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Abstract

Metric Elicitation is a principled framework for selecting the performance metric
that best reflects implicit user preferences. However, available strategies have so
far been limited to binary classification. In this paper, we propose novel strategies
for eliciting multiclass classification performance metrics using only relative pref-
erence feedback. We also show that the strategies are robust to both finite sample
and feedback noise.

1 Introduction

Consider a machine learning model for cancer diagnosis and treatment support where the doctor
applies a cost-sensitive predictive model to classify patients into cancer categories [23, 24]. It is clear
that the chosen costs directly determine the model decisions, and thus dictate the patient outcomes.
This raises an obvious question, how should the cost-tradeoffs be chosen so that it reflects the
expert’s decision-making? As it turns out, going from expert intuition to precise quantitative cost
trade-offs is often difficult. Needless to say, this is not only true for medical applications as there are
a plethora of domains where the question of ‘what to measure’ poses a serious ongoing challenge [3].

To address this issue, Hiranandani et al. [7] recently formalized the problem of Metric Elicitation
(ME), which aims to determine the user’s performance metric based on preference feedback. The
motivation behind ME is that employing the performance metrics which reflect innate user tradeoffs
will allow one to learn models that best capture user preferences. As humans are often inaccurate in
providing absolute quality feedback [17], Hiranandani et al. [7] propose to use pairwise comparison
queries, where the user (oracle) is asked to compare two classifiers and provide an indicator of relative
preference. They show that in various settings, the user’s innate metric can be elicited based on this
preference feedback. Figure 1 (reproduced from Hiranandani et al. [7]) illustrates this framework.

Conceptually, ME is applicable to any learning setting. However, Hiranandani et al. [7] only proposed
methods for eliciting binary classification performance metrics. This manuscript extends prior
work by proposing ME strategies for the more complicated multiclass classification setting – thus
significantly increasing the use cases for ME. Similar to the binary case, we also consider the most
common families of performance metrics which are functions of the confusion matrix [15]; however,
in our case, the elements of the confusion matrix summarize multiclass error statistics.

In order to perform efficient multilcass performance metric elicitation, we study novel geometric
properties of the space of multiclass confusion matrices. Our analysis reveals that due to structural
differences between the space of binary and multiclass confusions, we can not trivially extend the
elicitation procedure used for binary to the multiclass case. Instead, we provide novel strategies for
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Figure 1: Metric Elicitation framework [7].

Table 1: The Bayes Optimal (BO) and
Restricted-Bayes Optimal (RBO).

Name Definition

BO confusion c
over a subset S ⊆ C argmaxc∈S⊆C φ(c)

RBO classifier hk1,k2
argmax
h∈Hk1,k2

ψ(d(h))

RBO diagonal
confusion dk1,k2

argmax
d∈Dk1,k2

ψ(d)

eliciting linear functions of the multiclass confusion matrix and extend elicitation to more complicated
yet popular functional forms such as linear-fractional functions of the confusion matrix elements [14].
Specifically, the elicitation procedures involve binary-search type algorithms that are robust to both
finite sample and oracle feedback noise. In addition, the proposed methods can be applied either by
querying pairwise classifier preferences or pairwise confusion matrix preferences. We find that this
equivalence is crucial for practical applications.

In summary, our main contributions are novel query efficient metric elicitation algorithms for
multiclass classification. We study ME for linear functions of the confusion matrix and then briefly
discuss extensions to more complicated functional forms such as the linear-fractional and arbitrary
monotonic functions of the confusion matrix (with details in the appendix). Lastly, we show that the
proposed procedures are robust to finite sample and feedback noise, thus are useful in practice.

Notation. Matrices and vectors are denoted by bold upper case and bold lower case letters, respec-
tively. Let R and Z+ denote the set of reals and positive integers, respectively. For k ∈ Z+, we
denote the index set {1, 2, · · · , k} by [k]. ∆k denotes the (k − 1) dimensional simplex. ‖·‖1,‖·‖2,
and‖·‖∞ denote the `1-norm, `2-norm, and `∞-norm, respectively. We denote the inner product of
two vectors by 〈·, ·〉. Given a matrix A, off -diag(A) returns a vector of off-diagonal elements of A
in row-major form, and diag(A) returns a vector of diagonal elements of A.

