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Abstract

Iterative hard thresholding (IHT) is a projected gradient descent algorithm, known
to achieve state of the art performance for a wide range of structured estimation
problems, such as sparse inference. In this work, we consider IHT as a solution
to the problem of learning sparse discrete distributions. We study the hardness
of using IHT on the space of measures. As a practical alternative, we propose a
greedy approximate projection which simultaneously captures appropriate notions
of sparsity in distributions, while satisfying the simplex constraint, and investigate
the convergence behavior of the resulting procedure in various settings. Our results
show, both in theory and practice, that IHT can achieve state of the art results for
learning sparse distributions.

1 Introduction
Probabilistic models provide a flexible approach for capturing uncertainty in real world processes, with
a variety of applications which include latent variable models and density estimation, among others.
Like other machine learning tools, probabilistic models can be enhanced by encouraging parsimony,
as this captures useful inductive biases. In practice, this often improves the interpretability and
generalization performance of the resulting models, and is particularly useful in applied settings with
limited samples compared to the model degrees of freedom. One of the most effective parsimonious
assumptions is sparsity. As such, learning sparse distributions is a problem of broad interest in
machine learning, with many applications [1–7].

The majority of approaches for sparse probabilistic modeling have focused on the construction of
appropriate priors based on inputs from domain experts. The technical challenges there involve
the challenges of prior design and inference [3, 1, 8], including methods that are additionally
designed to exploit special structures [5, 4, 7] . More recently, there has been an interest in studying
these algorithmic approaches from an optimization perspective [9–11], with the goal of a deeper
understanding and, in some cases, even suggesting improvements over previous methods [12, 13].In
this work, we consider an optimization-based approach to learning sparse discrete distributions.
Despite wide applicability, when compared to classical constrained optimization, there are limited
studies that focus on the understanding, both in theory and in practice, of optimization methods over
the space of probability densities, under sparsity constraints.

Our present work proposes and investigates the use of Iterative Hard Thresholding (IHT [14–18]) for
the problem of sparse probabilistic estimation. IHT is an iterative algorithm that is well-studied in the
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classical optimization literature. Further, there are known worst-case convergence guarantees and
empirical studies [19, 20] that vouch for its performance. Our goal in this work is to investigate the
convergence properties of IHT, when applied to probabilistic densities, and to evaluate its efficacy for
learning sparse distributions.

However, transferring this algorithm from vector and matrix spaces to the space of measures is
not straightforward. While several of the technical pieces –such as the existence of a variational
derivative and normed structure– fall into place, the algorithm is an iterative one, that involves solving
a projection subproblem in each iteration. We show that this subproblem is computationally hard in
general, but provide an approximate procedure that we analyze under certain assumptions.

Our contributions in this work are algorithmic and theoretical, with proof of concept empirical
evaluation. We briefly summarize our contributions below.
• We propose the use of classical IHT for learning sparse distributions, and show that the space of

measures meets the structural requirements for IHT.
• We study in depth the hardness of the projection subproblem, showing that it is NP-hard, and no

polynomial-time algorithm exists that can solve it with guarantees.
• Since the projection problem is solved in every iteration, we propose a simple greedy algorithm

and provide sufficient theoretical conditions, under which the algorithm provably approximates
the otherwise hard projection problem.

• We draw on techniques from classical optimization to provide convergence rates for the overall
IHT algorithm: i.e., we study after how many iterations will the algorithm guarantee to be within
some small ✏ of the true optimum.

In addition to our conceptual and theoretical results, we present empirical studies that support our
claims.

2 Problem statement
Preliminaries. We use bold characters to denote vectors. Given a vector v, we use vi to represent its
i-th entry. We use calligraphic upper case letters to denote sets; e.g., S . With a slight abuse of notation,
we will use lower case letters to denote probability distributions e.g., p, q, as well as functions e.g.,
f . The distinction from scalars will be apparent from the context; we usually append functions with
parentheses to distinguish from scalars. We use upper case letters to denote functionals i.e., functions
that take as an input other functions e.g., F [p(·)]. We use [n] to denote the set {1, 2, ...n}. Given a
set of indices S ⇢ [n], we denote the cardinality of S as |S|. Given a vector x, we denote its support
set i.e., the set of non-zero entries, as supp(x). We use P{e} to denote the probability of event e.
Let P denote the set of discrete n-dimensional probability densities on an n-dimensional domain X :

P =

(
p(·) : X ! R+ |

X

x2X

p(x) = 1

)
.

