
We thank the reviewers for their detailed reviews and constructive feedback. We will address your questions and1

concerns below (due to space constraints, we focus on the main concerns):2

Generalization (R1, R3). The key insight from the generalization bound is that the generalization gap depends on the3

distance of weights to the initialization. In the paper, we have shown that for GD and NGD, the distance they move are4

of the same order
√
n though they take very different paths. Moreover, we showed in Appendix F that GD and NGD5

converge to the same min-norm least-square solution in the infinite width limit. The point we intended to make is not6

that NGD always generalizes as well as GD, but that our provable generalization bound for NGD is as good as the7

known bounds for GD. It is not known how tight any of these bounds are. We will clarify this point in the final version.8

0 20 40 60 80 100
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
Sq

ua
re

d 
L

os
s

MNIST Regression

0 500 1000 1500 2000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

C
la

ss
ifi

ca
tio

n 
E

rr
or

MNIST

0 500 1000 1500 2000 2500 3000
Iteration

0.0

0.2

0.4

0.6

0.8

C
la

ss
ifi

ca
tio

n 
E

rr
or

CIFAR10

0 20 40 60 80 100
Wall-clock time (second)

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
Sq

ua
re

d 
L

os
s

0 200 400 600
Wall-clock time (second)

0.00

0.02

0.04

0.06

0.08

0.10

C
la

ss
ifi

ca
tio

n 
E

rr
or

0 500 1000 1500 2000
Wall-clock time (second)

0.0

0.2

0.4

0.6

0.8

C
la

ss
ifi

ca
tio

n 
E

rr
or

Figure 1: Red lines are GD while blue lines are NGD (Hessian-free).
Solid lines are training curves while dashed lines are testing curves. NGD
converges faster than GD and also generalizes well.

Real data experiments (R1, R2, R3). Numerous9

other papers have compared NGD and SGD on10

modern neural net benchmarks in terms of both11

convergence and generalization (e.g. see the series12

of papers on K-FAC). Here are some additional ex-13

periments. Specifically, for regression on MNIST,14

we generated the data in the same way as in Figure15

1 of the paper, but using 5000 training examples.16

For classification, we used the standard training-test17

split. For fair comparison, we removed all bells and18

whistles (including batch norm, data augmentation,19

weight decay). For GD, we don’t include the mo-20

mentum since previous theory papers only discussed plain gradient descent. We tuned the learning rate for GD using21

standard grid search. For MNIST, we used a two-layer MLP (one hidden layer) with 6000 hidden units. For CIFAR-10,22

we used a VGG-style network with 5 conv layers, and the filter count for each layer is [32, 64, 128, 256, 256].23

Stable Jacobian condition (R3). We have numerical results in our submission. In Figure 1 (page 6), we verified the24

stable Jacobian condition on MNIST with 100 training samples. In particular, we showed that for the over-parameterized25

network (in the second row), natural gradient descent matches output space gradient descent well (even with a large26

learning rate), indicating that the Jacobian is stable enough for the output space path to be nearly linear.27

Removing simplifying assumptions (R1). The assumption of two-layer networks with a fixed second layer simplifies28

the proofs. We believe we can remove these assumptions using the techniques of Du et al., [2018b]. Since almost all29

of our analysis is architecture-agnostic, one only needs to check the conditions. Condition 2 was essentially verified30

for multi-layer and non-fixed-second-layer networks by Du et al., [2018a]. Intuitively, the conditions just require the31

network to behave like a linearized one, and we’d expect this to hold for wide networks of any depth.32

Memory and computation costs of NGD and K-FAC (R2). Most of our paper analyzes an idealized version of NGD33

which practical algorithms like Hessian-free optimization and K-FAC are trying to approximate; hence, it’s not intended34

to be a practical training procedure. A naïve implementation of exact NGD requires O(m2) space to store the Fisher35

matrix and O(m3) time to invert it (where m is the number of parameters). Expressing the pseudoinverse in terms36

of the Gram matrix as we do (see equation (3) in the paper) makes the costs O(n2) and O(n3), respectively, which37

is much smaller for overparameterized networks. We note that this is equivalent to preconditioning the output-space38

gradient u− y with the Gram matrix, which suggests a new way for running natural gradient descent.39

K-FAC requires much less memory and computation than exact NGD — in practice, a small constant factor overhead40

compared with GD — and has been applied to large modern networks such as ImageNet classifiers [Ba et al., 2018,41

Osawa et al., 2018] and large transformers. Specifically, we only need to store and invert small matrices which has42

roughly the same shape as weight matrices in each layer. See Martens and Grosse [2015] for detailed discussion.43

Novelty of the proof techniques (R2). While we borrowed much high-level structure from Du et al.’s analysis, several44

aspects of our analysis are novel. First, we significantly improve the bound by bounding the distance of the whole weight45

vector, giving the bound Ω(n4). By contrast, the bound in Du et.al., [2018b] and Wu et al., [2019] is Ω(n6). Second,46

we introduced two modular conditions, making our proofs much clearer and more general than Du et al., [2018b]. Third,47

we extend the results to general loss functions in Theorem 2. Lastly, we give an explicit bound for λ0.48

Why does a larger step size imply faster convergence? (R2) A larger step size doesn’t imply faster convergence in49

general, but it does in the context of Theorem 3 and the analogous result for GD, since the convergence rate is given in50

terms of the step size (see lines 244-247 for short discussion). Hence, a larger bound on the step size (in the condition51

of the Theorem) implies faster convergence. We’ll clarify this in the revised version.52

Proofs for Thm 4 (R2). Because the proof for K-FAC is simliar to that of NGD, we skipped a step in the proof of Thm53

4. We should have included a version of Lemma 4 (see lines 513-521), and will do so in the revision.54


