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Abstract

This work provides theoretical and empirical evidence that invariance-inducing
regularizers can increase predictive accuracy for worst-case spatial transformations
(spatial robustness). Evaluated on these adversarially transformed examples, we
demonstrate that adding regularization on top of standard augmented or adversarial
training reduces the relative robust error on CIFAR-10 by 20% with minimal
computational overhead. Similar relative gains hold for SVHN and CIFAR-100.
Regularized augmentation-based methods in fact even outperform handcrafted
networks that were explicitly designed to be spatial-equivariant. Furthermore, we
observe for SVHN, known to have inherent variance in orientation, that robust
training also improves standard accuracy on the test set. We prove that this no-
trade-off phenomenon holds for adversarial examples from transformation groups
in the infinite data limit.

1 Introduction

As deployment of machine learning systems in the real world has steadily increased over recent
years, the trustworthiness of these systems has become a crucial requirement. This is particularly
the case for safety-critical applications. For example, the vision system in a self-driving car should
correctly classify an obstacle or human irrespective of their orientation. Besides being relevant from
a security perspective, the ability to be invariant against small spatial transformations also helps to
gauge interpretability and reliability of a model. If an image of a child rotated by 8◦ is classified as a
trash can, can we really trust the system in the wild?

As neural networks have been shown to be expressive both theoretically [18, 4, 15] and empirically
[47], in this work we study to what extent standard neural networks predictors can be made invariant
to small rotations and translations. In contrast to enforcing conventional invariance on entire group
orbits, we weaken the goal to invariance on smaller so-called transformation sets. This requirement
reflects the aim to be invariant to transformations that do not affect the labeling by a human. During
test time we assess transformation set invariance by computing the prediction accuracy on the worst-
case (adversarial) transformation in the (small) transformation set of each image in the test data.
The higher this worst-case prediction accuracy of a model is, the more spatially robust we say it is.
Importantly, we use the same terminology as in the very active field of adversarially robust learning
[39, 29, 23, 33, 6, 26, 37, 38, 35, 43, 28], but we consider adversarial examples with respect to spatial
instead of �p-transformations of an image.

Recently, it was observed (see e.g.[11, 13, 34, 20, 14, 2, 10]) that worst-case prediction performance
drops dramatically for neural network classifiers obtained using standard training, even for rather
small transformation sets. In this context, we examine the effectiveness of regularization that explic-
itly encourages the predictor to be constant for transformed versions of the same image, which we
refer to as being invariant on the transformation sets. Broadly speaking, there are two approaches
to encourage invariance of neural network predictors. On the one hand, the relative simplicity of

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



the mathematical model for rotations and translations has led to carefully hand-engineered archi-
tectures that incorporate spatial invariance directly [19, 24, 8, 27, 44, 42, 12, 40]. On the other
hand, augmentation-based methods [3, 46] constitute an alternative approach to encourage desired
invariances on transformation sets. Specifically, the idea is to augment the training data by a random
or smartly chosen transformation of every image for which the predictor output is enforced to be
close to the output of the original image. The latter can be achieved by adding a invariance-inducing
regularization term to the classification loss.

While augmentation-based methods can be used out of the box whenever it is possible to generate
samples in the transformation set of interest, it is unclear how they compare to architectures that
are tuned for the particular type of transformation using prior knowledge. Studying robustness
against spatial transformations in particular allows us to compare the robust performance of these two
approaches, as spatial-equivariant networks have been somewhat successful in enforcing invariance.
In contrast, this cannot be claimed for higher-dimensional �p-type perturbations. In the empirical
sections of this paper, we hence want to explore the following questions:

1. To what extent can augmentation and regularization based methods improve spatial robust-
ness of common deep neural networks?

2. How does augmentation-based invariance-inducing regularization perform in case of small
spatial transformations compared to representative specialized architectures designed to
achieve invariance against entire transformation groups?

As a justification for employing this form of invariance-inducing regularization, we prove in our the-
oretical section 2 that when perturbations come from transformation groups, predictors that optimize
the robust loss are in fact invariant on the set of transformed images. Although recent works show a
fundamental trade-off between robust and standard accuracy in constructed �p perturbation settings
[41, 48, 36], we additionally show that this is fundamentally different for spatial transformations due
to their group structure.

