
On Distributed Averaging for Stochastic k-PCA

Aditya Bhaskara
School of Computing

University of Utah
bhaskara@cs.utah.edu

Maheshakya Wijewardena
School of Computing

University of Utah
pmaheshakya4@gmail.com

Abstract

In the stochastic k-PCA problem, we are given i.i.d. samples from an unknown
distribution over vectors, and the goal is to compute the top k eigenvalues and
eigenvectors of the moment matrix. In the simplest distributed variant, we have
m machines each of which receives n samples. Each machine performs some
computation and sends an O(k)-size summary of the local dataset to a central
server. The server performs an aggregation and computes the desired eigenvalues
and vectors. The goal is to achieve the same effect as the server computing using
mn samples by itself. The main choices in this framework are the choice of the
summary, and the method of aggregation. We consider a slight variant of the well-
studied distributed averaging approach, and prove that this leads to significantly
better bounds on the dependence between n and the eigenvalue gaps. Our method
can also be applied directly to a setting where the ‘right’ value of the parameter k
(i.e., one for which there is a non-trivial eigenvalue gap) is not known exactly. This
is a common issue in practice which prior methods were unable to address.

1 Introduction

Principal Component Analysis (PCA) is one of the classic tools for the analysis of high dimensional
data. It is used in applications ranging from data visualization, to dimension reduction, to signal
de-noising [16, 10]. Formally, the problem is the following: given a collection of data points
x1, x2, . . . , xn, the aim is to find a subspace U of dimension precisely k such that captures the
most mass of the points. Specifically, the goal is to find a matrix U(d × k) with orthonormal
columns (corresponding to a basis for the desired subspace) to as to maximize �ΣU�F , where Σ is
the covariance matrix of the data, defined as

�
i xix

T
i . This problem can be solved efficiently by

computing the singular value decomposition (SVD) (see [9]).

In the stochastic version of the problem, the data is viewed as samples from an unknown distribution
D over points in Rd, and the goal is to find the top k singular directions of the distribution covariance
matrix (or the second moment matrix) Σ = Ex∼DxxT . The question of how many samples from D
are needed to find a good estimate for the k-PCA is extensively studied ([15, 2, 20], and tight bounds
that involve the gap between the kth and the (k + 1)th eigenvalues of σ can be obtained using matrix
concentration inequalities [1, 22].

In this paper, we consider distributed algorithms for stochastic PCA, where the samples from D
are distributed across machines, and the goal is to use a small amount of communication and find
a solution that approximates the PCA of the distribution. Our focus will be on the simplest model,
where we have m machines that each has access to n i.i.d. samples of the data. Each machine
sends one summary to a central server. The server, using the summaries from the different machines,
computes the estimate of the PCA (this will be known as the aggregation step).

This distributed procedure is well-studied for various optimization problems [14, 24, 25]. The
most well-known example is distributed convex optimization, where the goal is to optimize the loss

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

L(θ) = Ex∈Df(x, θ) for some convex function f . Here, it turns out that a simple procedure known
as distributed averaging yields good guarantees. Machines simply optimize the objective on their
local dataset and send the solution θ to the server, and the central server averages the local solutions.
Tight bounds are known for distributed averaging for various convex objectives (see [24]).

A natural problem not covered by the general results on convex optimization is PCA. Garber et al. [8]
studied the power of distributed averaging for PCA. They showed that for the problem of computing
the top eigenvector, simply averaging the best vectors for the different machines does not work (the
issue being one of having the right signs). However, it turns out that averaging with appropriately
chosen signs works well, as long as there is a sufficient gap between λ1 and λ2. Fan et al. [7] extended
this idea to the case of finding the top k principal subspaces of the covariance matrix. They show
that as long as every machine has sufficiently many samples (a quantity that depends on the gap
between λk and λk+1), distributed averaging of the projection matrices output by different machines
(followed by a k-SVD) yields a good approximation.

1.1 Problem setup and motivation

Let us start with some basic notation. For a real symmetric matrix M , we use λj(M) to refer to its
j-th largest eigenvalue. We denote by Mk the best k-rank approximation of M . Also, the trace of M
will be denoted as Tr(M) =

�
j λj(M). The Frobenius norm is �M�F :=

��
j λj(M)2. For a

r ∈ [d], we define Δr to be the eigenvalue gap λr − λr+1.

