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Abstract

Compressed Sensing MRI (CS-MRI) aims at reconstrcuting de-aliased images
from sub-Nyquist sampling k-space data to accelerate MR Imaging. Inspired by
recent deep learning methods, we propose a Cascaded Dilated Dense Network
(CDDN) for MRI reconstruction. Dense blocks with residual connection are used
to restore clear images step by step and dilated convolution is introduced for
expanding receptive field without taking more network parameters. After each sub-
network, we use a novel Two-step Data Consistency (TDC) operation in k-space.
We convert the complex result from first DC operation to real-valued images and
applied another replacement with sampled k-space data. Extensive experiments
demonstrate that the proposed CDDN with TDC achieves state-of-art result.

1 Introduction

Magnetic resonance imaging (MRI) [[L1] is widely used in clinical diagnosis. It extracts internal
information of the human body to detect latent lesion. Unlike conventional imaging techniques, MRI
gathers phase-encoding data from k-space instead of image domain. The scanning procecss should
follow the Nyquist criteria [[14] to produce clear images, but it leads to long acquisition time. Patients
can have tension as they have to keep still in the entire process.

Sub-Nyquist sampling can significantly reduce the acquisition time by skipping partial phase informa-
tion, but it leads to aliased artifacts. In order to recovery clear image from sub-sampled k-space data,
CS-MRI approaches were proposed [2]. With the assumption that MR images are sparsity in specific
transfrom domain, classic sparsity-prior methods apply transfroms like discrete Fourier transform
(DFT) [5]], discrete cosine transfrom (DCT) [20, 25]] and discrete wavelet transform (DWT) 10, [16].
Data-driven methods (i.e. dictionary learning) achieve higher accuracy due to the adaptive feature
representation learnt from a quantity of fully sampled data [33]]. Although these methods success in
restoring clear image, they still suffer from heavy computation overhead.

Recent years, deep learning has achieved excellent result in a variety of image-restoring problem
such as de-noising [34], de-blurring [28]], super-resolution [26], etc. Generally, deep learning
methods develop deep neural network to learn the mapping function from one distribution to another
one. In MRI reconstruction, a common way is training a convolution neural network (CNN) for
mapping from aliased images (directly reconstructed from zero-filled sub-sampled k-space data) to
corresponding clear images [24]. U-Net is a popular framework in medical image processing [[19].

It also accomplished accurate result on MRI reconstruction [7, [17,29]. Yang et al. [30] proposed
ADMM-CSNet to learn the parameters of ADMM algorithm with nerual network instead of manual
adjustment. More recently, cascading network was introduced to MRI reconstruction [21 22].
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Unlike normal image restoration, original data of MRI is acquired from k-space. Frequency domain
data consistency plays an important role in MRI reconstruction. Hyun et al. [[7] directly replaced the
corresponding phasing-encoding data with sampled data. Yang et al. [29] used frequency domain
loss while Quan et al. [17] applied cyclic loss. Schlemper et al. [21] implemented a consistency layer
with a noise-adaptive parameter for noisy data. For cascading network, such data consistency layer
provides intermedia information correction between sub-networks.

In this paper, we propose a novel network architecture called Cascaded Dilated Dense Network with
Two-step Data Consistency layer (CDDNwithTDC). Our contributions can be summarized as follows:

(1) We use cascaded dense blocks to reconstruct MR images to improve performance as well as
reduce the number of parameters. Such intra-block dense shortcut architecture alleviates the gradient
vanishment and preserves detail information.

(2) We introduce dilated convolution to dense blocks, which expands receptive field without any
additional parameters. The combination sufficiently extracts latent information.

(3) We propose a Two-step Data Consistency layer to enhance the naturalness of MR images while
ensuring the data consistency in k-space.

Numerous experiments show the advancement of our proposed method in MRI reconstruction. E]

2 Related Works

2.1 Cascaded Network

Cascaded network uses a serial of sub-networks to process data step by step. The later sub-networks
take the former result as input to improve the accuracy. Quan et al. [17]] proposed RefineGAN by
cascading two U-Net as generator. As simply cascading network has no difference with naively in-
creasing the depth of network, it can easily reach a bottleneck of performance. In MRI reconstruction,
data consistency operation can be applied as a postprocess of sub-network, which replace the specific
k-space position with the sampled value [22]. Such operation enable skip connection between input
and each sub-network to alleviate gradient vanishment.

