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Abstract

Experimental data has revealed that in addition to feedforward connections, there
exist abundant feedback connections in a neural pathway. Although the impor-
tance of feedback in neural information processing has been widely recognized
in the field, the detailed mechanism of how it works remains largely unknown.
Here, we investigate the role of feedback in hierarchical information retrieval.
Specifically, we consider a hierarchical network storing the hierarchical categorical
information of objects, and information retrieval goes from rough to fine, aided
by dynamical push-pull feedback from higher to lower layers. We elucidate that
the push (positive) and pull (negative) feedbacks suppress the interferences due to
neural correlations between different and the same categories, respectively, and
their joint effect improves retrieval performance significantly. Our model agrees
with the push-pull phenomenon observed in neural data and sheds light on our
understanding of the role of feedback in neural information processing.

1 Introduction

Deep neural networks (DNNs), which mimic hierarchical information processing in the ventral visual
pathway, have achieved great success in object recognition [15]. The structure of DNNs mainly
contains feedforward connections from lower to higher layers. The experimental data, however, has
revealed that there also exist abundant feedback connections from higher to lower layers, whose
number is even larger than that of feedforward ones [23]]. It has been widely suggested that these
feedback connections play an important role in visual information processing. For instance, the
theory of analysis-by-synthesis proposes that the feedback connections, in coordination with the
feedforward ones, enable the neural system to recognize an object in an interactive manner [16], that
is, the feedforward pathway extracts the object information from external inputs, while the feedback
pathway generates hypotheses about the object; and the interaction between the two pathways
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accomplishes the recognition task. Based on a similar idea, the theory of predictive coding proposes
that the feedback from the higher cortex predicts the output of the lower cortex [22]]. Although the
importance of feedback has been widely recognized in the field, computational models elucidating
how it works exactly remain poorly developed. Interestingly, the experiment data has unveiled a
salient characteristic of feedback in the visual system [} [6]. Fig[TJA displays the neural population
activities in V1 when a monkey was performing a contour integration task [8]]. In response to the visual
stimulus, the neural activity in V1 increased at the early phase, displaying the push characteristic;
and decreased at the late phase, displaying the pull characteristic. Multi-unit recording revealed that
in the pull phase, there was strong negative feedback from the higher cortex (V4) [6]]; while in the
push phase, although the contributions of the feedforward input and feedback were mixed, causality
analysis confirmed that there indeed existed a feedback component [7]].
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Figure 1: A. The push-pull phenomenon of neural population activity. Data was recorded at V1 of an
awake monkey. The visual stimulus was a contour embedded in noises, which was onset at ¢t = 0.
The blue curve shows the change of neural response over time, which increased at the early phase
and decreased at the late phase, when the monkey recognized the contour. The red curve represents
the condition when the monkey did not recognize the contour, and the green curve the condition of
no visual stimulus. Adopted from [§]. B. A three-layer network storing hierarchical categories of
objects, denoted, from bottom to top, as child, parent, and grandparent patterns, respectively. Between
layers, neurons are connected by both feedforward and feedback connections. C. The branching tree
displaying the categorical relationships between hierarchical memory patterns.

The categorization of objects is based on their similarity/dissimilarity either at the image level or in
the semantic sense, and it is organized hierarchically, in the sense that objects belonging to the same
category are more similar than those belonging to different ones. The experimental data has revealed
that the brain encodes these similarities using overlapping neural representations, with the greater the
similarity, the larger the correlation between neural responses [26]. However, it is well known that
neural networks have difficulties of storing and retrieving correlated memory patterns; a small amount
of correlation in the Hopfield model will deteriorate memory retrieval dramatically [9]. Notably,
this instability is intrinsic to a neural network, as it utilizes synapses to carry out both information
encoding and retrieving: the synaptic strengths are affected by the correlations of stored patterns,
which in turn interfere with the retrieval of a stored pattern. Thus, a dilemma is raised to neural
coding: on one hand, to encode the categorical relationships between objects, a neural system needs
to exploit correlated neural representations; on the other hand, to retrieve information reliably, these
patterns correlations are harmful. How to achieve reliable hierarchical information retrieval in a
neural network remains unresolved in the field [2, [13]].