2 Preliminaries

The standard multiclass classification setting comprises k classes with X ∈ X and Y ∈ [k] repre-
senting the input and output random variables, respectively. We have access to a dataset of size n
denoted by {(x, y)i}ni=1, generated iid from a distribution P(X,Y ). Let ηi(x) = P(Y = i|X = x)
and ζi = P(Y = i) for i ∈ [k] be the conditional and the unconditional probability of the k classes,
respectively. LetH = {h : X → ∆k} be the set of all classifiers. A confusion matrix for a classifier
h is denoted by C(h,P) ∈ Rk×k, where its elements are given by:

Cij(h,P) = P(Y = i, h = j) for i, j ∈ [k]. (1)

Under the population law P, it is useful to keep the following decomposition in mind:

P(Y = i, h = i) = ζi − P(Y = i, h 6= i) =⇒ Cii(h,P) = ζi −
k∑

j=1,j 6=i

Cij(h,P). (2)

Using this decomposition, any confusion matrix is uniquely represented by its q := (k2 − k) off-
diagonal elements. Hence, we will represent a confusion matrix C(h,P) by a vector c(h,P) =
off -diag(C(h,P)), and interchangeably refer the confusion matrix as a vector of ‘off-diagonal
confusions’. The space of off-diagonal confusions is denoted by C = {c(h,P) = off -diag(C(h,P)) :
h ∈ H}. For clarity, we will suppress the dependence on P and h if it is clear from the context.

Performance of a classifier is often determined by just the misclassification and not the type of
misclassification, especially when the number of classes is large. Therefore, we will also consider
metrics that only depend on correct and incorrect predictions, namely P(Y = i, h = i) and P(Y =
i, h 6= i). Following the decomposition in (2), such metrics require only the diagonal elements
of the original confusion matrices. Given a confusion matrix C, we will denote its diagonal by
d = diag(C) and refer it as the vector of ‘diagonal confusions’. The space of diagonal confusions is
represented by D = {d = diag(C(h)) : h ∈ H}.
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Let φ : [0, 1]q → R and ψ : [0, 1]k → R be the performance metrics for a classifier h determined by
its corresponding off-diagonal and diagonal confusion entries c(h) and d(h), respectively. Without
loss of generality (wlog), we assume the metrics φ and ψ are utilities so that larger values are preferred.
Furthermore, the metrics are scale invariant as global scale does not affect the learning problem [15].
For this manuscript, we assume the following regularity assumption on the data distribution.

Assumption 1. We assume that the functions gij(r) = P
[
ηi(X)
ηj(X) ≥ r

]
∀ i, j ∈ [k] are continuous

and strictly decreasing for r ∈ [0,∞).

Intuitively, this weak assumption ensures that when the cost or reward tradeoffs for the classes change,
the preferred confusion matrices for those cost or reward tradeoffs also change (and vice-versa).

2.1 Bayes Optimal and Restricted Bayes Optimal Confusions and Classifiers

As illustrated in Table 1, the Bayes Optimal (BO) confusion c represents the optimal value of the
off-diagonal confusions according to the metric φ over a subset S ⊆ C. This is analogously defined
for ψ and D. The Restricted Bayes Optimal (RBO) entities are of interest for diagonal metrics ψ, and
indicate the case where classifiers are ‘restricted’ to predict only classes k1, k2 ∈ [k]. ThusHk1,k2
and Dk1,k2 denote the space of classifiers which exclusively predict either k1 or k2 and the associated
space of diagonal confusions, respectively. Note that for such restricted classifiers h, Cii(h) = di(h)
evaluates to zero at every index i 6= k1, k2.

2.2 Performance Metrics

We first discuss elicitation for the following two major types of metrics used in classification.
Definition 1. Diagonal Linear Performance Metric (DLPM): We denote this family by ϕDLPM .
Given a ∈ Rk such that ‖a‖1 = 1 ( wlog., due to scale invariance), the metric is defined as:
ψ(d) := 〈a,d〉. This is also called weighted accuracy [15] and focuses on correct classification.
Definition 2. Linear Performance Metric (LPM): We denote this family by ϕLPM . Given a ∈ Rq
such that ‖a‖2 = 1 (wlog., due to scale invariance), the metric is defined as: φ(c) := 〈a, c〉.
Cost-sensitive linear metrics belong to ϕLPM [1] and focus on the types of misclassifications.