2.2 Dense Connection

In general, a deeper network has higher performance, but it also suffers from gradient vanish problem.
After a long chain of gradient backward , the gradient information in the early stage can be too small
for updating parameters. Skip connection alleviates such phenomenon as mentioned before. Dense
connection applies shortcuts among all the layers [6]. In a dense block (a number of convolution layers
with dense connection), the input of each layer is the concatenation of all the previous layers’ output.
Free data flow in dense block benefits the robustness of network. Tong et al. [23]] applied dense
connection by cascading dense blocks for image super-resolution task. Li ef al. [12] implemented
dense connection with U-Net. Although it brings additional network parameters, dense connection is
a worthy trade-off. And in this paper, we will limit the network parameters (like reduce the number
of intermedia feature channel) to show the superiority.

2.3 Dilated Convolution

Yu et al. [31] firstly proposed dilated convolution for senmatic segmentation. Receptive field
has sensitive connection with network’s abilty of latent global information extraction. In classic
convolution, deeper layers involve a combination of receptive fields from former layers, while these
receptive fields have large overlapping area. Dialted convolution applies hollow convolution kernel to
alleviate overlapping with no more parameters. Moeskops et al. [[13] introduced dilated convolution
to brain MRI segmentation and proved that dilated network has larger receptive field with fewer
network parameters than fully convolutional network. Perone et al. [15] applied parallel convolution
with different dilation scales to abstract multi-scale information. Qiao et al. [35]] proposed Pyramid
Dilated Convolution Unit as a birdge to connect the encoder and the decoder of U-Net. Sun ef al. [22]
adopt dilated convolution in cascading blocks.

20Our code is released on GitHub:https://github.com/tinyRattar/CSMRI_0325


https://github.com/tinyRattar/CSMRI_0325

(a) (b) (© (d

Figure 1: Sub-Nyquist sampled MR Image. (a) Fully sampled MR Image z. (b) Zero-filled recon-
structed Image x,, from sub-Nyquist sampled k-space data (d). (c) The k-space data of the (a). (d)
Acquired k-space data y with a 28.5% sampling rate Cartesian mask.

3 Method

3.1 Problem Formulation

The problem is to reconstruct fully-sampled image from sub-sampled k-space data. With sub-Nyquist
sampling, the acquisition process can be written as:

y=MOoFx+e¢ (1)

Here x € CN+*Nv is the original MR image (fully-sampled) to be reconstructed and F is Fourier
Transfrom operator. M € CV=*Nv is the sampling mask matrix composed of 1 and 0. The values
of M stand for the corresponding k-space positions are sampled or not. ©® is pixel-wise multiply
operation. Notice that sampling style is limited by MRI equipment. In this paper, we focus on
the phase direction sampling, i.e. M only contains O-lines and 1-lines. ¢ is the noise generated
during acquisition and y € C™=*"v is the k-space data what we actually observed. An example of
sub-Nyquist sampled MR Image is given in Figure|[T]

Unfortunately, Eq[T] is underdetermined. In order to solve the ill-posed inversion, conventional
CS-MRI methods formulate an optimisation problem:

# =argmin | M © Fr —y|3 + ) \ithi(x) )

1); is a regularisation term on z, and )\; is a weight to balance the importance of regularisation terms
and data fidelity. In our deep learning methods, a CNN with leanable parameters is introduced to
reconstruct x, so the formulation can convert as follows:

& = argmin |[M © Fo — y|[3 + Mz — feun(z410)|3 )

here z,, is the zero-filled reconstruction calculated by z, = pad 1y where FH is inverse Fourier
Tranform operator. f,,, represent the forward function of CNN with the parameters 6. In order to
generate images like real fully-sampled ones, the optimization of CNN can be written as:

N
é = argminz ij - fcnn(FHyJW)”g S
o

with sufficient traning data {(x7,y7)|j = 1,2,---, N} and Stochastic Gradient Descent algorithm,
CNN can convergence to reasonable state. With fixed CNN, Eq. [3|can be written as:

T = fdc(xinayaM) s.t. M O] dec =Y (5)

where 2, = fenn(EFH47]0) is the input image reconstructed from CNN. The details of the data
consistency layer will be shown in Section [3.3] Furthermore, if the data consistency operation is a
determined function to ensure the data fidelity, we can regard it as a part of CNN. And here comes
the formulation of our model:
N
6= arg;mnz 27 = fae(fern (FH4710), 47, M7)|3 6)
J



3.2 Proposed Network

We propose Cascaded Dilated Dense Network with Two-step Data Consistency layer
(CDDNwithTDC) for MR image reconstruction. Figure 2] shows an overview of our proposed
network, which is composed of a serial of sub-networks. Each sub-network has a De-Aliase Module
(DAM) and a Two-step Data Consistency layer (TDC). We use dense block in the DAM and a
geometric growth dilation is applied on each dense module for receptive field extension. As MR
data is in complex field, we use two channels to represent real part and imaginary part respectively.
For example, the input zero-filling image ., € C"V=*"v is converted to Tinput € R2%NaxNy The
details will be described in the following.

a |

. BN-ReLU-Conv(3x3) . De-Aliase Module
BN-ReLU-Conv(1x1) Two-step Data Consistency layer
. Dense Block . Channel-wise Concat
====2 Skip Connection =====» Residual Learning

Dense Block

Figure 2: Overview of CDDNwithTDC. We use rectangles with colors to indicate different modules,
which is illustrated at the bottom right. A brief illustration of dense block is given at the bottom left.

3.3 De-Aliase Module

De-Aliase Module (DAM) is used to generate aliase-free images. The input of the first module is
zero-filled MR image while the subsequent modules take the output of former sub-networks as input.
The module contains abstraction layer, dense block, transition layer and restore layer. In addition, A
global residual connection is applied.

The abstraction layer firstly converts the input image x;,,, € R2xNaxNy o feature maps T feqture €
RN *NaxNy The forward operation of dense block can be written as z; = f([xo, 21, ,j_1])
where f is convolution operation (called dense layer) and x; is the output of ith layer (specifically,
xg is the input of dense block). The inputs are concatenated in the dimension of channel. f has two
parts, the first part is a convolution layer with 1 x 1 kernel called bottleneck layer, which reduces the
number of feature maps to the original input number (i.e. V). The second part is a convolution layer
with 3 x 3 kernel and the outputs have the same number of feature maps. The number (V) is called as
growth rate, because the channel of features "grows" layer by layer. All the output of dense layers are
concatenated and are fed into a convolution layer with 1 x 1 kernel (i.e. transition layer) for halving
the number of feature maps. Finally, the restore layer generate output image ¢ € R**Ne*Nv by a
convolution layer with 3 x 3 kernel. Notice that every convolution layer is a combination of rectified
linear unit activation (ReLU) [4], batch normalization (BN) [8] and convolution neuron.

Dense connection enables intra-block data flow. Such architecture can significantly benefits the per-
formance and robustness. We limit the network parameters on purpose to show that the imporvement
is resulted from network architecture rather than simple parameter increment.

3.4 Dilated Convolution

With the analogy of the biological term, receptive field descripts the area from where artificial neuron
abstarct information. In other words, it stands for how large portion of image can be seen by a neuron.

Zero-filled MR Images suffer from aliasing artifact. Figure 3] shows an example. With interlaced
sampling in k-space, the original image occueres in the corrupted image with different offsets in
image domain. Notice that additional central phasing-coding lines are fully-sampled as they contains
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Figure 3: Aliasing artifact phenomenon. The sampling mask is the same as Figure[I(d)] We use red
boxes to mark the same low signal area of the original image which can be found several times in the
aliased image.

non-sparse low frequency information, so that we can faintly recognize the majority of original image.
In order to integrate the scattered many-for-one information, a large receptive field is in need.