In Section 4 we present our empirical findings and evaluate spatial robustness of various augmentation
based training methods for ResNet [16] architectures on SVHN [32], CIFAR-10 and CIFAR-100 [22]
as described in Sec. 3 . Across all datasets, we observe ∼ 20% relative adversarial error reduction for
methods using invariance-induced regularization compared to previous ones including standard ad-
versarial training, with only negligible computational overhead. In fact, regularization can drastically
reduce the required training time to reach a fixed robust accuracy (see Figure 2). Furthermore, we
show that regularized augmentation-based methods outperform representative handcrafted networks
that were explicitly designed for invariance against all group transformations.

2 Theoretical results for invariance-inducing regularization
In this section, we first introduce our notion of transformation sets and formalize robustness against a
small range of translations and rotations. We then prove that, on a population level, constraining or
regularizing for transformation set invariance yields models that minimize the robust loss. Moreover,
when the label distribution is constant on each transformation set, we show that the set of robust
minimizers not only minimizes the natural loss but, under mild conditions on the distribution over the
transformations, is even equivalent to the set of natural minimizers.

Although the framework can be applied to general problems and transformation groups, we consider
image classification for concreteness. In the following, X ∈ X ⊂ Rd is an image and Y ∈ Rp a
one-hot vector for multiclass labels that follow a joint distribution P. The function f : Rd → Rp in
function space F (e.g. deep neural network in experiments) maps the input image to a logit vector
that is then used for prediction via a softmax layer.

2.1 Transformation sets

Invariance with respect to spatial transformations is often thought of in terms of group equivariance
of the representation and prediction. Instead of invariance with respect to all spatial transformations
in a group, we impose a weaker requirement, that is invariance against transformation sets, defined
as follows. We denote by Gz a compact subset of images in the support of P that can be obtained
by transformation of an image z ∈ X . Gz is called a transformation set. For example in the case of



rotations, the transformation set Gz corresponds to the set of observed images in a dataset that are
different versions of the same image z, that can be obtained by small rotations of one another.

By the technical assumption on the space of real images that the sampling operator is bijective, the
mapping z → Gz is bijective. We can hence define G, a set of transformation sets, by G = ∪z∈XGz

for a given transformation group. Importantly, the bijectivity assumption also leads to Gz being
disjoint for different images z ∈ X . The above definition is distribution dependent and G partitions
the support �X of the distribution. More details on the aforementioned concepts and definitions can be
found in Sec. A.1 in the Appendix.

We say that a function f is (transformation-)invariant if f(x) = f(x�) for all x, x� ∈ U for all U ∈ G
and denote the class of all such functions by V . Using this notation, fitting a model with high accuracy
under worst-case “small” transformations of the input can be mathematically captured by the robust
optimization formulation [5] of minimizing the robust loss

Lrob(f) := E X,Y sup
x�∈GX

�(f(x�), Y ) (1)

in some function space F . We call the solution of this problem the (spatially) robust minimizer.
While adversarial training aims to optimize the empirical version of Eq. (1), the converged predictor
might be far from the global population minimum, in particular in the case of nonconvex optimization
landscapes encountered when training neural networks. Furthermore, we show in the following
section that for robustness over transformation sets, constraining the model class to invariant functions
leads to the same optimizer of the robust loss. These facts motivate invariance-inducing regularization
which we then show to exhibit improved robust test accuracy in practice.

2.2 Regularization to encourage invariance

For any regularizer R, we define the corresponding constrained set of functions V(R) as

V(R) := {f : R(f, x, y) = 0 ∀(x, y) ∈ supp(P)},
where supp(P) denotes the support of P. When R(f, x, y) = supx�∈Gx h(f(x), f �(x)) and h is a
semimetric1 on Rp, we have V(R) = V . We now consider constrained optimization problems of the
form

min
f∈F

E �(f(X), Y ) s.t. f ∈ V(R), (O1)

min
f∈F

E sup
x�∈GX

�(f(x�), Y ) s.t. f ∈ V(R). (O2)

The following theorem shows that (O1), (O2) are equivalent to (1) if the set of all invariant functions
V is a subset of the function space F .
Theorem 1. If V ⊆ F , all minimizers of the adversarial loss (1) are in V . If furthermore V(R) ⊆ V ,
any solution of the optimization problems (O1), (O2) minimizes the adversarial loss.