The difference of norms in the definitions is only for simplicity of exposition and chosen to best
complement the underlying metric elicitation algorithm and vice-versa. Moreover, notice that the
elements of diagonal confusions (d’s) and off-diagonal confusions (c’s) reflect correct and incorrect
classification, respectively. Thus, according to standard practice, wlog., we focus on eliciting
monotonically increasing DLPMs and monotonically decreasing LPMs in their respective arguments.

2.3 Metric Elicitation; Problem Setup

This section describes the problem of Metric Elicitation and the associated oracle query. Our
definitions follow from Hiranandani et al. [7], extended so the confusion elements and the performance
metrics correspond to the multiclass classification setting. The following definitions hold analogously
for the diagonal case by replacing φ, c and C by ψ,d, and D, respectively.
Definition 3 (Oracle Query). Given two classifiers h, h′ (equivalent to off-diagonal confusions c, c′
respectively), a query to the Oracle (with metric φ) is represented by:

Γ(h, h′) = Ω(c, c′) = 1[φ(c) > φ(c′)] =: 1[c � c′], (3)

where Γ : H ×H → {0, 1} and Ω : C × C → {0, 1}. The query asks whether h is preferred to h′
(equivalent to c is preferred to c′), as measured by φ.

We elicit metrics which are functions of the confusion matrix, thus comparison queries using
classifiers are indistinguishable from comparison queries using confusions. Henceforth, for simplicity
of notation, we denote any query as confusions based query. Next, we formally state the ME problem.
Definition 4 (Metric Elicitation with Pairwise Queries (given {(x, y)i}ni=1)). Suppose that the
oracle’s (unknown) performance metric is φ. Using oracle queries of the form Ω(ĉ, ĉ′), where ĉ, ĉ′

are the estimated off-diagonal confusions from samples, recover a metric φ̂ such that ‖φ− φ̂‖ < κ
under a suitable norm ‖ · ‖ for sufficiently small error tolerance κ > 0.
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Figure 2: (a) Geometry of the space of diagonal confusions D for k = 3: a strictly convex space.
Notice that each of the three axis-aligned faces are equivalent in geometry to the following figure
in (b); (b) Geometry of diagonal confusions when restricted to classifiers predicting only classes k1

and k2 i.e. Dk1,k2 ; (c) A sphere Sλ centered at o with radius λ, contained in the convex space of
off-diagonal confusions C. f∗(c) denotes the distance of c from the hyperplane `

∗
tangent at c∗.

The performance of ME is evaluated both by the fidelity of the recovered metric and the query
complexity. Given the formal definitions, we can now proceed. As is standard in the decision theory
literature [13, 7], we present our ME solution by first assuming access to population quantities such
as the population confusions c(h,P), then examine practical implementation by considering the
estimation error from finite samples e.g. with empirical confusions ĉ(h, {(x, y)i}ni=1).

3 Geometry and Parametrizations of the Query Spaces
For any query based approach, it is important to understand the structure of the query space. Thus, we
first study the properties of the query spaces and then develop parametrizations required for efficient
elicitation. Readers may find these properties independently useful in other applications as well.

3.1 Geometry of the space of diagonal confusions D and parametrization of its boundary

Let vi ∈ Rk for i ∈ [k] be the vectors with ζi at the i-th index and zero everywhere else. Notice that
vi’s are the diagonal confusions of the trivial classifiers predicting only class i on the entire space X .

Proposition 1 (Geometry ofD – Figure 2 (a)). Under Assumption 1, the space of diagonal confusions
D is strictly convex, closed, and contained in the box [0, ζ1]× · · · × [0, ζk]. The diagonal confusions
vi ∀ i ∈ [k] are the only vertices ofD. Moreover, for any k1, k2 ∈ [k], the 2-dimensional (k1, k2) axes-
aligned face of D is Dk1,k2 (Figure 2 (b)), which is equivalent to the space of binary classification
confusion matrices confined to classes k1, k2. In particular, Dk1,k2 is strictly convex.