In the present study, motivated by the push-pull phenomenon in neural data, we investigate the role
of feedback in hierarchical information retrieval. Specifically, we consider that a neural system
employs a rough-to-fine retrieval procedure, in which higher categorical representations of objects
are retrieved first, since they are less correlated than lower categorical ones and hence have better
retrieval accuracy; subsequently, through feedback, the retrieved higher categorical information
facilitates the retrieval of lower categorical representations. We elucidate that the optimal feedback
should be dynamical, varying from positive (push) to negative (pull) over time, and they suppress
the interferences due to pattern correlations from different and the same categories, respectively.
Using synthetic and real data, we demonstrate that the push-pull feedback implements hierarchical
information retrieval efficiently.



2 A model for Hierarchical Information Representation

To elucidate the role of feedback clearly, we consider a simple model for hierarchical information
representation. The model is kept simple to illustrate insights derived from the role played by different
sources of interferences during different stages of dynamical retrieval. Specifically, the model consists
of three layers which store three-level hierarchical memory patterns. For convenience, we call the
three layers, from bottom to top, child, parent, and grandparent layers, respectively, to reflect their
ascending category relationships (Fig[TB). Neurons in the same layer are connected recurrently
with each other to function as an associative memory. Between layers neurons commumcate via
feedforward and feedback connections. Denote the state of neuron 7 in layer [ at time ¢ as z(¢) for
i=1,..., N, which takes value of £1, the symmetric recurrent connections from neuron j to 7 in
layer l as W the feedforward connections from neuron j of layer [ to neuron ¢ in layer [ + 1 as

75
Wil,ﬂ ! and the feedback connections from neuron j of layer [ + 1 to neuron ¢ of layer [ as Wl I+

The neuronal dynamics follows the Hopfield model [10], which is written as
it + 1) = sign [hi(1)] , (1)

where sign(h) = 1 for A > 0 and sign(h) = —1 otherwise. hl(t) is the total input received by the
neuron, which is given by (only the result for layer 1 is shown, and the results for other layers are

similar),
Z i ZW” jt @

We generate synthetic patterns to study information retrieval, which are denoted as: {{“} for
a=1,..., P, represents the grandparent patterns, {¢%#} for 3 =1, ... , P the parent patterns of
grandparent «, and {¢*#7} for v = 1,..., P, the child patterns of parent (c, 3), where Py, Pg,
and P, are denoted as the number of grandparent patterns, the number of parent patterns belonging
to the same grandparent, and the number of child patterns belonging to the same parent, respectively.
These hierarchical memory patterns are constructed as follows [1] (Fig[TC).

First, grandparent patterns are statistically independent of each other. The value of each element in a
grandparent pattern is drawn from the distribution

1 1
P(E7) = 38(68 +1) + 5067 — 1), )
where 6(z) = 1 for z = 0 and §(x) = 0 otherwise. Each element of a grandparent has equal
probabilities of taking a value of 1 or —1.
Secondly, for each grandparent pattern, its descending parent patterns are drawn from the distribution

PE?) = (e e+ (2

where 0 < by < 1 implies that each element of a parent pattern has a probability of (1 4 b2)/2 > 0.5
to have the same value as the corresponding element of the grandparent. This establishes the
relationship between a grandparent and the parent patterns.

)37 +€2), )

Thirdly, for each parent pattern, its descending child patterns are drawn from the distribution

1+ 1-9b
PEPT) = (e - € + (5

where 0 < b; < 1, which specifies the relationship between a parent and its child patterns.

)I(ENPT + €7, )

The above stochastic pattern generation process specifies the categorical relationships among memory
patterns, in the sense that patterns in the same group have stronger correlation than those belong-
ing to different groups. For example, the correlation between two child patterns belonging to the
same parent (siblings) is given by >, 5“7"775“7[’77/ /N = b2, referred to as the intra-class corre-
lation; the correlation between two child patterns belonging to different parents but sharing the
same grandparent (cousins) is given by . g "on"ﬁ/”/ /N = b3b3, referred to as the inter-class
correlation; and the correlation between two child patterns belonging to different grandparents is
givenby > £ Be o By /N = 0. These correlation values satisfy the hierarchical relationship, i.e.,



b? > b2b3 > 0. Other correlation relationships can be obtained similarly (see Sec.1 in Supplementary
Information (SI)).