We implement the dilated convolution with dense block by appling geometrically increasing (i.e.
1,2,4,---) dilation scale, Figure [] gives an illustration of so-called Dilated Dense Block. The
combination of dilated convolution and dense connection enables Pyramid-like multi-scale feature
fusion instead of parallel convolution [[15} [35]] while keep the depth of network. On the other hand, it
successfully expands receptive field without any addition in network parameters.

e e e e e ————
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Figure 4: Dilated Dense Block with geometrically increasing dilation scale. The final layer is the
restore layer mentioned in Section [3.3] which is 1-dilation convolution to fuse all the former outputs.
All the 1 x 1 convolution are omitted, not only the bottleneck layers but also the transition layer

3.5 Two-step Data Consistency

As mentioned before, MRI acquires data in k-space. Data consistency in frequency domain is needed.
With fixed parameters 6, Eq[3|has a closed-form solution [18]], which can be written as:

1 A
Tige = F ((1_M)Qinn'f‘M@(mFIin“rmy)) @)

Here x4 is the result image and 1 is an all-one matrix. It can be seen as a linear combination taken
between y and F'zx at the valid position of M. Directly replacement is an extreme case with A = oco:

Tage = Fu ((1 —M)OFzim+ MO y) 3

Unlike traditional image restoration task, the corrupted data from sub-sampled MRI is exactly true in
the sampled location. During reconstruction, we have to ensure the invariance of the frue part. Direct
replacement can meet the requirement, while it brokes the self-consistency of frequency information.



It means the hybird result are unnatural in image-domain. In other word, direct replacement only
corrects specific(sampled location) k-space data while leaving others in outdated state.

In this paper, we propose a two-step data consistency layer. As shown in Figure[5] we firstly replace
corresponding phase-coding lines of generated image x;,, with the original sampled k-space data y.
Then we convert the result from complex-valued to real-valued format by calculating the modulus
Zm = |Z4c|. In the end, another k-space correction is applied on the modulus for data consistency.
The two-step data consistency can be formulated as:

Frac(@in, y, M) = FH((l ~M)oe F\FH((l ~M)® Fain + M ® y)] FMo y) ©)

DC operation Xtdc

Figure 5: Two-step Data Consistency. The benefits will be evaluated with experiments in Section[4.3]

Empirical experiments prove the effectiveness as shown in Figure and further discussion is taken
in Section 2 of the Supplementary Material.

4 Experiments

4.1 Implemetation Details

Experiments are implemented using Pytorch platform on four NVIDIA GeForce GTX 1080Ti with
11GB GPU meomry. Our network is trained with Adam [9] optimizer, initial learning rate is set as
0.0001, the first momentum is 0.9 and the second momentum is 0.999. Weight decay regularization
parameter is set as 10~7. Batch size is 8 and the network is trained for 1000 epochs to ensure
convergence.

We cascade 5 sub-networks as default. Each dense block has three BN+ReLU+Conv layers with
1, 2, 4-dilation, and the growth rate is set as 16. All the convolution layers have 16 feature maps
except the last one for mapping from features to two channel images.

Unless otherwise stated, other contrastive networks take the same hyper-parameters. Any notable
details will be descripted in the correponding sub-section.

4.2 Dataset

Our dataset, established based on the work of Alexander et al. [1]], contains 3300 cardiac real-valued
MR images from 33 patients. The first 30 patients’ data are training set while the last 3 patients
are testing set. We use random Cartesian mask with 15% sampling rate like Figure [T1(f)|as default
setting.

4.3 Intra-Method Evaluation

In this experiment, we compare the proposed CDDNwithTDC with two variants. One is CDNwithDC,
which is implemented without dilated convolution and uses traditional one-step data consistency
layer instead. The other network has the Dilated Dense DAM, called CDDNwithDC. We take this
experiment to prove the benefits from geometric dilation and two-step data consistency layer. These
networks are trained with 30% random Cartesian mask.

Figure [6(a)] shows the curve of training MSE loss and Figure [6(b)| shows the histogram of testing
result, which is taken with two measures, peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) [27]. Dilated convolution can abstract latent information from larger receptive
field without parameters increment and TDC can significantly imporve accuracy with negligible
computational overhead. Figure [/| gives an example from testing set with 15% sampling rate,
indicating that network with TDC result in less reconstruction error.
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Figure 6: Intra-method comparasion. (a) MSE loss. (b) Testing PSNR/SSIM.

(a) Ground Truth (b) Zero-fillied (c) CDDNwithDC (d) CDDNwithTDC

Figure 7: Benefits from Two-step Data Consistency layer.