Proposition 1 characterizes the geometry of the space of diagonal confusionsD. Figure 2(a) illustrates
this geometry when k = 3. Interestingly, the 2-dimensional axes-aligned faces of D (Figure 2 (b))
have exactly the same geometry as the space of binary classification confusion matrices (compare
this with Figure 2(a) of Hiranandani et al. [7]), where recall that a binary classification confusion
matrix is uniquely determined by its two diagonal elements due to (2). We will exploit the set Dk1,k2
(more specifically, its boundary) for the elicitation task. Now notice that for ψ ∈ ϕDLPM , the RBO
classifier restricted to predict classes k1, k2, predicts the label (out of the two possible choices) that
maximizes the expected utility conditioned on the instance. This is discussed below.

Proposition 2. Let ψ ∈ ϕDLPM be parametrized by a such that ‖a‖1 = 1, and let k1, k2 ∈ [k], then

hk1,k2(x) =

{
k1, if ak1ηk1(x) ≥ ak2ηk2(x)
k2, o.w.

}
is the Restricted Bayes Optimal classifier (restricted to classes k1, k2) with respect to ψ.

For a metric ψ ∈ ϕDLPM , Proposition 2 provides RBO classifiers in Hk1,k2 , which further gives
us RBO diagonal confusions dk1,k2 using (1). We know that this dk1,k2 is unique, since any linear
metric over a strictly convex domain (Dk1,k2 ) is maximized at a unique point on the boundary [2]. So,
given a DLPM, we have access to a unique point in the query space. This allows us to define and then
parametrize a subset of the query space, specifically, the upper boundary of Dk1,k2 through DLPMs.
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Definition 5. The upper boundary of Dk1,k2 , denoted by ∂D+
k1,k2

, constitutes the RBO diagonal
confusions confined to classes k1, k2 ∈ [k] for monotonically increasing DLPMs (ai ≥ 0∀ i ∈ [k])
such that at least one out of ak1 or ak2 is non-zero (i.e. ak1 + ak2 > 0).

Parameterizing the upper boundary ∂D+
k1,k2

. Let m ∈ [0, 1]. Construct a DLPM by setting
ak1 = m, ak2 = 1−m, and ai = 0 for i 6= k1, k2. By using Proposition 2 and (1), obtain its RBO
diagonal confusions, which by definition lies on the upper boundary. Thus, varying m in this process,
parametrizes the upper boundary ∂D+

k1,k2
. We denote this parametrization by ν(m; k1, k2), where

ν : ([0, 1]; k1, k2)→ ∂D+
k1,k2

.

3.2 Geometry of the space C and parametrization of the enclosed sphere

Recall that, unlike the diagonal case, we focus on eliciting LPMs monotonically decreasing in the
elements of the off-diagonal confusions (Section 2.2). To this end, let ui ∈ C for i ∈ [k] be the
off-diagonal confusions achieved by trivial classifiers predicting only class i on the entire space X .
Proposition 3 (Geometry of C – Figure 2 (c)). The space of off-diagonal confusions C is convex and
contained in the box [0, ζ1](k−1) × · · · × [0, ζk](k−1). {ui}ki=1 belong to the set of vertices of C. C
always contains the point o = 1

k

∑k
i=1 ui which corresponds to the off-diagonal confusions of the

trivial classifier that randomly predicts each class with equal probability on the entire space X .

We find that the space of off-diagonal confusions C has quite different geometry than the diagonal
case. For instance, C is not strictly convex. Nevertheless, since C is convex and always contains the
point o, we may make the following assumption. Please see Figure 2(c) for an illustration.
Assumption 2. There exists a q-dimensional sphere Sλ ⊂ C of radius λ > 0 centered at o.

Such a sphere always exists as long as the class-conditional distributions are not completely over-
lapping i.e. there is some signal for non-trivial classification. A method to obtain Sλ is discussed in
Section 5. Now recall that the optimum for a linear function optimized over a sphere is given by the
slope of the function scaled by the radius of the sphere. This is formalized as a trivial lemma below.
Lemma 1. Let φ ∈ ϕLPM be parametrized by a such that ‖a‖2 = 1, then the unique optimal
off-diagonal confusion c over the sphere Sλ is a point on the boundary of Sλ given by c = λa + o.