Each layer of the network behaves as an associative memory. Using the standard Hebbian learning
rule, the recurrent connections between neurons in the same layer are constructed to be VV1 =

S apn EPEPVN, WE = 3 S €0PENP N, and W = Y, €€ /N. The feedforward
2,1 a a 3,2
connections from lower to h1gher layers are set to be W/~ = Z af i B & By /N, and W™=

Za’ 3 0T ¥ @B /N. Tt is easy to understand the effect of feedforward connections. For example, if layer
1 is at the state of the memory pattern £20-%0:70 then the feedforward input to layer 2 is given by
Z VV2 1§ LN & P which contributes to improving the retrieval of the parent pattern €070 at
layer 2. The form of feedback connections is the focus of this study and will be introduced later.

To quantify the retrieval performance, we define a macroscopic variable m(t), measuring the overlap
between the neural state x(¢) and a memory pattern, which is calculated to be [9] (again, for simplicity,
only the result for layer 1 is shown),

aﬁ’y NZganl (6)

where —1 < m®?7(t) < 1 represents the retrieval accuracy of the memory pattern £%-%+7, and the
larger the value of m, the higher the retrieval accuracy.

3 Information retrieval without feedback

To elucidate the role of feedback, it is valuable to first check information retrieval without feedback,
and without loss of generality, we focus on layer 1. Following the standard stability analysis [9],
we consider that the initial state of layer 1 is a memory pattern, x*(0) = £*0-%0:7 and investigate
what are the key factors determining the retrieval performance. After one step of iteration, we get the
retrieval accuracy,

N N
a 1 20,80,70 .1 1 20,8017 i) [,
m 0,507’70(1) — v z_;gz 0:fo0,1(1) = ¥ z_;gz 0:80.%0 i [hz (0)] ,
N
1 . a
= N Zslgn {gl O’Bo’ﬂmh}(())} . (7
i=1

We see that the retrieval of a memory pattern is determined by the alignment between the neural input
and the memory pattern, which is further written as (see Sec.2 in SI),

gaoﬁoﬁnhl( 0) = gao,ﬁo,vo Z 7 ] _ 1+C’i+6§. (8)

Here, the input received by the neuron is decomposed into the signal and noise parts, and the latter
is further divided into two components, C; and @, which represent, respectively, the interferences
to memory retrieval due to: 1) the correlation of the pattern to be retrieved with siblings from the
same parent, called the intra-class interference; 2) the correlation of the pattern to be retrieved
with cousins from the same grandparent but different parents, called the inter-class interference.
It can be checked that in the limits of large N, P, and Pj, the intra- and inter- class interferences,
C; and C;, satisfy the distributions, P(C;) = N'(E¢, Ve )(1 4 b1)/2 + N(—Ec, Vo) (1 — by) /2,
P(C;) = N(Egz, V&) (1 + bib2)/2 + N(—Eg, V) (1 — biby)/2, where N'(E, V) represents a
normal distribution with mean E and variance V, and E¢ = b3(P, — 1), E5 = bjb3 P, (P — 1),
Vo =bi(Py —1)(1 = b}), Vz = b1b3 Py (Ps — 1)(1 — b7)(1 — b3) (see Sec.2 in S).

The breadth of the above noise distributions, as a consequence of pattern correlations, implies that
even starting from a noiseless state, the network dynamics still incur retrieving instability [9], and the
error occurs when noises are large (i.e., C; + 5’1 < =1).



4 Hierarchical Information Retrieval with the push-pull feedback

According to the above theoretical analysis, to improve memory retrieval, the key is to suppress
the inter- and intra- class noises due to pattern correlations. Note that, in practice, the correlations
between higher categorical patterns tend to be smaller than that between lower categorical patterns.
For example, the similarity between cats and dogs is usually smaller than that between two sub-types
of cats. In our model, this corresponds to the condition of b; > b,. For an associative memory, this
implies that given the same amount of input information (e.g., an ambiguous image of a Siamese cat),
the parent pattern (e.g., a cat) can be better retrieved than the child pattern (e.g., a Siamese cat). Thus,
we consider a rough-to-fine retrieval procedure, in which the parent pattern in layer 2 is first retrieved,
whose result is subsequently fed back to layer 1 to improve the retrieval of the child pattern.