Formal setting for distributed stochastic PCA. Let D be an (unknown) sub-Gaussian distribution
over vectors in Rd.1 We have m machines, each of which receives n i.i.d. samples from D.
A denotes the covariance matrix of the distribution D, i.e., A = Ex∈DxxT . Let the spectral
decomposition of A be denoted UΛUT where U ∈ Rd×d is a matrix with orthonormal columns and
Σ = diag(λ1,λ2, . . . ,λd). The aim is to find the vectors u1, u2, . . . , uk (the first k columns of U)
and the corresponding eigenvalues λ1,λ2, . . . ,λk.

Motivation. The works [7, 8] have two key limitations. First, they are aimed at finding the k-PCA
subspace, for a given k. Even modifying the goal slightly, e.g., requiring the algorithm to output each
of the top k PCA directions individually, requires more communication, and a sample complexity
(per machine) that has a quadratic dependence on the individual gaps, as we explain below. Second,
and more importantly, these works assume the knowledge of a number k for which there exists an
eigenvalue gap. This is quite unrealistic in practice. Can we design algorithms that can work with
only a rough idea of the location of the gap? Our main contribution is to handle these two issues. We
provide novel estimation bounds and validate them using experiments on real and synthetic data.

The first restriction above is quite serious at a quantitative level. Ignoring other terms, the works
of [7, 8] require (in order to estimate the k-subspace), a value of n ≥ 1/Δ2

k. Intuitively, this
corresponds to a requirement of each machine having a rough estimate of the top-k PCA subspace.
Their main results then can be interpreted as saying that under this assumption, the server can obtain
a significantly better estimate of the top-k subspace than the individual machines. Further, the
estimation errors are only obtained for the matrix UkU

T
k (i.e., the projection matrix to the top-k

subspace). If one needs each of the top k singular directions, the procedure needs to be re-done for
each index (and this requires having n ≥ 1/Δ2

min, where Δmin = mini∈k Δi, which could be tiny).

Note that our setting is slightly different from the deterministic case of the distributed PCA, where
we have a matrix U whose columns are arbitrarily distributed across machines, and the goal is to
find the best k-subspace. Moreover, the objective is not always to find the right eigenvalues/vectors,
but to approximate the value of the low-rank error (see [4, 11] and references therein). These results
extend the works of [19, 5] where the power of subspace embeddings in matrix approximation is
shown to distributed settings. In this case, in order to obtain a 1 + � low rank error in Frobenius norm
for A, each machine needs to communicate O(k/�) vectors. It is evident from their work that the
sketching methods perform better as the sketch size grows. In contrast to these results, a part of our
goal is to discuss the trade-off between n and the quality of the approximations. Applying these
sketching methods in our setting will yield error terms that depend only on the sketch size and cannot
be controlled by n or m, thus making them undesirable for this setting.

1As in the prior works [7, 8], the data distribution is assumed to have sub-Gaussian tails ([12, 18]), i.e., there
exists a constant C > 0 such that �(uTx)2�ψ1 ≤ CE[(uTx)2], ∀u ∈ Rd. The ψ1 norm of a random variable
X is �X�ψ1 = supp≥1(E|X|p)1/p/p (see [23]).

2

1.2 Our contributions

In Theorem 1 and its corollaries (Section 2.1), we show that as long as n ≥ Ω(1/Δ2
k), we can (using

a “single sketch”) compute estimates �vi of each of the vectors v1, v2, . . . , vk up to an error

��vi − vi� ≤ 1

δi
·
�
κ1

n
+

κ2√
mn

�
, where δi := min(λi−1 − λi,λi − λi+1),

where κ1,κ2 are factors that are not dominant when Δk is large enough. Further, the amount of
communication per machine is O(kd), i.e., each machine communicates k vectors in Rd.

Remark. Note that if each individual machine is to achieve ��vi − vi� ≤ 1/4, the above requirement
translates to min(n,

√
mn) ≥ 4/δi. To achieve this error using prior work, one needs n ≥ Ω(1/δ2i).