The proof of Theorem 1 can be found in the Appendix in Sec. A.2. Since exact projection onto the
constrained set is in general not achievable for neural networks, an alternative method to induce
invariance is to relax the constraints by only requiring f ∈ {f : R(f, x, y) ≤ � ∀(x, y) ∈ supp(P)}.
Using Lagrangian duality, (O1) and (O2) can then be rewritten in penalized form for some scalar
λ > 0 as

min
f∈F

Lnat(f ;R,λ) := min
f∈F

E �(f(X), Y ) + λR(f,X, Y ), (2)

min
f∈F

Lrob(f ;R,λ) := min
f∈F

E sup
x�∈GX

�(f(x�), Y ) + λR(f,X, Y ). (3)

In Sec. 2.4 we discuss how ordinary adversarial training, and modified variants that have been
proposed thereafter, can be viewed as special cases of Eqs. (2) and (3). On the other hand, the
constrained regularization formulation corresponds to restricting the function space and is hence
comparable with hand-crafted network architecture design as described in Sec. 3.1.

1The weaker notion of a semimetric satisfies almost all conditions for a metric without having to satisfy the
triangle inequality.



2.3 Trade-off between natural and robust accuracy

Even though high robust accuracy (1) might be the main goal in some applications, one might wonder
whether the robust minimizer exhibits lower accuracy on untransformed images (natural accuracy)
defined as Lnat(f) := EX,Y �(f(X), Y ) [41, 48]. In this section we address this question and identify
the conditions for transformation set perturbations under which minimizing the robust loss does not
lead to decreased natural accuracy. Notably, it even increases under mild assumptions.

One reason why adversarial examples have attracted a lot of interest is because the prediction of a
given classifier can change in a perturbation set in which all images appear the same to the human
eye. Mathematically, in the case of transformation sets, the latter can be modeled by a property of
the true distribution. Namely, it translates into the conditional distribution Y given x, denoted by
PGx , being constant for all x belonging to the same subset U ∈ G. In other words, Y is conditionally
independent of X given GX , i.e. Y ⊥⊥ X|GX . Under this assumption the next theorem shows that
there is no trade-off in natural accuracy for the transformation robust minimizer.

Theorem 2 (Trade-off natural vs. robust accuracy). Under the assumption of Theorem 1 and if
Y ⊥⊥ X|GX holds, the adversarial minimizer also minimizes the natural loss. If moreover, PGz has
support Gz for every z ∈ �X and the loss � is injective, then every minimizer of the natural loss also
has to be invariant.

As a consequence, minimizing the constrained optimization problem (O1) could potentially help
in finding the optimal solution to minimize standard test error. Practically, the assumption on the
distribution of the transformation sets Gz corresponds to assuming non-zero inherent transformation
variance in the natural distribution of the dataset. In practice, we indeed observe a boost in natural
accuracy for robust invariance-inducing methods in Sec. 4 on SVHN, a commonly used benchmark
dataset for spatial-equivariant networks for this reason.

One might wonder how this result relates to several recent publications such as [41, 48] that presented
toy examples for which the �∞ robust solution must have higher natural loss than the Bayes optimal
solution even in the infinite data limit. On a fundamental level, �∞ perturbation sets are of different
nature compared to transformation sets on generic distributions of X . In the distribution considered
in [41, 48], there is no unique mapping from x ∈ X to a perturbation set and thus the conditional
independence property does not hold in general.

