
We thank reviewers R1 , R2 and R3 for their constructive comments. We give here answers to the main ones.1

R2 If there is one sampling scheme [...] it must be explained better [...] this part should be very clean and clear.2

R1 I also expect more details on the methodological modification over BH for the proposed sampling method.3

We agree, and we have expanded Section 3.3 and Appendix A.4 to shed light on (i) sampling continuous DPPs, and (ii)4

our contributions that led to cutting sampling time by orders of magnitude for our specific DPPs. The following is a5

short preview of the improved presentation of our contributions on the sampling procedure.6

The original sampling algorithm for projection DPPs by Hough et al. (2006, Algorithm 18) works as follows.7

Consider the projection DPP(ω(x)dx,KN ) as defined in our Section 2.2, with KN (x, y) = Φ(x)TΦ(y) where8

Φ(x) , (φ0(x), . . . , φN−1(x)). This DPP has exactly N points, µ-almost surely. To get a valid sample {X1, . . . , XN},9

it is enough to apply the chain rule to the vector (X1, . . . , XN ) and forget about the order. The vector has density10
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where the RHS is precisely the chain rule. The challenge is twofold. First, one must use an efficient way to sample11

exactly from the conditionals in the chain rule. Second, one must efficiently evaluate the kernel KN (6). In our12

submission, we followed BH and used rejection sampling to sample the conditionals, using always the same proposal13

distribution ωeq(x) dx (A.12) and rejection bound (A.14). But, unlike BH, we computed KN (x, y) more efficiently by14

coupling the slicing feature of the Python language with the dedicated scipy.special.eval_jacobi. This carefully15

avoided redundant evaluations of orthogonal polynomials (OPs) in evaluating the multivariate kernel, which were a16

bottleneck. Since the submission, we further applied tricks familiar to MLers, and stored the feature vectors Φ(x1:n−1)17

to exploit the Gram structure when computing Kn−1(xn) = Φ(x1:n−1)TΦ(xn). Besides, we found out that using18

the marginal N−1KN (x, x)ω(x) dx as a rejection sampling proposal allowed us to reduce the number of (costly)19

evaluations of the quadratic form Kn−1(xn)TK−1
n−1Kn−1(xn). This new proposal can be sampled without too many20

OP evaluations since it is a mixture, where each mixture component involves only one OP and can be sampled using21

rejection sampling again, this time using the original proposal ωeq(x) dx of BH and the rejection bound (A.13). After22

making implementation improvements, getting one sample of a multivariate Jacobi ensemble with N = 1000 points in23

dimension d = 2 now takes less than a minute, compared to hours with the original implementation of BH (2016).24

All these improvements hold for all continuous DPPs, and together resulted in the dramatic speedups that we observed.25

A more specific improvement for OP-based kernels and d = 1, has been to implement Theorem 2 of Killip & Nenciu26

(2004), which surprisingly reduces DPP sampling to diagonalizing a simple tridiagonal random matrix. Finally, as noted27

by R2 , the code we provided substantially helps; this code will be made public as a fully documented Python toolbox.28

R1 Theoretically, the authors shed light on the classical EZ method that utilizes DPP for numerical integration.29

Indeed, one of our contributions is to formally link EZ and DPPs. This needed to be done because (i) DPPs were30

formalized 15 years after EZ (1960), and (ii) while the theory of DPPs has been thoroughly investigated in the 2000s,31

the work of EZ had been mostly forgotten by then, probably because sampling looked an insurmountable obstacle.32

All recent DPP-based numerical integration works were seemingly unaware of EZ. Now that the link is made and the33

methods are “aligned", as R1 writes, we can imagine several lines for future work, like borrowing DPP machinery to34

prove a central limit theorem for EZ, or further connecting EZ to Bayesian quadrature.35

R1 the method still does not seem to be applicable to practical tasks with high dimension or large sample size.36

As remarked by R3 , DPP-based Monte Carlo algorithms are new and further work is certainly needed to make them37

practical. However, we believe that the EZ estimator combined with fast DPP samplers is already of practical interest38

for high-dimensional integration of functions that are known to be sparse in some basis of L2.39

R1 I cannot tell whether (a) Theorem 1 has new results or is a known result listed for a modern proof (b) Section 3.140

contains novel results (c) it is a novel idea to use orthonormal polynomials in EZ.41

(a) Theorem 1 is indeed a known result and we bring a modern formulation and a modern proof. As discussed above, our42

reformulation highlights the unknown fact that EZ is actually based on sampling from a DPP. We provide an efficient43

exact sampling procedure for the multivariate Jacobi ensemble with ideas that benefit the general case (b) Section44

3.1 only recalls known results from BH (2016), to ease the later comparison with EZ. Comparing nonasymptotic and45

asymptotic variances brings insight, for instance. (c) It’s not novel: orthogonal polynomials are quite common in46

approximation theory, where the EZ method comes from.47

R1 I expect (a) one experimental result for Sections 4.2-3. [...] (b) comparisons with i.i.d. Monte Carlo or MCMC [...]48

(a) Sections 4.2 and 4.3 indeed each contain an experiment. We designed these experiments to go beyond the toy49

illustration of BH (2016) and showcase the differences between EZ and BH. Extensive plots are to be found in Sections50

B2–6 of the appendix. (b) We will add the i.i.d. baseline, which will help visualize the faster rates of BH and EZ.51

R1 Is it possible to apply DPP to dynamics-based MCMC and particle-based variational inference methods?52

In principle yes, DPPs have the potential to yield generic variance reduction in importance sampling. The kernel needs53

to be carefully chosen, though, if one wants faster-than-Monte-Carlo rates like with BH or EZ.54