Our result can be a significant improvement as m grows. Specifically, in our setting the individual
machines need not be able to obtain any estimate of vi, but the corresponding average is still accurate.

Our next result (Theorem 9) is in a setting in which we only approximately know the location of
the gap in the eigenvalues (as is common in practice). In particular, suppose that there exists a
k ∈ (k0, k1) such that Δk is large enough. Then, using a single sketch of k1 vectors (i.e. space
O(k1d), we show an efficient way to find k, and thus also achieve the same guarantees as our first
result (described above).

Using prior results (at least directly) to solve this problem lead to two issues. First, we need to run
the averaging procedures for each k in the range (k0, k1). And more importantly, it is not clear how
to determine which of the PCA directions obtained are accurate and which are not (because accuracy
guarantees depend on the consecutive gaps, and we do not know which gap is large).

Finally, we run experiments on both real and synthetic datasets (the latter gives us a way to control
the eigenvalue gaps), and establish that our theoretical bounds are reflected accurately in practice.

2 Spectral approximation via distributed averaging

We start by introducing notation that we will use for the rest of the paper and stating the theorems
formally. Recall that the jth machine gets n i.i.d. vectors from a sub-Gaussian distribution D,
and let �A(j) denote the empirical covariance matrix. Also, for the jth machine, let �A(j)

k denote
the best rank k approximation of �A(j), and denote its SVD by �U (j)

k
�Λ(j)
k (�U (j)

k)T . We also define
�V (j)
k = �U (j)

k (�Λ(j)
k)1/2. The columns of this matrix are what each machine sends to the central server.

We also define the average across machines: �Ak = 1
m

�
j∈[m]

�A(j)
k .

Algorithm 1 Distributed Averaging (parameter k)

Local: On each machine, compute the rank-k SVD of the empirical covariance matrix �A(j), and
send �V (j)

k (as defined above) to the server.
Server: On the central server, compute �Ak = 1

m

�m
j=1 V̂

(j)(V̂ (j))T . Then output the top k

eigenvalues and the corresponding eigenvectors of �Ak.

The procedure above differs from the prior works [8, 7] in the choice of the summary (i.e., what the
individual machines send to the central server). Algorithm 1 uses the eigenvectors weighted by the
square root of the eigenvalues, while unweighted vectors are used in the prior work. This turns out to
give us three advantages: (i) an efficient way to obtain the individual eigenvectors v1, v2, . . . , vk, (ii)
use the summary for different values of k, as we will see in Section 4, and also (iii) improved bounds
on the parameters m,n (especially in experiments).

2.1 Guarantees for eigenvalue and eigenvector estimation

We now formally state the guarantees obtained by the procedure above in order to estimate the
eigenvalues and eigenvectors of A. We start with a general theorem about approximating the best
k-rank approximation of A: Ak, which will imply both of these statements.

3

Theorem 1. There exist constants C1 and C2 such that
���� �Ak −Ak�F

���
ψ1

≤ C1
κ1

n
+ C2

κ2√
mn

,

where κ1 =
√
kλ2

1 · Tr(A)/Δ2
k and κ2 = λ1

�
kλ1 · Tr(A)/Δk

The statement uses subgaussian norms described in section 1.1. By definition, we can rephrase the
theorem as a concentration bound: the probability of � �Ak − Ak�F exceeding log(1/δ) times the
RHS is at most δ. Using known perturbation bounds, we can show the following corollaries.

Corollary 2. For all i ≤ k, there exist constants C1 and C2 such that
���|λi(�Ak)− λi(A)|

���
ψ1

≤ C1
κ1

n
+ C2

κ2√
mn

.

The corollary follows from Theorem 1 using Weyl’s inequality [21].

Corollary 3. Define δi = min{(λi − λi−1), (λi+1 − λi)}.2 For i ≤ k, there exist constants C1 and
C2 such that ���1− (�uT

i ui)
2
���
ψ1

≤ C1
κ2
1

δ2i n
2
+ C2

κ2
2

δ2imn
,

where �ui is the eigenvector corresponding to the ith largest eigenvalue of �Ak.

The proof follows from the Davis-Kahan sin-Θ theorem [21].