2.4 Different regularizers and practical implementation

In order to improve robustness against spatial transformations we consider different choices of
R(f, x, y) in the regularized objectives (2) and (3) that we then compare empirically in Sec. 4. This
allows us to view a number of variants of adversarial training in a unified framework. Broadly
speaking, each approach listed below consists of first searching an adversarial example according
to some mechanism which is then included in a regularizing function, often some weak notion of
distance between the prediction at X and the new example. The following choices of regularizers
involve the maximization of a regularizing function over the transformation set

RAT(f,X, Y ) = sup
x�∈GX

�(f(x�), Y )− �(f(X), Y ) (equivalent to [39, 26] for Lnat)

R�2(f,X, Y ) = sup
x�∈GX

�f(X)− f(x�)�22

RKL(f,X, Y ) = sup
x�∈GX

DKL(f(x
�), f(X)) (equivalent to [48] for Lnat)2

where DKL is the KL divergence on the softmax of the (logit) vectors f ∈ Rp. In all cases we refer
to the maximizer as an adversarial example that is found using defense mechanisms as discussed in
Section 3.3. Note that for R�2 and RKL the assumption V(R) ⊆ V in Theorem 1 is satisfied.

Instead of performing a maximization of the regularizing function to find the adversarial example x�,
we can also choose x� in alternative ways The following variants are explored in the paper, two of



which are reminiscent of previous work

RALP(f,X, Y ) = �f(x�)− f(X)�22 with x� = argmax
u∈GX

�(f(u), Y ) (equivalent to [21])

RKL-C(f,X, Y ) = DKL(f(x
�), f(X)) with x� = argmax

u∈GX

�(f(u), Y )

Rh−DA(f,X) = E x�∈GXh(f,X,X �) (similar to [17])

The last regularizer suggests using an additive penalty on top of data augmentation, with either one or
even multiple random draws, where the penalty can be any of the above semimetrics h between f(X)
and f(x�), such as the �2 or DKL distance. Albeit suboptimal, the experimental results in Section 4
suggest that simply adding the additive regularization penalty on top of randomly drawn data matches
general adversarial training in terms of robust prediction at a fraction of the computational cost. In
addition, Theorem 2 suggests that even when the goal is to improve standard accuracy and one expects
inherent variance of nuisance factors in the data distribution it is likely helpful to use regularized data
augmentation with Rh−DA instead of vanilla data augmentation. Empirically we observe this on the
SVHN dataset in Section 4.

Adversarial example for spatial transformation sets Since GX is not a closed group and we do
not even know whether the observation X lies at the boundary of GX or in the interior, we cannot
solve the maximization constrained to GX in practice. However, for an appropriate choice of set S ,
we can instead minimize an upper bound of (1) which reads

min
f∈F

E sup
Δ∈S

�(f(T (X,Δ)), Y ) ≥ min
f∈F

E sup
x�∈GX

�(f(x�), Y ) (4)

where S is the set of transformations that we search over and T (X,Δ) denotes the transformed image
with transformation Δ (see Sec. A.1 in the Appendix for an explicit construction of the transformation
search set S). The left hand side in (4) is hence what we aim to solve in practice where the expectation
is over the empirical joint distribution of X,Y . The relaxation of GX to a range of transformations
of X that is {T (X,Δ) : Δ ∈ S} is also used for the maximization within the regularizers.

In Figure 1 one pair of example images is shown: the original image (panel (a)) is depicted along with
a transformed version T (·,Δ) with Δ ∈ S (panel (b)) and the respective predictions by a standard
neural network classifier.

3 Experimental setup
In our experiments, we compare invariance-inducing regularization incorporated via various
augmentation-based methods (as described in Section 2.4) used on standard networks and rep-
resentative spatial equivariant networks trained using standard optimization procedures.

3.1 Spatial equivariant networks

We compare the robust prediction accuracies from networks trained with the regularizers with three
specialized architectures, designed to be equivariant against spatial transformations and translations:
(a) G-ResNet44 (GRN) [8] using p4m convolutional layers (90 degree rotations, translations and
mirror reflections) on CIFAR-10; (b) Equivariant Transformer Networks (ETN) [40], a generalization
of Polar Transformer Networks (PTN) [12], on SVHN; and (c) Spatial Transformer Networks (STN)
[19] on SVHN. A more comprehensive discussion of the literature on equivariant networks can be
found in Sec. 5. We choose the architectures listed above based on availability of reproducible code
and previously reported state-of-the art standard accuracies on SVHN and CIFAR-10. We train GRN,
STN and ETN using standard augmentation as described in Sec. 3.4 (std) and random rotations in
addition (std�). Out of curiosity we also trained a “two-stage” STN where we train the localization
network separately in a supervised fashion. Specifically, we use a randomly transformed version
of the training data, treating the transformation parameters as prediction targets. Details about the
implementation and results can be found in Sec. B in the Appendix.

