
We sincerely thank all of you for the detailed, thoughtful, and constructive comments and feedback. We have1

incorporated all your suggestions in our paper, which has significantly improved from them. We elaborate below.2

Reviewer #2: (I) Our algorithm can handle> 2 protected groups: in our numerical results, there are up to five protected3

(racial) groups. It can also handle > 2 protected attributes (e.g., race, age, gender) by either: a) partitioning the4

network based on joint values of the protected attributes, and imposing max-min fairness constraint for each group; e.g.,5

constraints on (White, Young, Female) people, etc.; or b) imposing a max-min fairness constraint for each protected6

attribute, separately. (II) We added a table of racial composition data for all networks. For instance, the MFP networks7

consisted of 16.5% White, 35% Black, 21% Hispanic, 18.5% Mixed, and 9% Others. Each individual belongs to a single8

race level. (III) The computational complexity of the problem increases exponentially with K, limiting us to increase K9

beyond 3 for the considered instances. As demonstrated by our results, K ∼ 3 was sufficient to considerably improve10

fairness of the covering at moderate cost. (IV)-(V) Covering schemes are not inputs but rather decision variables of11

the K-adaptability problem. The optimization problem will identify the best K covering schemes that satisfy all the12

constraints including fairness constraints. (VI) In Section 5, we vary W from 0 to 1, in increments of 0.04; we employ13

the largest W for which the problem is feasible (see lines 152-154). By construction, this choice of W guarantees14

that all of the fairness constraints are satisfied. The choice of W varies with the network structure, no. of monitors,15

no. of failed nodes and K. In Table 2, for network MFP2, and for J = 1, . . . , 5, W was: 0.64, 0.56, 0.48, 0.4 and 0.32,16

respectively. We will report the values of W in a table in the appendix. (V) We clarify Figs. 2(b)-(d) by changing17

the y-axis label to “Average normalized objective value” and adding to the caption that “it corresponds to the ratio of18

objective value of the master problem (appendix, line 582) to the network size, averaged over the five network instances.”19

Reviewer #3 (I)-(II) We incorporated all the recommendations. We included proof sketches, in the main text, after20

Props. 1 and 2 and Th. 1. We improve clarity of Th. 1 by adding “In this formulation, there are two sets of variables: a)21

The decision variables of the original problem; b) Dual variables emerging from employing linear programming duality22

to reformulate the inner minimization problem in Problem (4) ”. We explain the role of the dual variables, and the two23

sets of constraints corresponding to different values of the parameter l. (III) The memory overflow is due to the fact that24

the MILP formulation in Th. 1, although polynomial in all problem inputs, remains exponential in K. This is the main25

motivation to develop the Bender’s decomposition approach in Section 4. Please see also response (III) to Reviewer #2.26

(IV) We will provide a head-to-head comparison with Table 1. For instance, the corresponding results of our approach27

(K = 3) for MFP2 network are: White: 56%; Black: 80%; Hispanic: 70%; Mixed: 71%; Other: 72%. (V) We improved28

the K-adaptability formularization by adding to Section 4: “the MILP reformulation relies on three key components: a)29

partitioning of the uncertainty set (achieved by introducing the parameter l), b) continuous relaxation of each subset of30

the uncertainty set , and c) linear programming duality theory, to reformulate the robust optimization formulation over31

each subset.” (VI) We will release the code and a “readme” file with instructions, detailing the sequence of the runs.32

(VII) The 2-hour time limit is justified by the “flattening” in the “Objective Bound” (Figures 2(b)-(d)); this is a common33

approach in optimization to terminate the algorithm when the change in objective is small. (VIII) We apologize for the34

confusion caused by Line 281. We now write “. . . by imposing fairness constraints for each group. We set the number35

of monitors to I=N/3.” Please see also our answer (VI) to Reviewer #2. (IX) We now add a section on future work. (X)36

The Bernoulli distribution of the random variables Yn and Zni is due to the Erdős-Rényi network generation process37

(see lines 418-419). Therefore, the probability of Zni (similarly Yn) taking the value of 1 is a known constant. (XI) The38

“budget regime” refers to the assumptions on the values of I , which we made more explicit. (XII)-(XIII) The remaining39

comments were addressed; we also added a part that was inadvertently deleted in the proof of Prop. 2.40

Reviewer #4 (I) Please see answer (I) to Reviewer #2. (II) The paper [31] does not handle the uncertainty in node41

availability, which is one of the main contributions of our framework. (III) We have added the discussion of the42

worst-case PoF (Lemma 2) to the main text. (IV) We clarified, in the text, that we investigate the ratio of expected43

coverage rather than expectation of ratios for analytical tractability. (V) The assumption on I can be interpreted as a44

“small budget assumption” that helps simplify the evaluation of the coverage. Please also see answer (II) to reviewer #3.45

(VI) Intuitively, uncertainty sets involving constraints as lower bounds on the (sums of) uncertain parameters satisfy the46

upward-closeness property. We now provide three examples of such sets, that are of practical relevance.(VII) The value47

of K determines the approximation quality, enabling the decision-maker to trade-off the optimality with computation48

time. The choice of K is mainly guided by the available computational resources (e.g., time) and is domain specific.49

Particularly, in low-resource settings (e.g., suicide prevention for homeless youth), we may be restricted to use low50

values of K. (VIII) Please refer to answer (II) to Reviewer #3. (IX) We have incorporated all your comments to51

improve the interpretability of Table 2. (X) Bender’s decomposition is an exact iterative algorithm that converges to an52

optimal solution provided subproblems are LPs as in our case (Bertsimas, Dimitris, John N. Tsitsiklis. Intro. to linear53

optimization, 1994). In practice, it is run until a termination criterion, such as time, optimality gap, etc. is satisfied. We54

chose time limit for practical purposes. (XI) From discussion with our social work partners, I ∈ [20, 30]%N is typically55

seen in the context of suicide prevention. We now have added more rows in Table 2, reporting the average coverage56

improvement and average PoF for different values of I . For instance, for I = 20%N , the average “Improvement in Min.57

Fraction Covered” for J = 0, . . . , 5 is 17.2%, 13.8%, 14.0%, 10.0%, 9.0% and 6.7%, respectively. The “PoF” values58

are all less than 4%. The value of γ can be inferred from J (γ = J/I), we replace “Size” with N in Table 2 for clarity.59