Let S ⇢ [n] denote a support set where |S| = k < n. Let XS ⇢ X denote the set of variables with
support S , i.e.,

XS =
�
x 2 X | supp(x) ✓ S

 
.

The set of domain restricted densities, denoted by PS , is the set of probability density functions
supported on XS ; i.e.,

PS = {q(·) 2 P | 8x /2 XS , q(x) = 0} .

Inversely, we denote the support of a domain restricted density q(·) 2 PS as supp(q) = S . Next, we
define the notion of sparse distributions.
Definition 1 (Distribution Sparsity [5]). Let Dk = [|S|kPS ✓ P i.e., the union of all possible
k-sparse support domain restricted densities. We say that p(·) is k-sparse if p(·) 2 Dk.

Note that while each component PS is a convex set, the union Dk is not. To see this, consider
the convex combination of two k-sparse distributions p1 and p2 with disjoint supports S1 and S2

respectively. In general, the convex combination ↵p1(·) + (1 � ↵)p2(·); 0 < ↵ < 1, has larger
support; i.e., |S1 [ S2| > k. As an aside, we note that unlike the vector case, its is straightforward
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to construct multiple definitions of distribution sparsity. For instance, another reasonable definition
is via the set D0

k = {p(·) 2 P | p(x) = 0 for all kxk0 > k}; i.e., distributions that assign zero
probability mass to non-k-sparse vectors. Interestingly, Dk ⇢ D0

k ⇢ P in general, as any of the
distributions in Dk must has a support with size less than k, which is not necessary for distributions
in D0

k. Motivated by prior work [5], we use Definition 1 in this work.

Vector sparsity. While the proposed framework is developed for a specialized notion of sparsity
i.e. along the dimensions of a multivariate discrete distribution, it is also applicable to alternative
notions of distribution sparsity. One common setting is sparsity of the distribution itself p(·) when
represented as a vector e.g. sparsifying the number of valid states of a univariate distribution such as
a histogram. We outline how our framework can be applied to this setting in the Appendix A.

Problem setting. In this work, we focus on studying sparsity for the case of discrete densities. In
particular, X ⇢ Zn; i.e., x is an integer such that:

X = {x 2 Zn | 8i 2 [n], 0  xi  m� 1} ,
where m is an integer. Therefore, x has mn valid positions. In other words, if we denote X as a
random variable from that distribution, then X 2 X has mn possible values, and P{X = x} = p(x).

Given a cost functional over distributions F [·] : P ! R, we are interested in the following optimiza-
tion criterion:

min
q

F [q] subject to q 2 Dk, (1)
where Dk = [S:|S|kPS ✓ P is the k-sparsity constraint, as in Definition 1. In words, we are
interested in finding a distribution, denoted as q(·), that “lives” in the k-sparse set of distributions,
and minimizes the cost functional F [·]. This is similar to classical sparse optimization problems in
literature [21–24], but there are fundamental difficulties, both in theory and in practice, that require a
different approach than standard iterative hard thresholding algorithms [14–18].

We assume that the objective F [·] is a convex functional over distributions.
Definition 2 (Convexity of F [·]). The functional F [·] : P ! R is convex if:

F [✓q(·) + (1� ✓)p(·)]  ✓F [q(·)] + (1� ✓)F [p(·)],
for all q(·), p(·) 2 P and ✓ 2 [0, 1].

Observe that, while F [·] is a convex functional, and P and PS are convex sets, Dk is not a convex set.
Hence, the optimization problem (1) is not a convex program.

Following the projected gradient descent approach, we require definitions of the gradient over F [·],
as well as definitions of the projection.
Definition 3 (Variational Derivative [25]). The variational derivative of F [·] : P ! R is a function,
denoted as �F

�q (·) : X ! R, and satisfies:
X

X

�F
�q (x)�(x) =

@F [q+✏�]
@✏

���
✏=0

where � : X ! R is an arbitrary function.
Definition 4 (First-order Convexity). The functional F [·] : P ! R is convex if:

F [q(·)] � F [p(·)] +
D

�F
�p (·), q(·)� p(·)

E

for all q(·), p(·) 2 P .

Here, we use the standard inner product for two densities: hq(·), p(·)i =
R
x q(x)p(x), or hq(·), p(·)i =P

x q(x)p(x) in the discrete setting.