3.2 Transformations

The transformations that we consider in Sec. 4 are small rotations (of up to 30◦) and translations in
two dimensions of up to 3 px corresponding to approx. 10% of the image size. For augmentation
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(a) (b)

Figure 1: Example images and classifications by the Standard
model. (a) An image that is correctly classified for most of the
rotations in the considered grid. (b) One rotation for which
the image shown in (b) is misclassified as “airplane”.

based methods we need to generate such small transformations for a given test image. Although the
definition of a transformation T (X,Δ) in the theoretical section using the corresponding continuous
image functions is clean, we do not have acccess to the continuous function in practice since the
mapping is in general not bijective. Instead, we use bilinear interpolation, as implemented in
TensorFlow and in a differentiable version of a transformer [19] for first order attack and defense
methods.

On top of interpolation, rotation also creates edge artifacts at the boundaries, as the image is only
sampled in a bounded set. The empty space that results from translating and rotating an image is
filled with black pixels (constant padding) if not noted otherwise. Fig. 1 (b) shows an example.
[11] additionally analyze a “black canvas“ setting where the images are padded with zeros prior to
applying the transformation, ensuring that no information is lost due to cropping. Their experiments
show that the reduced accuracy of the models cannot be attributed to this effect. Since both versions
yield similar results, we report results on the first version of pad and crop choices, having input
images of the same size as the original.

3.3 Attacks and defenses

The attacks and defenses we choose essentially follow the setup in [11]. The defense refers to the
procedure at training time which aims to make the resulting model robust to adversarial examples. It
generally differs from the (extensive) attack mechanism performed at evaluation time to assess the
model’s robustness due to computational constraints.
Considered attacks First order methods such as projected gradient descent that have proven to be
most effective for �∞ transformations are not optimal for finding adversarial examples with respect
to rotations and translations. In particular, our experiments confirm the observations reported in [11]
that the most adversarial examples can be found through a grid search. For the grid search attack, the
compact perturbation set S is discretized to find the transformation resulting in a misclassification with
the largest loss �. In contrast to the case of �∞-adversarial examples, this method is computationally
feasible for the 3-dimensional spatial parameters. We consider a default grid of 5 values per translation
direction and 31 values for rotation, yielding 775 transformed examples that are evaluated for each
Xi. We refer to the accuracy attained under this attack as grid accuracy. 3

Considered defenses For the adversarial example which maximizes either the loss or regularization
function, we use the following defense mechanisms:

• worst-of-k: At every iteration t, we sample k different perturbations for each image in the
batch. The one resulting in the highest function value is used as the maximizer. Most of our
experiments are conducted with k = 10 consistent with [11] as a higher k only improved
performance minimally (see Table 5).

• Spatial PGD: In analogy to common practice for �p adversarial training as in e.g. [39, 26],
the S-PGD mechanism uses projected gradient descent with respect to the translation and
rotation parameters with projection on the constrained set S of transformations. We consider
5 steps of PGD, starting from a random initialization, with step sizes of [0.03, 0.03, 0.3]
(following [11]) for horizontal-, vertical translation and rotation respectively. A discussion
on the discrepancy between S-PGD as a defense and attack mechanism can be found in
Section C.2.

• Random: Data augmentation with a distinct random perturbation per image and iteration.
This can be seen as the most naive “adversarial” example as it corresponds to worst-of-k
with k = 1.

3Since a finer grid of 7500 transformations showed only minor accuracy reductions for a subset of the
experiments (summarized in Table 10), we chose the coarser grid for the entire set of experiments for faster
computation.