Below, for the convenience of analysis, we assume that the parent pattern is first perfectly retrieved
(m = 1) and explore the appropriate form of feedback which can efficiently utilize the parent
information to enhance the retrieval of the child pattern. Later, we carry out simulations demonstrating
that the model works in general cases when the parent pattern is not perfectly retrieved.

4.1 The form and the role of push feedback

We first show that a push (positive) feedback of a proper form can suppress the inter-class interference
in memory retrieval effectively. Without loss of generality, we consider that for a given input, the
corresponding child pattern to be retrieved in layer 1 is £20:%9:70 and that the corresponding parent
pattern in layer 2 is £20-%0 Consider the push feedback of the below form,

1
Wit = p 2 &g ©)
7 a8y

which follows the standard Hebb rule between the parent and their child patterns, and its contribution
is intuitively understandable. Given that the parent pattern £*°%0 in layer 2 is retrieved, its push
feedback to neuron i in layer 1 is calculated to be Wl-lj’Qf;X‘)’B DN groboryy P,,. Obviously,
this positive current increases the activities of all child patterns belonging to the parent, i.e., those
£@0:%0:7 for any +, and it has little influence on other child patterns from different parents, i.e., those
£20:8:7 for 3 # [3y. Due to the competition between memory patterns in the network dynamics, this
effectively suppresses the inter-class interference in memory retrieval (Fig2JA ).
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Figure 2: A. Illustrating the effect of push-feedback. The parent pattern is £1'!, whose feedback
contribution to sibling patterns is measured by > - m!17 /P, and to cousin patterns is measured
by > - m127 /P, The results averaged over 100 trials are shown. B. Illustrating the effect of pull-
feedback. The distributions of the intra-class noise C; without feedback and the noise C;* with the
pull-feedback are presented (see Eqs.(11,14) in SI). Retrieval errors occur when C; < —lor C} < —1
(indicated by the yellow line). The parameters are N = 2000, P, = 2, Pg = 10, P, = 70,b; = 0.2,
and by, = 0.15.

4.2 The form and the role of pull feedback

We further show that a pull (negative) feedback of an appropriate form can suppress the intra-class
interference in memory retrieval. Consider the pull feedback of the below form,

W2 = —b1dy;. (10)

ij



Given the parent pattern £%0-% in layer 2 is retrieved, its negative feedback to neuron 4 in layer
1 is calculated to be Zj Wilj’ij‘O’B“ = fblfia”’ﬁ". In the large P, limit, the parent pattern is
approximated to be the mean of its child patterns (Sec.1 in SI), thus, in effect the pull feedback is to
subtract a portion of the mean value from sibling patterns. The retrieval accuracy of the target child
pattern after applying the pull feedback is calculated to be (Sec.3 in SI),

N
1 ~
maosPovo — ¥ E sign [1 +CF + Cz} , an
i=1

where C}f = C; — by £20:P0:70£20-50 i the new noise term after applying the pull-feedback. As shown
in Fig[2B, with the pull feedback, the negative tail of the noise distribution (where retrieval errors
occur) is considerably reduced.

4.3 The joint effect of the push-pull feedback

Summarizing the above results, we come to the conclusion that to achieve good information retrieval,
the neural feedback needs to be dynamical, exerting the push and pull components at different stages,
so that they can suppress the inter- and intra- class interferences, respectively.

To better demonstrate the joint effect of the push-pull feedback, we consider a continuous version of
the Hopfield model, so that the network state changes smoothly and the joint effects of push- and
pull- feedbacks are integrated over time (the discrete Hopfield model still works, but the overall effect
is less significant). The network dynamics are given by [11]]

dhl? n n.n n,m m ext,n
Tt —h; "‘;Wijxj +;Wm ()i’ + 17, (12)

zp = f(hY), mn=1,2 (13)