As outlined in Section 1.2, when the gap δi � Δk, using the summary corresponding to k has a
significant advantage over using the one for i. This results in better guarantee (compared to the
procedures of [8, 7]) when recovering ui, for 1 ≤ i ≤ k.

3 Analysis: estimating the rank-k approximation of A

Our goal in this section will be to show that �Ak approximates Ak accurately, thereby proving
Theorem 1.

Outline of the argument. The key step is to define the matrix A∗, which is the expectation of �A(j)
k .

As all the machines receive inputs drawn from D, this is independent of j. The argument proceeds
in two steps, similar to the works of [7] and [8]. The first step is showing that �A∗ −Ak� (in other
words, the bias) is small. This is the harder step, and involves showing that one obtains non-trivial
cancellations. In other words, even though � �A(j)

k − Ak� is of the order O(1/
√
n), we will show

that �A∗ −Ak� is of the order O(1/n). The second step is to show that �Ak, which is the empirical
average of �A(j)

k over the m machines, is close to A∗. This is proved using a matrix concentration
bound, originally due to [3].

To summarize, let us define (noting that the RHS is independent of j),

A∗ = E[�A(j)
k].

We have � �Ak −Ak� ≤ �A∗ −Ak�+ � �Ak −A∗�. The first term will be referred to as the bias and
the second as the variance. In what follows we will bound the terms separately.

3.1 Analyzing the bias term

We now show the following theorem about the bias term.

Theorem 4. There is a constant C such that

�A∗ −Ak�F ≤ C

√
kλ2

1 · Tr(A)

Δ2
kn

.

2To deal with the border cases i = 1, d, define λ0 = +∞ and λd+1 = −∞.

4

In what follows, we abuse notation slightly and denote �A = �A(j) for some machine j. As we are
finally interested in the expectation, the choice of j will not matter. Define �A = A + E and let
� = �E�2/Δk. By definition, A = E[�A]. Let us also define the projection matrices Π = UkU

T
k and

�Π = �Uk
�UT
k .

The main idea behind the proof of theorem 4 is we express �Ak −Ak in a single machine using linear
and quadratic terms of E. Once we consider the expectation of this error, the linear terms of E
(O(1/

√
n) which is dominant in magnitude) will become zero, thus giving the bound for O(1/n)

error bias in theorem 4. The first lemma gives a coarse bound, which we will use when �E� is large.

Lemma 5. Let �Ak be the rank-k approximation on one of the machines, and let E be as defined
above. Then

�Ak −Ak = ΠE +H, where �H�F ≤ 2
√
k
λ1�E�2
Δk

+ 2
√
k
�E�22
Δk

.

The next lemma shows that when � = �E�2/Δk is small, we have a much better bound.

Lemma 6. Let �A satisfy the condition � = �A − �A�2/Δk ≤ 1/10. There exists a linear function
f : Rd×k �→ Rd×k and a constant C such that

�Ak −Ak = ΠE +
�
f(EUk)U

T
k + Ukf(EUk)

T
�
A+H, where �H�F ≤ c

√
k�E�22(λ1 + �E�2)

Δ2
k

.

The lemma is a consequence of a result in [7] showing that in this case, �Π has a sufficiently good first
order approximation in terms of E.

Proof. Lemma 2 of [7] shows that

�Π = Π+ f(EUk)U
T
k + UT

k f(EUk)
T + E�,

where (a) f is a linear function as in the statement of the theorem that also satisfies �f(.)�F ≤
�.�F /Δk, and (b) E� is a matrix with �E��F ≤ 24

√
k�E�22/Δ2

k (this is only true under the assump-
tion we have, i.e., � ≤ 1/10). Using this,

�Ak −Ak = �Π(A+ E)−Ak

=
�
Π+ f(EUk)U

T
k + Ukf(EUk)

T + E�� (A+ E)−Ak

= ΠE +
�
f(EUk)U

T
k + Ukf(EUk)

T
�
A+

�
f(EUk)U

T
k + UT

k f(EUk)
T
�
E + E�A+ E�E

Thus to show the lemma, the error term is

H =
�
f(EUk)U

T
k + UT

k f(EUk)
T
�
E + E�A+ E�E.