3.4 Training details
The experiments are conducted with deep neural networks as the function space F and � is the
cross-entropy loss. In the main paper we consider the datasets SVHN [32] and CIFAR-10 [22]. For
the non-specialized architectures, we train a ResNet-32 [16], implemented in TensorFlow [1]. For the
Transformer networks STN and ETN we use a 3-layer CNN as localization according to the default
settings in the provided code of both networks for SVHN and rot-MNIST. In the Appendix we also
report results for CIFAR-100 [22] using a ResNet-50 [16].

We train the baseline models with standard data augmentation: random left-right flips and random
translations of ±4px followed by normalization. Below we refer to the models trained in this fashion
as “std”. For the models trained with one of the defenses described in Sec. 3.3, we only apply
random left-right flipping since translations are part of the adversarial search. The special case of
data augmentation (with translations and rotations, i.e. the defense “random”) without regularization
is refered to as std�.

For optimization of the empirical training loss, we run standard minibatch SGD with a momentum
term with parameter 0.9 and weight decay parameter 0.0002. We use an initial learning rate of
0.1 which is divided by 10 after half and three-quarters of the training steps. Independent of the
defense method, we fix the number of iterations to 80000 for SVHN and CIFAR-10, and to 120000
for CIFAR-100. For comparability across all methods, the number of unique original images in
each iteration is 64 in all cases. For the baselines std, std� and Adversarial training, we additionally
trained with a conventional batch size of 128 and report the higher accuracy of both versions. For the
regularized methods, the value of λ is chosen based on the test grid accuracy. All models are trained
using a single GPU on a node equipped with an NVIDIA GeForce GTX 1080 Ti and two 10-core
Xeon E5-2630v4 processors.

4 Empirical Results
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Figure 2: Mean runtime for different methods on
CIFAR-10. The connected points correspond to
Wo-k defenses with k ∈ {1, 10, 20}. The exact
numbers can be found in Table 6

We now compare the natural test accuracy (standard
accuracy on the test set, abbreviated as nat) and test
grid accuracy (as defined in Sec. 3.3, abbreviated as
rob) achieved by standard and regularized (adversar-
ial) training techniques as well as specialized spatial
equivariant architectures described in Sec. 3.1. For
clarity of presentation, we refer to our training proce-
dures using the following defining factors: (a) Reg :
refers to what regularizer was used (AT, ALP, �2,
KL, or KL-C as defined in Section 2.4); (b) batch:
indicates whether the gradient of the loss is taken
with respect to the adversarial examples (rob), natural
examples (nat) or both (mix), and (c) def: the mech-
anism used to find the adversarial example, including
random (rnd), worst-of-k (Wo-k) and spatial PGD
(S-PGD) as described in Sec. 3.3. Thus, Reg (batch,
def) corresponds to using Reg as the regularization
function, the examples defined by batch in the gra-
dient of the loss and the defense mechanism def to
find the augmented or adversarial examples.

In Table 1, we report results for a subset of the Reg (batch, def) combinations to facilitate compar-
isons. Tables with many more combinations can be found Tables 4–8 in the Appendix. We report
averages (standard deviations are contained in Tables 4–8) computed over five training runs with
identical hyperparameter settings. We compare all methods by computing absolute and relative error
reductions (defined as absolute error drop

prior error ). It is insightful to present both numbers since the absolute
values vary drastically between datasets.

Effectiveness of augmentation-based invariance-inducing regularization In Table 1 (top), the
three leftmost columns represent unregularized methods which all perform worse in grid accuracy
than regularized methods and the two right-most columns represent adversarial examples with respect
to the classification cross entropy loss found via S-PGD. When considering the three regularizers (KL,



Table 1: Mean accuracies of models for SVHN and CIFAR-10 trained with various forms of regular-
ized adversarial training as well as standard augmentation techniques (top) and spatial equivariant
networks (bottom). std� denotes standard augmentation plus random rotations.

std std� AT (rob,
Wo-10)

KL (rob,
Wo-10)

�2 (rob,
Wo-10)

ALP (rob,
Wo-10)

KL-C (mix,
S-PGD)

ALP (rob,
S-PGD)