Given an LPM, Lemma 1 provides a unique point in the query space Sλ ⊂ C. This gives us an
opportunity to characterize and then parametrize a subset of the query space through LPMs. Since
we focus on eliciting monotonically decreasing LPMs, we parametrize the lower boundary of Sλ.
Definition 6. The lower boundary of Sλ, denoted by ∂S−λ , constitutes the set of optimal off-diagonal
confusions over the sphere Sλ for LPMs with ai ≤ 0 ∀ i ∈ [q] (monotonically decreasing condition).

Parameterizing the lower boundary of the enclosed sphere ∂S−λ . We follow the standard method
for parametrizing points on the surface of a sphere via angles. Let θ be a (q−1)-dimensional vector of
angles, where all the angles except the primary angle are in second quadrant, i.e. {θi ∈ [π/2, π]}q−2

i=1 ,
and the primary angle is in the third quadrant, i.e. θ(q−1) ∈ [π, 3π/2]. Construct an LPM (‖a‖2 = 1)

by setting ai = Πi−1
j=1 sin θj cos θi for i ∈ [q − 1] and aq = Πq−1

j=1 sin θj . The choice of the quadrants
ensures the monontonically decreasing condition i.e. {ai ≤ 0}qi=1. By using Lemma 1, obtain its BO
off-diagonal confusions over the sphere Sλ, which clearly lies on the lower boundary. Thus, varying
θ in this procedure, parametrizes the lower boundary ∂S−λ . We denote this parametrization by µ(θ),
where µ : [π/2, π]q−2 × [π, 3π/2]→ ∂S−λ .

4 Metric Elicitation
Using the outlined parametrizations {ν, µ}, we propose efficient binary-search type algorithms to
elicit oracle’s implicit performance metric. We will first discuss elicitation procedures with no
feedback noise from the oracle. We will later show robustness to noisy feedback in Section 5.

4.1 DLPM Elicitation

The following lemma concerning a broader family of metrics is the route to our elicitation procedures.
Since both linear and linear-fractional functions are quasiconcave, the lemma applies to both.
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Algorithm 1: DLPM Elicitation
Input: ε > 0, oracle Ω, â1 = 1
For i = 2, · · · , k do

Initialize: ma = 0, mb = 1.
While

∣∣∣mb −ma
∣∣∣ > ε do

• Set mc = 3ma+mb

4
, md = ma+mb

2
, and

me = ma+3mb

4
.

• Set d
a
1,i = ν(ma; 1, i) (i.e. parametriza-

tion of ∂D+
1,i in Section 3.1). Similarly, set

d
c
1,i,d

d
1,i,d

e
1,i,d

b
1,i.

• Query Ω(d
c
1,i,d

a
1,i),Ω(d

d
1,i,d

c
1,i),

Ω(d
e
1,i,d

d
1,i), and Ω(d

b
1,i,d

e
1,i).

• [ma,mb]← ShrinkInterval-1 (responses).
Set md = ma+mb

2
. Then set âi = 1−md

md
â1.

Output: â =
(

â1
‖â‖1

, · · · , âk
‖â‖1

)
.

Algorithm 2: LPM Elicitation
Input: ε > 0, oracle Ω, λ, and θ = θ(1)

For t = 1, 2, · · · , T do
Set θa = θc = θd = θe = θb = θ(t).
if (t%(q − 1)) Set j = t%(q − 1); else j = q − 1.
if (j == q − 1) Initialize: θaj = π, θbj = 3π/2.
else Initialize: θaj = π/2, θbj = π.

While
∣∣∣θbj − θaj ∣∣∣ > ε do

• Set θcj =
3θaj+θbj

4
, θdj =

θaj+θbj
2

, and θej =
θaj+3θbj

4
.

• Set ca = µ(θa) (i.e. parametrization of ∂S−λ in
Section 3.2). Similarly, set cc, cd, ce, cb.
• Query Ω(cc, ca),Ω(cd, cc), Ω(ce, cd),Ω(cb, ce)
• [θaj , θ

b
j ]← ShrinkInterval-2 (responses).

Set θdj = 1
2
(θaj + θbj) and then set θ(t) = θd.

Output: âi = Πi−1
j=1 sin θ

(T )
j cos θi

(T ) ∀i ∈ [q − 1],
âq = Π

q−1
j=1 sin θ

(T )
j .