To bound the first term, note that �f(EUk)�F ≤ �EUk�F

Δk
≤

√
k�E�2

Δk
. Thus we have

�
�
f(EUk)U

T
k + UT

k f(EUk)
T
�
E�F ≤ �f(EUk)U

T
k + UT

k f(EUk)
T �F �E�2 ≤ 2

√
k�E�22
Δk

.

The second term can be bounded (using the bound on �E�� above), by 24
√
kλ1�E�22/Δ2

k. Using the
bound on E� again completes the proof of the lemma.

Note that the two lemmas give different linear approximations of �Ak −Ak. However, in order to take
expectation, we need the same function. Luckily, we observe that the one from Lemma 6 can be used
in the place of one from before, with small error. To this end, note that

�
�
f(EUk)U

T
k + Ukf(EUk)

T
�
A�F ≤ 2�f(EUk)�F �A�2 ≤ 2

√
kλ1�E�2
Δk

, (1)

from the property of f mentioned earlier (shown in [7]).

We can now prove Theorem 4.

5

Proof of Theorem 4. Using the observation in (1), Lemma 5 implies that for all E, we have

�Ak −Ak = ΠE+
�
f(EUk)U

T
k + Ukf(EUk)

T
�
A+H, where �H�F ≤ 4

√
k
�E�2(λ1 + �E�2)

Δk
.

(2)
Using this expression for bounding �E�F when � ≥ 1/10, and the one from Lemma 6 when � is
smaller, we can now take the expected value of �Ak −Ak. The linear terms in E will evaluate to zero.
Thus we have

�E[�Ak −Ak]�F ≤ E[Q1 | � ≥ 1/10] + E[Q2 | � ≥ 1/10],

where Q1 and Q2 are bounds on �H�F from (2) and Lemma 6 respectively. Now, conditioned on
�E�2/Δk ≥ 1/10, it is trivially true that �E�2/Δk ≤ 10�E�22/Δ2

k. Thus we can simplify the above
as

�E[�Ak −Ak]�F ≤ E

�
C
√
k�E�22(λ1 + �E�)

Δ2
k

�
.

Using the subgaussian property of the moments of our distribution, we have that the expectation
above is dominated by E[�E�22] term (due to the multiplier λ1). This gives

�E[�Ak −Ak]�F ≤ C
√
kλ2

1 · Tr(A)

nΔ2
k

.

This completes the proof of the theorem.

3.2 Analyzing the variance term

We now need to show that the average of the matrices �Ak is close to the expectation (which is A∗).
The main idea is to use the concentration inequality due to Bosq [3] (see also Lemma 4 of [7]). The
inequality lets us bound the ψ1 norm of the average of i.i.d. random variables using the ψ1 norm of
the individual variables.

To this end, we first show the following.

Lemma 7. Suppose each machine receives n points, where n ≥ λ1Tr(A)
Δ2

k
. Then, there is a constant C

such that ���� �Ak −A∗�F
���
ψ1

≤ C
λ1

Δk

�
kλ1 · Tr(A)

n
.

Now we analyze the average of �Ak.

Theorem 8. There exists a constant C such that the matrix �Ak, i.e. the average of the matrices �A(i)
k ,

satisfies
���� �Ak −A∗�F

���
ψ1

≤ C
λ1

Δk

�
kλ1Tr(A)

mn
.

Theorems 4 and 8 together complete the proof of our main approximation result, Theorem 1. As
observed in Section 2.1, this also completes the proofs of Corollaries 2 and 3.

4 Algorithm for imprecise k

We now consider the setting in which we do not exactly know the value of k for which λk − λk+1 is
“large”. Knowing that some k in the interval (k0, k1) satisfies an appropriate gap assumption, we will
give an algorithm that can, using O(k1) columns of communication per machine, (a) find such a k,
and (b) compute all the eigenvalues and eigenvectors with guarantees matching ones from the case in
which we know k (i.e. Theorem 1).

Our algorithm relies on the following theorem. As defined earlier, for any t ≥ 1, denote �At :=
1
m

�
i
�A(i)
t (i.e., the empirical average of the rank-t approximations on the individual machines).