3 Algorithms
Recall that our goal is to solve the optimization problem (1). A natural way to solve it in an iterative
fashion is using projected gradient descent, where the projection step is over the set of sparse
distributions Dk. This analogy makes the connection to iterative hard thresholding (IHT) algorithms,
where the iterative recursion is:

pt+1(·) = ⇧Dk

⇣
pt(·)� µ

�F
�pt

(·)
⌘
,

where pt(·) denotes the current iterate, and ⇧Dk(·) denotes, in an abstract sense,
the projection of the distribution function to the set of sparse distribution functions.
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Algorithm 1 Distribution IHT
1: Input: F [·] : P ! R, k 2 Z+. number of

iters T , p0(·) 2 Dk, µ. Output: pT 2 Dk

2: t 0
3: while t < T do
4: qt+1(·) = pt(·)� µ

�F
�pt

(·)
5: pt+1(·) = ⇧Dk (qt+1)
6: end while
7: return pT (·)

The consequent steps are analogous to those of
regular IHT: given an initialization point, we
iteratively i) compute the gradient, ii) perform
the gradient step with step size µ, iii) ensure
the computed approximate solution satisfies our
constraint in each iteration by projecting to Dk.

3.1 Projection onto Dk

Consider the projection step with respect to the
`2-norm i.e.

⇧Dk (p(·)) := argmin
q(·)2Dk

kq(·)� p(·)k22, (2)

P

Dk

q

p

Figure 1: Illustration of projection onto Dk, with
q = ⇧Dk (p).

where the `2-norm is defined by the afore-
mentioned inner product hq(·), p(·)i =P

x q(x)p(x). The set Dk = [|S|kPS is
a union of (nk ) = O(nk) sparse sets PS of
different supports. Thus, if we denote Tproj as
the time to compute ⇧PS (p(·)), then we need
O(nk · Tproj) time for Dk projection using naive
enumeration. One may reasonably conjecture
the existence of more efficient implementations
of the exact projection in (2), e.g., in polynomial
time. In the following, we show that this is not
the case.

3.2 On the tractability
of sparse distribution `2-norm projection
The projection (2) is iteratively solved in IHT (step 5 in Algorithm 1). Thus, for the algorithm to be
practical, it is important to study the tractability of the projection step. The combinatorial nature of
Dk hints that this might not be the case.
Theorem 1. The sparse distribution `2-norm projection problem (2) is NP-hard.

Sketch of proof: We show that the subset selection problem [26] can be reduced to the `2-norm
projection problem. The complete proof is provided in the supplementary material.

As an alternative route, NP-hard problems can be often tackled sufficiently, by using approximate
methods. However, the following theorem states that the sparsity constrained optimization problem
in (2) is hard even to approximate, in the sense that no deterministic approximation algorithm exists
that solves it in polynomial time.
Theorem 2. There exists no deterministic algorithm that can provide a constant factor approximation
for the sparse distribution `2-norm projection problem in polynomial time. Formally, for given
q : X ! R with X 2 Rn, let p?(·) be the optimal `2-norm projection onto Dk, and let bp(·) be the
solution found by any algorithm that operates in O(poly(n)) time. Then, we can design problem
instances, where the approximation ratio:

' =
kq(·)� bp(·)k22
kq(·)� p?(·)k22

� 1,

cannot be bounded.

The proof of the theorem is provided in the supplementary material. Through Theorems 1 and 2, we
have shown that the distribution sparse `2-norm projection problem is hard, and thus the applicability
of IHT on the space of densities seems not to be well-established to be practical. This may be
surprising, in light of results in a variety of domains where it is known to be effective. For example,
in case of vectors, a simple O(n) selection algorithm solves the projection problem optimally [27].
Similarly, on the space of matrices for low rank IHT, the projection onto the top-k ranks is optimally
solved by an SVD [28].
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3.3 A greedy approximation

Algorithm 2 Greedy Sparse Projection (GSProj)
1: Input: n-dimensional function q : X ! R and sparsity

level k.
2: Output: A distribution p(·) 2 Dk

3: S := ;
4: while |S| < k do
5: j 2 argmini2[n]\S

�
minp2PS[i kp(·)� q(·)k22

 

6: S := S [ j

7: end while
8: return argminp2PS kp(·)� q(·)k22

In contrast to the results of Theorems 1
and 2, we have observed that a simple
greedy support selection seems effective
in practice. Thus, we simply consider re-
placing exact projection to Dk by greedy
selection.