7

where b and z]' denote the synaptic input and the firing rate of neuron ¢ in layer n, respectively,
and their relationship is given by a sigmoid function, f(x) = arctan(8wx)/7 + 1/2, therefore
0 < 2z} < 1.To match the strength of firing rate x’, we also align all the hierarchical patterns &;
into 0, 1. The parameter 7 is the time constant. The recurrent and feedforward connections follow
the standard Hebb rule as described above. The feedback connections are slightly modified from
Eqgs.(OHI0) to accommodate positive values of neural activities in the continuous model. They are

given by: the push-feedback W% = ay P, 3", 5 (6777 — () (6077 — (€)) /N, with a. being

a positive number, and the pull-feedback Wl.lk’2 = —a_by6;x, with a_ being a positive number. I{**
is the external input conveying the object information. The push and pull feedbacks are applied
sequentially, with each of them lasting in the time order of 7 (7 ~ 10 — 20ms), as suggested by the
data [|6]. For details of the model, see Sec.4.1 in SI.

Fig[3]displays a typical example of the memory retrieval process in the network, demonstrating that:
1) the neural population activity at layer 1 exhibits the push-pull phenomenon, agreeing qualitatively
with the experimental data (Fig[3]A compared to Fig[T]A); 2) the retrieval accuracy of layer 1 with
the push-pull feedback is improved significantly compared to the case of no feedback (Fig[3B).
Interestingly, we note that when the push feedback is applied, the retrieval accuracy of the target
child pattern is decreased a little bit. This is due to that the push feedback only aims at reducing the
inter-class interference without differentiating sibling patterns.

We evaluate the performances of the model by varying the amplitude of pattern correlations and
confirm that the push-pull feedback always improves the network performance statistically (Sec.4.2
in SI).

S Applying to Real Images

We test our model in the processing of real images. As shown in the top of FigHJJA, the dataset we use
consists of Pg = 2 types of animals, cats and dogs, corresponding to parents in our model. For each
type of animal, it is further divided into P, = 9 sub-types, corresponding to children. A total of 1800
images, with K = 100 for each sub-type of animals, are chosen from ImageNet. It has been shown
that the neural representations generated by a DNN (after being trained with ImageNet) capture the
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Figure 3: A. The neural population activity (x) in layer 1 as a function of time in a typical trial (blue
curve), which exhibits the push-pull phenomenon as observed in the experiment [§]]. The red curve is
the case without feedback. (z) is obtained by averaging over all neurons in layer 1. B. The retrieval
accuracies of the child (red curve) and the parent patterns (yellow curve) as functions of time in the
same trial as in A. The blue curve is the case without feedback. The lower panel in both A and B
displays the time course of applying an external input (¢ € (0, 47)), the push-feedback (¢ € (7, 27)),
and the pull-feedback (t € (27, 37)). The child pattern conveyed by the external input is £!+1+1, and
the corresponding parent pattern is £'*. The parameters used are: N = 2000, P, = 25, P = 4,
Py =2,b1 =0.2,bp =0.1,7 = 5,0zt = Lal = 1,a%2 = 2,a%,, =0.1,a, = 1,a_ = 10, \;=0.1,
A2=0.1.

categorical relationships between objects, in the sense that the overlap between neural representations
reflect the closeness of objects in category, rather than their similarity in pixels [26]]. This indicates
that the memory patterns are hierarchically organized. We therefore pre-process images by filtering
them through VGG, a type of DNN [24]], and use the neural representations generated by VGG
(i.e., the neural activities before the read-out layer) to construct the memory patterns. The details
of pre-processing are described in Sec.5 in SI. The lower panel of FigldJA shows the correlations
between the memory patterns generated by VGG, which exhibits a hierarchical structure, i.e., siblings
from the same parent have stronger correlations than cousins from different parents, similar to the
correlation structure in our model.
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Figure 4: The model performances with real images. A. The dataset. Top panel: example images,
one for each sub-type of cat or dog. Lower panel: the correlations between child patterns after
pre-processing by VGG. Cat: 1 — 9; Dog: 10 — 18. B. Retrieval accuracies of the child (cat A, blue
curve) and parent (cat, yellow curve) patterns as functions of time in a typical trial. The red curve is
the case without feedback. C. Different effects of the push and pull feedbacks in the example trial
as in B. The blue, purple, and green curves represent, respectively, the retrieval accuracies of the
target child (cat A, a Siamese cat), the siblings (other sub-types of cats), and other child patterns
(all sub-types of dogs) in layer 1. In B-C, the image presented to the network is cat Siamese, and
the lower panel displays the time course of applying the external input (0, 47), the push feedback
(7,2.47), and the pull feedback (2.47, 3.87). The parameters: N = 4096, al = 1, a? = 2, al,, = 6,
aZ,, =1,a; =2,a_ = 1.5, a®! = 1. Other parameters are the same as in Fig