4.4 Inter-Methods Evaluation

We compare our CDDNwithTDC with deep-learning methods U-Net [[7]], DC-CNN [21], RDN [22]
and conventional methods DLMRI [[18]] and NLR [3]. DC-CNN is re-implemented according to their
paper. With the way of naming in the original paper, we use D5-C5 for 2D reconstruction. As for
RDN, we choose the 5B-3D-3R for comparasion, which has the same quantity of network parameters.
Figure |8 shows the result on 15% random Cartesian mask. We give a dobozdiagram of general result
(Figure [8(a)) and detailed PSNR on every image of 100 testing set (Figure[8(b)) respectively.
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Figure 8: The testing result of Inter-Methods Evaluation. As for (b), we show the result from every
third image of the 300 testing set, and our method completely exceeds the others.

As our testing set is composed of only three patients, we take 11-fold cross validation experiments
in order to alleviate the specificity. Our proposed CDDNwithTDC and DCCNN are re-trained
individually 10 additional times for further inter-method comparation. In the ith experiment, we take
(i %3 —2),(i *3 —1),(i x 3)-th patients” data as testing set and the remained 30 patients’ data as
training set. Figure. [9|shows the result of cross validation, which proves the robustness.

Detailed quantitative comparasion for deep methods is given in Table[I] RDN suffers from long
reconstruction time due to its recursive methods. Our proposed method has fewer parameters
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Figure 9: 11-fold Cross Validation.

than DC-CNN/RDN and produces better result. We also cascade 10 sub-networks for our method
(Proposed-C10) to reach a comparable number of parameters. An qualitative comparasion is available
at Figure[TT]as well. We also take experiments on different sampling rate to show the robustness of
our method, and the quantitative result is given at Table 2]

Table 1: Comparasion of Deep Methods

Method U-Net DC-CNN RDN Proposed Proposed-C10
PSNR 31.61 34.87 34.95 35.24 35.61
Num. of Params. 1575k 144k 144k 59k 119k
Train Time(min/epoch) 1.1 1.2 12.0 3.0 5.8
Test Time(s/ frame) 0.05 0.05 0.65 0.17 0.30

4.5 Experiment on FastMRI

FastMRI [32] is a dataset of knee MRI. We trained the proposed CDDNwithTDC on part of FastMRI
dataset (about 6500 single frame as training set and 700 frames as testing set) to demonstrate the
adaptation in different type of MRI. We use the ESC(emulated single-coil) data as ground truth and
apply randomly generated mask of 25% sampling rate. Figure. [I0(a)| shows the loss curves and
Figure [I0(b)|and [TO(c)| show a qualitative result. It can be seen that our method can reconstructed
accuracy details for knee MRI as well as cardiac.
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(a) Result on part of FastMRI (b) GT (ESC) (c) Rec

Figure 10: Evaluation on FastMRI dataset

5 Conclusion

We propose a Cascaded Dilated Dense Network with Two-step Data Consistency layer in MRI
reconstruction. Cascading De-Aliase Module based on dense block results in better performance
with fewer parameters. Dilated convolution boost the performance of dense blocks. The proposed
two-step data consistency layer enhances the result in image domain while keep the complete data
consistency in k-space. The proposed network achieves state-of-art result and has advantage in the
number of network parameters.
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Figure 11: Qualitative Comparasion. The 1st, 3rd rows are the reconstructed images and 2nd, 4th
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Table 2: PSNR/SSIM Result with Different Sampling Rate

Method 2.5% 5% 15% 30%
DLMRL 25.03/0.8179  29.46/0.9017 31.76/0.9350 34.18/0.9548
NLR 27.30/0.8557 31.43/0.9233 32.99/0.9461 36.66/0.9734
U-Net 25.96/0.8316  29.45/0.8271 31.58/0.9312  37.24/0.9752
DCCNN 28.18/0.8872  32.24/0.9430 34.87/0.9649 41.13/0.9900
RDN 28.29/0.8870  31.70/0.9364 34.95/0.9665 40.54/0.9883
Proposed 28.43/0.8927 32.55/0.9481 35.30/0.9689 41.66/0.9913
Proposed-C10  28.86/0.9029 32.94/0.9526 35.60/0.9713 42.03/0.9920
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