Consider Algorithm 2 when the input
is not necessarily a distribution, i.e.,P

x2X q(x) 6= 1. The key procedure
of the projection is line 5, where the in-
ner min(·) is the projection of q(·) on a
set of domain restricted densities. Let
bp(·) denote this projection, i.e., bp(·) = argminp(·)2PS kp(·)� q(·)k22. Since, by definition bp(x) = 0
for any x /2 XS , we only need to calculate bp(x) where x 2 XS , and this can be reformulated as:

argmin
p(·)

X

x2XS

(p(x)� q(x))2 s.t.
X

x2XS

p(x) = 1 and 8x2XSp(x) � 0,

which is essentially `2-norm projection onto a simplex {p(x) |
P

x2XS
p(x) = 1, 8x2XSp(x) � 0}.

This `2-norm projection onto the simplex can be solved efficiently and easily (See [29]).

When p(·) is a distribution, we can analytically compute its projection on any support restricted
domain. Given support S , the exact projection of a distribution p(·) onto PS is:

arg min
q2PS

kq(·)� p(·)k22. (3)

In our setting, the above problem can be written as
arg min

q2PS
kq(·)� p(·)k22 = argmin

q2PS

hq(·)� p(·), q(·)� p(·)i = argmin
q2PS

X

x2X
(q(x)� p(x))2

= argmin
q2PS

X

x2XS

(q(x)� p(x))2 +
X

x2X ,x/2XS

p(x)2.

The last equation is due to definition of PS and XS . Since p(·) is constant, we can eliminate the last
term. Further, since q 2 PS , we have that q(x) = 0 for every x /2 XS . The resulting problem is:

argmin
q2PS

X

x2XS

(q(x)� p(x))2 s.t.
X

x2XS

q(x) = 1. (4)

Denote
P

x2XS
p(x) = C  1. Applying the Quadratic Mean-Arithmetic Mean inequality to

equation (4), we have:X

x2XS

(q(x)� p(x))2 � (1� C)2 /|XS | s.t.
X

x2XS

q(x) = 1

The equality can be achieved when q(x)� p(x) is the same for every x 2 XS . Therefore we have
the optimal solution to Problem (3):

q
?
S(x) =

⇢
p(x) + 1�C

|XS | , x 2 XS
0, x /2 XS

Computational complexity. The time we need to solve Problem (3) is O(|XS |), i.e. the time to
compute C. However, to compute the norm kq(·) � p(·)k22 we still need O(|X |) time, as p(x) is
not necessarily zero at any x 2 X . As a result, we need O(nk(|X | + |XS |)) time to enumerate
for an optimal solution of the `2-norm projection. If we consider the integer lattice X , as stated
in the problem setting, then |X | = m

n and |XS | = m
k, rendering the time complexity O(nk

m
n).

However, Algorithm 2 has much lower time complexity. In each iteration, the greedy method selects
an element to put into S that maximize the gain, which requires k iterations. It need not to consider
the exact `2-norm kq(·)� p(·)k22 in each iteration, only the increment for each e from n options. To
compute the increment, no more than |XS | terms are added, which requires compute of O(|XS |) time
complexity. All together, the greedy method requires O(k|XS |) time to operate, or O(nkmk) in our
integer lattice setting, which is far less that the enumeration method’s O(nk

m
n).
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3.4 When Greedy is Good
We have shown in the proof of Theorem 2 that there always exist extreme examples that are hard to
solve. Thus, in the most general sense, and without further assumptions, one can find pathological
cases which make the problem hard. However, we find that the greedy approach works well
empirically. In this section, we consider sufficient conditions for tractability of the problem. Our
conditions boil down to structural assumptions on F [·] which match standard assumptions in the
literature.

To build further intuition, consider line 4 in Algorithm 1, where the parameter passed to the greedy
method is q(·) = p(·)� µ

�F
�p (·), and p(·) is already a k-sparse distribution. Denote the support of

p(·) as S; we can see that |S|  k. Therefore, that q(·) is close to k-sparse when the step size µ is
small. Thus, while the general problem (2) may be a lot harder, there is reason to conjecture that
under certain conditions, a simple greedy algorithm performs well. Next, we state these assumptions
formally.
Assumption 1 (Strong Convexity/Smoothness). The objective F [·] satisfies Strong Convex-
ity/Smoothness with respect to ↵ and � if:

↵

2
kp1(·)� p2(·)k22  F [p1(·)]� F [p2(·)]�

⌧
�F

�p1
(·), p2(·)� p1(·)

�
 �

2
kp1(·)� p2(·)k22

For the sake of simplicity in exposition, we have assumed strong convexity to hold over the entire
domain (which can be a restrictive assumption). As will be clear from the proof analysis, this
assumption can easily be tightened to a restricted strong convexity assumption; see, e.g., [30]. This
detail is left for a longer version of this manuscript.
Assumption 2 (Lipschitz Condition). The functional F : P ! R satisfies the Lipschitz condition
with respect to L, in k-sparse domain Dk is

|F [p1(·)]� F [p2(·)]|  Lkp1(·)� p2(·)k2
This assumption implies that ����

�F

�p
(·)
����
2

 L.

Using the strong convexity, smoothness, and Lipschitz assumptions, we are able to provide analysis
for when greedy works well. This is encapsulated in Theorem 3.
Theorem 3. Given n-dimensional function q(·) = p(·) � µ

�F
�p (·), where p(·) is an n-dimensional

k-sparse distribution and supp(p(·)) = S 0, Algorithm 2 finds the optimal projection to domain PS0

if F [·] satisfies Assumption 2, µ is sufficiently small and there are enough positions x 2 XS0 where
p(x) > 0, i.e., satisfies inequality (6) and inequality (9).

3.5 Convergence Analysis
Next, we analyze the convergence of the overall Algorithm 1 with greedy projections. While
Theorem 3 provides sufficient conditions for exact projection using the greedy approach, in practice
due to computational precision issues and/or violation of the stated assumptions, the solution may
not provide an exact projection. Thus, it is prudent to assume that the inner projection subproblem is
solved within some approximation as quantified in the following.

Definition 5. Approximate `2-norm projection. We define b⇧Dk(·) as the approximate projection
onto sparsity domain and distribution space, with approximation parameter, �, as:

���p(·)� b⇧Dk(p(·))
���
2

2
 (1 + �) kp(·)�⇧Dk(p(·))k

2
2

Next, we present our main convergence theorem.
Theorem 4. Suppose F satisfies assumptions 1 and 2. Furthermore, assume that the projection step
in Algorithm 1 is solved �-approximately. Let the step size µ = 1/�, and kp0(·)�p

?(·)k2  L/(2↵).
Then if �

↵ 2 (2� 1
1+� , 2), IHT (Algorithm 1) with T � log⌘

✏
F [p0(·)]�F [p?(·)]�c iterations achieves

F [pT (·)]  F [p?(·)]+c+✏ , where ⌘ = 1�(1+�)(2��/↵) and c =
(�/(2�)+(1+�)(��↵)/(2↵2))L2

(1+�)(2��/↵) .
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Figure 2: Simulated Experiments

4 Experiments

Algorithm 3 Greedy Selection
1: Input: F [·] : P ! R, k 2 Z+. Output:

pT 2 Dk

2: S := ;
3: while |S| < k do
4: j 2 argmini2[n]\S {minp2PS[i F [p(·)]}
5: S := S [ j

6: end while
7: return argminp2PS F [p(·)]

We evaluate our algorithm on different
convex objectives, namely, `2-norm dis-
tance and KL divergence. As mentioned
before, there are no theoretically guar-
anteed algorithms for `2-norm distance
minimization under sparsity constraint.
To investigate optimality of the algo-
rithms, we consider simulated experi-
ments of sufficiently small size that the
global optimal can be exhaustively enu-
merated.

IHT implementation details. For IHT, the step size is chosen by a simple strategy: given an initial
step size, we double the step size when IHT is trapped in local optima, and return to the initial step
size after escaping. We return the algorithm along the entire solution path.

Baseline: Forward Greedy Selection. Unfortunately, we are unaware of optimization algorithms
for sparse probability estimation with general losses. As as a simple baseline, we consider greedy
selection wrt. the objective. This is equivalent to Algorithm 3. For certain special cases e.g. KL
objective, Algorithm 3 can be applied efficiently and is effective in practice [5].

4.1 Simulated Data

We set dimension n = 15, number of entries m = 2, sparsity level k = 7. That is, X = {0, 1}15
is a 15-dimensional binary vector space, with cardinality |X | = 215 = 32768. The distribution
p : X ! [0, 1] satisfies

P
x2X p(x) = 1. The sparsity constraint is designed to fix a support

S : |S|  7, such that for any x : p(x) > 0 has supp(x) = S . Thus, the optimal solution is requires
enumerating

�15
7

�
= 6435 possible supports.