SVHN (nat) 95.48 93.97 96.03 96.13 96.53 96.30 96.14 96.11
(rob) 18.85 82.60 90.35 92.71 92.55 92.04 92.42 92.32

CIFAR (nat) 92.11 89.93 91.78 90.31 90.53 89.87 89.82 89.91
(rob) 9.52 58.29 70.97 76.61 77.06 75.67 78.79 77.68

GRN GRN� ETN ETN� STN STN� GRN GRN�

SVHN (nat) 96.07 95.05 95.53 95.57 95.61 95.55 CIFAR (nat) 93.39 93.08
(rob) 25.12 84.9 13.15 84.21 36.68 79.28 (rob) 16.85 71.64

Table 2: Mean accuracies of models trained with various forms of regularized adversarial training.
Left: All adversarial examples were found via Wo-10; right: unregularized (std�) and regularized
data augmentation where the optimum is bolded for each row.

KL (nat,
Wo-10)

�2 (nat,
Wo-10)

ALP (nat,
Wo-10) std� �2 (nat,

rnd)
KL (nat,

rnd)
�2 (rob,

rnd)
KL (rob,

rnd)
SVHN (nat) 96.00 96.05 96.39 93.97 96.34 96.16 96.09 96.23

(rob) 92.27 92.16 91.98 82.60 90.51 90.69 90.48 90.92
CIFAR (nat) 90.63 88.32 88.55 89.93 87.80 89.19 88.75 89.43

(rob) 77.18 75.64 75.06 58.29 71.60 73.32 71.49 73.32

�2, ALP) with the same batch and def (here chosen to be “rob” and Wo-10) regularized adversarial
training improves the grid accuracy from 70.97% to 77.06% on CIFAR-10 and 90.35% to 92.71%
on SVHN, corresponding to a relative error reduction of 21% and 24% respectively. The same can be
observed when comparing data augmentation std� and its regularized variants �2(·, rnd),KL(·, rnd) in
Table 2. Together with Table 5, S-PGD seems to be the more efficient defense mechanism compared
to worst-of-k even when k is raised to 20, with comparable computation time.

Computational considerations In Figure 2, we plot the grid accuracy vs. the runtime (in hours)
for a subset of regularizers and defense mechanisms on CIFAR-10 for clarity of presentation. How
much overhead is needed to obtain the reported gains? Comparing AT(rob, Wo-k) (green line) and
ALP(rob, Wo-k) (red line) shows that significant improvements in grid accuracy can be achieved by
regularization with only a small computational overhead. What if we make the defense stronger?
While the leap in robust accuracy from Wo-1 (also referred to as rnd) to Wo-10 is quite large,
increasing k to 20 only gives diminishing returns while requiring ∼ 3× more training time. This
observation is summarized exemplarily for both KL and ALP regularizer on CIFAR-10 in Table 6.
Furthermore, for any fixed training time, regularized methods exhibit higher robust accuracies where
the gap varies with the particular choice of regularizer and defense mechanism.

Comparison with spatial equivariant networks Although the rotation-augmented G-ResNet44
obtains higher grid (SVHN: 84.9%, CIFAR-10: 71.64%) and natural accuracies (SVHN: 95.05%,
CIFAR-10: 93.08%) than the rotation-augmented Resnet-32 on both SVHN (grid: 82.60%, nat:
93.97%) and CIFAR-10 (grid: 58.29%, nat: 89.93%), regularizing standard data augmentation (i.e.
regularizers with “rnd”, see Table 2 (right)) using both the �2 distance and the KL divergence matches
the G-ResNet44 on CIFAR-10 (�2: 71.60%, KL: 73.32%) and surpasses it on SVHN on grid (�2:
90.51%, KL: 90.69%) and natural accuracies by a relative grid error reduction of ∼ 37%. The same
phenomenon is observed for the augmented ETN and STN on SVHN.4 In conclusion, regularized
augmentation based methods match or outperform representative end-to-end networks handcrafted to
be equivariant to spatial transformations.

