
Dear Reviewers:1

Thanks for all your insightful comments and constructive suggestions. We will correct all typos in our final version. We2

first respond to a common concern:3

0 10 20 30 40 50

Training steps (x30k)

0

5

10

15

20

25

V
al

id
B

L
E

U
sc

or
e

Baseline

LayerNorm

RMSNorm

pRMSNorm

WeightNorm

Figure 1: BLEU curve over training steps on new-
stest2013 devset.

Model Test Error Time
Baseline 8.96% 51s
BatchNorm 8.25% 66s
WeightNorm 8.28% 53s
LayerNorm 10.49% 72s
RMSNorm 8.83% 61s (15%)

Table 1: Test error and time (sec) per train-
ing epoch on CIFAR-10 classification task. The
speedup of RMSNorm over LayerNorm is shown
in bracket.

About generality of RMSNorm for different downstream tasks, model architec-4

tures, and initializations: We mainly experiment on language-related tasks,5

because this is where the use of LayerNorm is most widespread. However, note6

that our experiments show the effectiveness of RMSNorm on heterogeneous archi-7

tectures and initializations, covering different RNN variants and self-attentional8

models, and various activations (such as sigmoid, tanh, linear and softmax), with9

initializations ranging from uniform, normal, orthogonal with different initial-10

ization ranges or variances. Details can be found in previous work on which we11

base our comparisons, but we will include more detail to be self-contained.12

In addition, we also experiment on the CIFAR-10 classification task. We train13

a modified version of the ConvPool-CNN-C architecture, and follow the same14

experimental protocol as in the WeightNorm paper [20] using their public source15

code. LayerNorm is applied to the width and height dimensions of image rep-16

resentation. We perform gain scaling and bias shifting on the channel dimension.17

Our results (Table 1) show that RMSNorm outperforms Baseline and LayerNorm18

in test error, and achieves 15% speed-up over LayerNorm, though it underper-19

forms the BatchNorm and WeightNorm.20

Comparison with weight normalization: We performed experiments with RNNSearch, using the WeightNorm im-21

plementation provided by the base toolkit (Theano-version Nematus). Results in Figure 1 show that WeightNorm22

converges slower and requires more training steps. In addition, the overall translation quality of WeightNorm on testsets23

(21.7/23.5 on Test14/Test17, respectively) underperforms those of LayerNorm and (p)RMSNorm. We also attempted24

integrating WeightNorm into pytorch-based RNNSearch using the official API (nn.utils.weight_norm), but this led to25

out-of-memory problems.26

= To R3: We will include the recent discussion on internal covariate shift in our final version. The scalar notation in (2)27

follows LayerNorm paper [3], and we will change (1) to make the whole paper consistent. By “1%” in Fig 3, it actually28

means 10%. In Table 7, “OE[30]” denotes the original results reported by [30]. [3] reproduce their work (“OE[3]”), and29

add LayerNorm (“OE+LayerNorm[3]”) to demonstrate LayerNorm’s effectiveness. All these numbers are from existing30

work, and other numbers are from our own experiments. We will make this clear in our final version.31

= To R4: Please see the above common response.32

= To R5: On lp norm: We didn’t experiment with all choices of p for lp norm, but we experimented with l2 norm for33

RNNSearch. Results in Fig. 2 and Table 2 show that L2Norm does not work well in terms of both convergence and34

final translation quality.35

On optimizer hyperparameters: For NMT model, we adopt Adam optimizer. The RNNSearch model is trained with36

an initial learning rate of 10−4, which is half-decayed if no improvement is observed on devset. The learning rate for37

Transformer is adapted according to Eq. (3) in paper [29] with a warmup step of 4000. We adopt the base setting. We38

will include these details in the final version.39

0 5 10 15 20 25 30

Training steps (x30k)

0

5

10

15

20

25

V
al

id
B

L
E

U
sc

or
e LayerNorm

RMSNorm

Table 2: BLEU curve of LayerNorm and RM-
SNorm on devset when initialization center is
around 0.2.

On mean-centering and weight initialization: See common response for the range40

of weight initializations tested; R5 suggests that mean-centering in LayerNorm41

(which RMSNorm abandons) may make models more robust towards arbitrary42

weight/bias initializations. We perform an experiment on RNNSearch MT model43

with tensorflow-Nematus, and change the center of weight initialization to 0.2.44

Results in Figure 2 show that LayerNorm becomes very unstable with abnormal45

initialization, but RMSNorm is more robust (both underperform the original46

initialization). Our empirical evidence so far suggests that RMSNorm is similarly47

robust as LayerNorm, or more.48

c. Error bars for reported accuracies and timing numbers We perform only a single full training run for each of the49

≈ 30 models due to resource limitations. Note that we do not claim RMSNorm is better than LayerNorm in quality,50

but comparable. For the timing numbers, we report the standard deviation of three runs on three different models51

(for Baseline/LayerNorm/RMSNorm, respectively): 3.4/32.5/11.8 (RNNSearch with tensorflow-Nematus), 6.3/5.7/5.252

(Attentive Reader model) and 0.23/1.31/0.035 (Transformer model; extremely low variance due to use of different53

computing platform). We will show more details in the final version.54


