guarantees similar to Theorem 4.2 for Algorithm 3 under certain regularity conditions
about the SDP solution. However, this is unsatisfactory as this depends on the SDP solution
to the given instance, as opposed to an explicit structural property of the instance. Obtaining
provable guarantees of the latter kind is an interesting open question.
Experiments
Next, we evaluate the performance of the proposed attack in Figure 3 and compare it with
the state of the art projected gradient descent(PGD) based attack of Madry et al. [24]. Our
approach indeed finds more adversarial examples, although at a higher computational cost
since we need to solve an SDP per example and per pair of classes. We use the MNIST data
set and our 2-layer neural network has d = 784 input units, k = 1024 hidden units and 10
output units. The SDP has d + k + 1 vector variables, and takes about 200s per instance on
a standard desktop. Hence we perform our experiments on randomly chosen subsets of the
MNIST data set. Another optimization we perform for computational reasons is that given
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1. Given instance I = (A, B, —, c) of (2), solve SDP with parameter ÷ œ (0, 1):

sdp = max
ÿ

jœ[m1],iœ[n]
Aj,iÈvj , uiÍ +

nÿ

i=1
c1(i)Èui, u0Í +

m1ÿ

j=1
c2(j)Èu0, vjÍ ≠

ÿ

jœ[m2]
rj + c0

s.t.’j œ [m1] ÎviÎ2 Æ 1, ’i œ { 1, . . . , n } ÎuiÎ2 Æ ”
2
, and Îu0Î2 = 1

’j œ [k2] rj Ø (—j +
ÿ

j

Bj,iÈui, u0Í), and rj Ø ≠(—j +
ÿ

j

Bj,iÈui, u0Í).

2. Let u
‹
i , v

‹
j represent the components of ui, vj orthogonal to u0. Let Á œ (0, 1)

with Á = �(1)/
Ô

log m1. Let ’ ≥ N(0, I) be a Gaussian vector; set ’i œ
{ 0, 1, . . . , n } , ‚zi := Èui, u0Í + 1

Á Èu‹
i , ’Í, ‚yj := Èvj , u0Í + ÁÈv‹

j , ’Í.
3. Repeat rounding with poly(n) random choices of ’ and pick the best choice.

Figure 3: The SDP-based algorithm for Problem (2).
” = 0.3 PGDpass (6 ◊ 50 random samples) PGDfail (8 ◊ 100 random samples)

SDP succeeds 297 out of 300 total 244 out of 800 total
Mean : 49.5 out of 50, Std : 0.76 Mean 30.6 out of 100, Std : 2.87

” = 0.01 PGDpass (138 samples) PGDfail (100 ranked)
SDP succeeds 138 45

Table 1: For ” = 0.3, we report mean and standard deviation across batches of the number of
adversarial examples found by running our SDPattack algorithm on 6 batches of 50 random examples
from PGDpass and 8 batches of 100 random samples from PGDfail. For ” = 0.01, we run SDPattack
on all 138 examples in PGDpass and first 100 sorted examples from PGDfail.

an example x with predicted class i, we use a greedy heuristic to pick a class j ”= i for the
potential adversarial example x + z. So the numbers we report below are an underestimate of
the e�ectiveness of the full SDP based algorithm. See Appendix B for a detailed discussion.
We consider two settings of the parameter ”, the maximum amount by which each pixel can
be perturbed to produce a valid attack example. As in [24] we first choose ” = 0.3 and train a
robust 2-layer network using the algorithm in [24]. This network has an accuracy of 82.32%
and adversarial accuracy (allowing for adversarial perturbations) of 31.7% on the test set.
We then run the PGD attack and divide the test set into examples where the PGD attack
succeeds (PGDPass) and examples where the PGD attack fails (PGDfail). We then run our
attack on batches of random subsets chosen from each set. The first row of Table 1 shows the
precision and recall of our method, along with the average and the standard deviation across
the chosen batches. As one can see, our method has very high recall, i.e., whenever the PGD
attack succeeds, our SDP based algorithm also finds adversarial examples. Furthermore, on
examples where the PGD attack fails, our method is still able to discover new adversarial
examples 30% of the time. See a sample of the perturbed images produced by our method
in Section B. In particular, Figure 4 shows images of some of the examples where the SDP
based attack succeeds, but the PGDattack fails and Figure 5 shows some images where
both the PGDattack and SDP based attack succeed. A visual inspection of both the figures
reveals that our attack often produces sparse targeted attacks as opposed to PGDattack.
We also run the PGD attack on the network with ” = 0.01. Here we notice that attack
succeeds on only 138 test examples and hence we can a�ord to run our attack on all of
them. As can be seen from the second row of Table 1 our attack succeeds on all of these
examples. Further, when we run our algorithm on the first 100 examples from PGDfail
picked according to a greedy heuristic (see Section B for details), our method finds 45 new
adversarial examples. This implies at least a (138 + 45)/138 = 1.33-fold advantage here.
The experiments above suggest that our theoretical claims and algorithms can lead to
improved attacks. We would like to note that the recent work of [29] also studied SDP based
methods for providing adversarial certificates for 2-layer neural networks. However, our SDP
as outlined in Figure 3 is strictly stronger. The SDP of [29] is in fact independent of the
given example x, so we expect our method to produce better certificates. We leave as future
work the task of making our theoretical analysis practical for large scale applications.
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7 Future Directions

Design of polynomial time algorithms that provably achieve adversarial robustness is an
important direction of research. Several open questions remain to be explored further. In
Section 4 we provide a general algorithmic framework for designing polynomial time robust
algorithms. It would be interesting to use our framework to design robust algorithms for
general degree-d PTFs. While there are algorithms to approximately maximize degree-d
polynomials, they focus on the homogeneous case which does not su�ce for our purposes.
Another important direction for future work is to convert our adversarial attack algorithm
for 2-layer neural networks into a provably robust learning algorithm via the framework
of Section 4. A straightforward invocation of the framework does not lead to a convex
constraint set. It would also be interesting to design provable adversarial attacks for higher
depth networks. Finally, our experimental results suggest that making our SDP based attack
work on a large scale could lead to improved adversarial attacks.
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