Trade-off natural vs. adversarial accuracy SVHN is one of the main datasets (without artificial
augmentation like in rot-MNIST [25]) where spatial equivariant networks have reported improvements

4We had difficulties to train both ETN and STN to higher than 86% natural accuracy for CIFAR-10 even
after an extensive learning rate and schedule search so we do not report the numbers here.



on natural accuracy. This is due to the inherent orientation variance in the data. In our mathematical
framework, this corresponds to the assumption in Theorem 2 of the distribution on the transformation
sets having support Gz . Furthermore, as all numbers in SVHN have the same label irrespective of
small rotations of at most 30 degrees, the first assumption in Theorem 2 is also fulfilled. Table 1 and
2 confirm the statement in the Theorem that improving robust accuracy may not hurt natural accuracy
or even improve it: For SVHN, adding regularization to samples obtained both via Wo-10 adversarial
search or random transformation (rnd) consistently not only helps robust but also standard accuracy.

Comparing the effects of different regularization parameters on test grid accuracy We study
Tables 1 and 2 and attempt to disentangle the effects by varying only one parameter. For example
we can observe that, computational cost aside, fixing any regularizer defense to Wo-10, the robust
regularized loss Reg (rob, Wo-10) (i.e., Lrob(f ;R)) does better (or not statistically significantly
worse) than Reg (nat, Wo-10) (i.e., Lnat(f ;R)). Furthermore, the KL regularizer generally performs
better than �2 for a large number of settings. A possible explanation for the latter could be that DKL
upper bounds the squared �2 loss on the probability simplex and is hence more restrictive.

Choice of λ The optimal λ in terms of grid accuracy depend on the regularization method. However,
the regularized predictors outperform unregularized methods in a large range of λ values (see Figures 4
and 5 in the Appendix), suggesting that effective values of λ are not difficult to find in practice.

There are many more interesting experiments we have conducted for subsets of the defenses and
datasets illustrating different phenomena that we observe. For example we have analyzed a finer grid
for the grid search attack and evaluated S-PGD as an attack mechanism. A detailed discussion of
these experiments can be found in Sec. C.2.

5 Related work

Group equivariant networks There are in general two types of approaches to incorporate spatial
invariance into the network. In one of the earlier works in the neural net era, Spatial Transformer
Networks were introduced [19] which includes a transformer module that predicts transformation
parameters followed by a transformer. Later on, one line of work proposed multiple filters that are
discrete group transformations of each other [24, 27, 8, 50, 44]. For continuous transformations,
steerability [42, 9] and coordinate transformation [12, 40] based approaches have been suggested.
Although these approaches have resulted in improved standard accuracy performances, it has not
been rigorously studied whether or by how much they improve upon regular networks with respect to
robust test accuracy.

Regularized training Using penalty regularization to encourage robustness and invariance when
training neural networks has been studied in different contexts: for distributional robustness [17],
domain generalization [30], �p adversarial training [31, 21, 48], robustness against simple transfor-
mations [7] and semi-supervised learning [49, 45]. These approaches are based on augmenting the
training data either statically [17, 30, 7, 45], ie. before fitting the model, or adaptively in the sense
of adversarial training, with different augmented examples per training image generated in every
iteration [21, 31, 48].

6 Conclusion
In this work, we have explored how regularized augmentation-based methods compare against spe-
cialized spatial equivariant networks in terms of robustness against small translations and rotations.
Strikingly, even though augmentation can be applied to encourage any desired invariance, the regu-
larized methods adapt well and perform similarly or better than specialized networks. Furthermore,
we have introduced a theoretical framework incorporating many forms of regularization techniques
that have been proposed in the literature. Both theoretically and empirically, we showed that for
transformation invariances and under certain practical assumptions on the distribution, there is no
trade-off between natural and adversarial accuracy which stands in contrast to the debate around
�p-perturbation sets. In summary, it is advantageous to replace unregularized with regularized training
for both augmentation and adversarial defense methods. With regard to the regularization parameter
choice we have seen that improvements can be obtained for a large range of λ values, indicating that
this additional hyperparameter is not difficult to tune in practice. In future work, we aim to explore
whether specialized architectures can be combined with regularized adversarial training to improve
upon the best results reported in this work.
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