The `2-norm minimization objective is F [p(·)] = kp(·)�q(·)k22 where q(·) is a distribution generated
by randomly choosing 50 positions x1 · · ·x50 2 X to assign random real numbers c1 · · · c50 :P50

i=1 ci = 1 and the other positions are assigned to 0, i.e., q(xi) = ci for i 2 [50], and q(x) = 0
otherwise. Initial step size µ = 0.008. Results are shown in Figure 2 (a). For the KL divergence
objective, it is F [p(·)] = KL(p(·)||q(·)) =

P
x2X p(x) log p(x)

q(x) , where q(·) is a random distribution
generated similar to the q(·) in `2-norm objective. The only difference is that q(x) can not be zero as
it would render the KL undefined. For simulated experiments, we use the optimum to normalize the
objective function as F̃ [p] = F [p]� F [p?], so that at the optimum F̃ [p?] = 0.

Three algorithms are compared in each experiment, i.e., IHT, Greedy and IHT after Greedy. While
IHT starts randomly, IHT after Greedy is initialized by the result of Greedy. In each run, the
distribution q(·) and the starting distribution for IHT p0(·) are randomly generated. Each of the
experiments are run 20 times. Results are presented in showing the mean and standard deviation of
Greedy and IHT after Greedy. The standard deviation of IHT is similar to that of IHT after Greedy.
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We use the `2-norm greedy projection in IHT in both experiments. Interestingly, this not only
outperforms the `2-norm greedy projection itself (Figure 2 (a)), but also outperforms Greedy on the
KL objective (Figure 2 (b)), where [5] suggests provably good performance. In particularly, while the
performance of Greedy can fluctuate severely, IHT (after Greedy) is stable in obtaining good results.
Note that low variance is especially desirable when the algorithm is only applied a few times to save
computation, as in large discrete optimization problems.

4.2 Benchmark Data
Distribution Compression / Compressed sensing. We apply our IHT to the task of expectation-
preserving distribution compression, useful for efficiently storing large probability tables. Given a
distribution p(·), our goal is to construct a sparse approximation q(·), such that q(·) approximately
preserves expectations with respect to p(·). Interestingly, this model compression problem is equiva-
lent to compressed sensing, but with the distributional constraints. Specifically, our goal is to find q
which minimizes ||Aq �Ap||22 subject to a k-sparsity constraint on q. The model is evaluated with
respect to moment reconstruction ||Bq �Bp||22 for a new "sensing" matrix B. Our experiments use
real data from the Texas hospital discharge public use dataset. IHT is compared to post-precessed
Lasso and Random. Lasso ignores the simplex constraints during optimization, then projects the
results to the simplex, while Random is a naïve baseline of random distributions. Figure 3(a) shows
that IHT significantly outperforms baselines. Additional details are provided in Appendix H due to
limited space.

Dataset compression. We study representative prototype selection for the Digits data [31]. Pro-
totypes are representative examples chosen from the data in order to achieve dataset compression.
Our optimization objective is the Maximum Mean Discrepancy (MMD) between the discrete data
distribution and the sparse data distribution representing the selected samples. We evaluate per-
formance using the prototype nearest neighbor classification error on a test dataset. We compare
two forward selection greedy variants (Local Greedy and Global Greedy) proposed by [32] and the
means algorithm (labeled as PS) proposed by [33], both state of the art. The results are presented in
Figure 3(b) showing that IHT outperforms all baselines. Additional experimental details are provided
in Appendix H due to limited space.
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Figure 3: (a) Compression / Compressed sensing. Test Error at varying sparsity k. (b) Dataset
Compression. Test Classification error of prototype nearest neighbor classifier

5 Conclusion and Future Work
In this work, we proposed the use of IHT for learning discrete sparse distributions. We study several
theoretical properties of the algorithm from an optimization viewpoint, and propose practical solutions
to solve otherwise hard problems. There are several possible future directions of research. We have
analyzed discrete distributions with sparsity constraints. The obvious extensions are to the space of
continuous measures and structured sparsity constraints. Is there a bigger class of constraints for
which the a tractable projection algorithm exists? Can we improve the sufficient conditions under
which projections are provably close to the optimum projection? Finally, more in-depth empirical
studies compared to other state of the art algorithms should be very interesting and useful to the
community.
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