Now the main advantage of having every machine sending across the eigenvectors �vi scaled by
�

�λi

(Algorithm 1) is that if a machine sends this information for 1 ≤ i ≤ k1, then the central server can
compute �At for every 1 ≤ t ≤ k1.

6

Theorem 9. Let �At be defined as above, and let δ > 0 be a given parameter. Let k be an integer for
which Δk = λk − λk+1 is sufficiently large, in particular, so that for the given m,n, δ, we have

Δk ≥ C

�
κ1

n
+

κ2√
mn

�
log(1/δ),

where κ1 and κ2 are as defined in Theorem 1, and C is an appropriate constant. Then with probability
at least 1− δ, for all t ≥ k, the matrix �At has its top k + 1 eigenvalues θ1 ≥ θ2 ≥ · · · ≥ θk ≥ θk+1

that satisfy

|θi − λi| ≤ O

�
κ1

n
+

κ2√
mn

�
log(1/δ), for 1 ≤ i ≤ k, and (3)

θk+1 ≤ λk+1 +O

�
κ1

n
+

κ2√
mn

�
log(1/δ). (4)

Proof of this theorem is deferred to Section A.4 of the supplementary material.

Estimating the location of the gap. The theorem shows that one can use any value of t ≥ k in
order to estimate all the eigenvalues up to k, and also the gap between k and k + 1. Thus, if we only
know the approximate location of a gap (some k between k0 and k1, we can use Algorithm 1 with
k = t1, and using the above result, find the k with the desired gap. Knowing k, the server can then
compute �Ak (using only the information it has), and this leads to a finer estimate of the matrix Ak.

Estimating the eigenvectors. The theorem above can also be used (together with the sin-Θ the-
orem) to show estimates on eigenvector estimation (as in Corollary 3). While the bounds are
qualitatively similar to those in Corollary 3, we observe that in practice, using t > k is significantly
better for approximating the top k eigenspace to a good accuracy.

5 Experiments

We validate our results with experiments using synthetic and real datasets. We simulated a distributed
environment on a single machine.

5.1 Synthetic dataset

We generated vectors in Rd from a multivariate-Gaussian distribution with mean 0 and the covariance
matrix A = UΛUT . Λ(1, 1) = 1, Λ(i, i) = 0.9Λ(i− 1, i− 1) for i = 2, . . . , 6. We set Λ(7, 7) =
Λ(6, 6)− 0.3. For 7 < i ≤ 50, we set Λ(i, i) = 0.9Λ(i− 1, i− 1). So there is a gap of Δ6 = 0.3. In
this experiment we fixed the number of machines to m = 50. We computed top 3 eigenvectors using
the algorithm 1 increasing the number of points n per machine and compared them with the top 3
eigenvectors of the population covariance matrix. Note that it is not possible to use prior methods for
computing individual eigenvectors. We first computed the eigenvectors by communicating only the
top k = 3 weighted vectors. We then compute that by communicating k = 7 weighted vectors so that
it includes the eigengap Δ6. We computed the error (1− (uT

i ũi)
2, i = 1, 2, 3) for both these cases.

These results are averaged over 200 iterations

As observed in Figure 1, these results are consistent with our theoretical bounds for the case where
correct eigengap is not known (but it is located within the k we communicate).

5.2 Real datasets

We used 3 real datasets to evaluate our methods (Table 1)[[13, 17, 6]]. Each dataset has N points
and d features. In these experiments we compute the error of the subspace spanned by the top r
eigenvectors (�UrU

T
r − ŨrŨ

T
r �F). We consider each dataset X as the population matrix, then the

population covariance matrix A = XXT . In each machine we sampled n columns from these X
matrices uniformly at random. For these experiments we fixed number of machines m = 50. Each
result is averaged over 200 iterations.

We compare the prior method by [7] (unweighted) with our methods. In one of the cases we
communicate exactly r vectors (weighted r) and in the other case we communicate a slightly higher

7

Figure 1: Estimation errors of first eigenvector (left), second eigenvector (middle), and third eigen-
vector (right) for k = 3 and k = 7 vs. samples size n per machine.