We present each image to the network and measure its retrieval accuracy by calculating m”"7, i.e., the
overlap between the network response and the memory pattern corresponding to the image. FigB
shows a typical example of the retrieval process. We see that the retrieval accuracy of layer 1 keeps



increasing when the push and pull feedbacks are applied sequentially, and the result is significantly
improved compared to the case without feedback. Over 1800 images, the averaged improvement is
71.04% (measured at the moment when the pull feedback stops).

To illustrate the individual effects of the push and pull feedbacks, we also calculate the retrieval
accuracies of sibling and cousin patterns. As shown in Figld[C, we see that: 1) at the early phase
of push feedback, both the retrieval accuracies of the target child pattern and its siblings increase,
whereas the retrieval accuracy of cousins drops, indicating that the push feedback has the effect of
suppressing the inter-class interference; 2) at the later phase of pull feedback, the retrieval accuracy of
the target child pattern experiences another significant increase much larger than that for other child
patterns, indicating that the pull feedback has the effect of suppressing the intra-class interference.

6 Conclusion and Discussion

The present study investigates the role of feedback in hierarchical information retrieval. Hierarchical
associative memory models have been studied previously [21} 1} 25/ 20], but these works considered
only a single layer network without feedback. To our knowledge, our paper is the first one studying the
contributions of feedback. In machine learning, there were studies which utilize the semantics-based
higher category knowledge of objects as side information to enhance image recognition 14,19, 3],
but they are very different from our network model in the use of dynamical feedback between layers
to enhance information retrieval.

Feedback connections have been widely observed in neural signalling pathways, but their exact
computational functions remain largely unclear. Here, in the task of information retrieval, our
study reals that the neural feedback, which varies from positive (push) to negative (pull) over time,
contributes to the suppression of the inter- and intra- class noises in information retrieval. This
push-pull characteristic agrees with the push-pull phenomenon of neural activities observed in the
experiments [8} 6]. Notably, the neural systems have resources to realize such a dynamical feedback,
and they are likely implemented via different signal pathways. For instance, the push feedback may
be realized via direct excitatory synapses from higher to lower layers, and the stopping of push
feedback can be controlled by short-term synaptic depression; on the other hand, the pull feedback
may go through a separate path mediated by inhibitory interneurons, which is naturally delayed
compared to the direct excitatory path [[12].

Through studying feedback, the present study also addresses a dilemma in neural coding, which
concerns the conflicting roles of neural correlation: on one hand, pattern correlations are essential
to encode the categorical relationships between objects; on the other hand, they inevitably incur
interference to memory retrieval. To diminish the correlation interference, we propose that neural
systems employ a rough-to-fine information retrieval procedure. Upon receiving the external informa-
tion, the higher categorical pattern is first retrieved, whose result is subsequently utilized to enhance
the retrieval of the lower categorical pattern via dynamical push-pull feedback. In such a way, the
highly correlated neural representations for objects are reliably retrieved. The idea of rough-to-fine
information retrieval is in agreement with the concept of “global first" in cognitive science, which
states that the brain extracts first the global (e.g., topological), rather than the local (e.g., Euclidean),
geometrical features of objects [4]. This phenomenon has been confirmed by a large volume of
psychophysical experiments [S]]. Here, our study unveils a computational advantage of “global first"
not realized previously, that is, extracting global features first, aided by the push-pull feedback, serves
as an efficient strategy to overcome the interference due to neural correlations. It has been suggested
by experimental findings that the dorsal pathway [[17]], and/or the subcortical pathway from retina
to superior colliculus [18], carry out the rapid computation of extracting global features of objects;
while, along the ventral pathway, the push-pull feedback assists the feedforward input to extract the
fine structures of objects in a relatively slow manner. In our future work, we will extend the present
study to explore the role of feedback in biologically more detailed models.
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