Dataset N d r t
MNIST-small 20000 196 5 15
NIPS-papers 11463 150 5 15
FMA-music 21314 518 10 70

Table 1: Dataset information

(t > r) number of vectors (weighted t). This is towards the ends of demonstrating our theoretical
results for the case where we do not know the exact location of a reasonable eigengap. Note that it is
not possible to compute the correct eigenspace using prior methods if we do not communicate the
exact number of required vectors.

Similar to the synthetic dataset experiments we computed the error of each method varying the sample
size n per machine (Figure 2).

0 10000 20000 30000
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

e
rr

o
r

o
f

to
p

 r
 s

u
b
sp

a
ce

unweighted

weighted r

weighted t

0 5000 10000 15000 20000
n

0.5

1.0

1.5

2.0

unweighted

weighted r

weighted t

1000 2000 3000 4000 5000
n

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 unweighted

weighted r

weighted t

Figure 2: Estimation errors of top r subspace of MNIST-small dataset (left), NIPS-papers dataset
(middle), FMA-music dataset (right) vs. unweighted, weighted r, weighted t averaging.

References
[1] R. Ahlswede and A. Winter. Strong converse for identification via quantum channels. IEEE

Transactions on Information Theory, 48(3):569–579, March 2002.

[2] Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund. The fast convergence of incremental
pca. In Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’13, pages 3174–3182, USA, 2013. Curran Associates Inc.

8

[3] Denis Bosq. Stochastic processes and random variables in function spaces. In Linear Processes
in Function Spaces, pages 15–42. Springer, 2000.

[4] Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal component analysis
in distributed and streaming models. In Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pages 236–249. ACM, 2016.

[5] Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input
sparsity time. In Proceedings of the forty-fifth annual ACM symposium on Theory of Computing,
pages 81–90. ACM, 2013.

[6] Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. Fma: A dataset
for music analysis. 2017.

[7] Jianqing Fan, Dong Wang, Kaizheng Wang, and Ziwei Zhu. Distributed estimation of principal
eigenspaces. arXiv preprint arXiv:1702.06488, 2017.

[8] Dan Garber, Ohad Shamir, and Nathan Srebro. Communication-efficient algorithms for dis-
tributed stochastic principal component analysis. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1203–1212. JMLR. org, 2017.

[9] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, third edition, 1996.

[10] Ian Jolliffe. Principal component analysis. Springer, 2011.

[11] Ravi Kannan, Santosh Vempala, and David Woodruff. Principal component analysis and higher
correlations for distributed data. In Conference on Learning Theory, pages 1040–1057, 2014.

[12] Vladimir Koltchinskii and Karim Lounici. Concentration inequalities and moment bounds for
sample covariance operators. arXiv preprint arXiv:1405.2468, 2014.

[13] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/.

[14] Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the structured
perceptron. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, HLT ’10, pages 456–464,
Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

[15] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of Mathematical
Biology, 15(3):267–273, November 1982.

[16] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

[17] Valerio Perrone, Paul A Jenkins, Dario Spano, and Yee Whye Teh. Poisson random fields for
dynamic feature models. arXiv preprint arXiv:1611.07460, 2016.

[18] Markus Reiß and Martin Wahl. Non-asymptotic upper bounds for the reconstruction error of
pca. arXiv preprint arXiv:1609.03779, 2016.

[19] Tamas Sarlos. Improved approximation algorithms for large matrices via random projections.
In 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages
143–152. IEEE, 2006.

[20] Ohad Shamir. A stochastic pca and svd algorithm with an exponential convergence rate. In
Proceedings of the 32Nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pages 144–152. JMLR.org, 2015.

[21] Gilbert W. Stewart and Ji guang Sun. Matrix Perturbation Theory. Academic Press, 1990.

[22] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Compu-
tational Mathematics, 12(4):389–434, Aug 2012.

9

[23] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

[24] Yuchen Zhang, Martin J Wainwright, and John C Duchi. Communication-efficient algorithms
for statistical optimization. In Advances in Neural Information Processing Systems, pages
1502–1510, 2012.

[25] Martin A. Zinkevich, Markus Weimer, Alex Smola, and Lihong Li. Parallelized stochastic
gradient descent. In Proceedings of the 23rd International Conference on Neural Information
Processing Systems - Volume 2, NIPS’10, pages 2595–2603, USA, 2010. Curran Associates Inc.

10