Lemma 2. Let ψ : D → R be a quasiconcave metric which is monotone increasing in all {di}ki=1.
For k1, k2 ∈ [k], let ρ+ : [0, 1]→ ∂D+

k1,k2
be a continuous, bijective, parametrization of the upper

boundary. Then the composition ψ ◦ ρ+ : [0, 1]→ R is quasiconcave and thus unimodal on [0, 1].

Remark 1. Under Assumption 1, every supporting hyperplane of Dk1,k2 supports a unique point on
the boundary ∂D+

k1,k2
and vice-versa (Proposition 1); therefore, the composition ψ ◦ ρ+ has no flat

regions. In other words, the function ψ ◦ ρ+ is concave.

The proof of Lemma 2 first shows that any quasiconcave metric ψ defined on the space D is
also quasiconcave on the restricted space Dk1,k2 , and then shows the quasiconcavity and thus the
unimodality (due to the one-dimensional parametrization of ∂D+

k1,k2
) of ψ on a further restricted

space ∂D+
k1,k2

. Furthermore, Remark 1 reveals that the function ψ ◦ ρ+ is concave, allowing us to
devise the following binary-search type method for elicitation.

Suppose that the oracle’s metric is ψ∗ ∈ ϕDLPM parametrized by a∗ where‖a∗‖1 = 1, {a∗i }ki=1 ≥ 0
(Section 2.2). Using the parametrization ν, Algorithm 1 returns an estimate â of a∗. It takes two
classes at a time, class 1 and class i. Since the metric is unimodal on ∂D+

1,i (Lemma 2), the algorithm
applies binary-search in the inner while-loop to estimate the ratio a∗i /a

∗
1. The ShrinkInterval-1

subroutine shrinks the interval [ma,mb] into half based on the oracle responses in the usual binary-
search way for searching the optimum (Figure 4, Appendix A). The algorithm repeats this (k − 1)
times to estimate the ratios {a∗2/a

∗
1, . . . , a

∗
k/a
∗
1}. Finally, it outputs a normalized metric estimate â.

4.2 LPM Elicitation

We now discuss LPM elicitation, where the metrics are assumed to be monotonically decreasing in
the off-diagonal confusions. Unfortunately, ∂C may have flat regions due to lack of strict convexity,
so the algorithm for the diagonal case does not apply. Instead, we consider a query space given by
the sphere Sλ ⊂ C and propose a coordinate-wise binary-search style algorithm, which is an outcome
of our novel geometric characterization and the approach in Derivative-Free Optimization (DFO) [9].

Suppose that the oracle’s metric is φ∗ ∈ ϕLPM parametrized by a∗ where‖a∗‖2 = 1, {a∗i }
q
i=1 ≤ 0

(Section 2.2). Using the parametrization µ(θ) of ∂S−λ (Section 3.2), Algorithm 2 returns an estimate
â of a∗. In each iteration, the algorithm updates one angle θj keeping other angles fixed by a
binary-search procedure, where again the ShrinkInterval-2 subroutine shrinks the interval [θaj , θ

b
j ] by

half based on the oracle responses (Figure 5, Appendix A). Then the algorithm cyclically updates
each angle until it converges to a metric sufficiently close to the true metric. The convergence is
assured because, intuitively, the algorithm via a dual interpretation minimizes a smooth, strongly
convex function f∗(c) measuring the distance of the boundary points from a hyperplane `

∗
, whose

slope is given by a∗ and is tangent at the BO confusion c∗ (see Figure 2(c)).
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Table 2: DLPM elicitation at ε = 0.01 for synthetic data. #Q denotes the number of queries.
Classes k = 3 Classes k = 4

ψ∗ = a∗ ψ̂ = â #Q ψ∗ = a∗ ψ̂ = â #Q
(0.21, 0.59, 0.20) (0.21, 0.60, 0.20) 56 (0.22, 0.13, 0.14, 0.52) (0.22, 0.13, 0.14, 0.52) 84
(0.23, 0.15, 0.62) (0.23, 0.15, 0.62) 56 (0.58, 0.17, 0.08, 0.18) (0.58, 0.17, 0.08, 0.18) 84

5 Guarantees
We discuss robustness under the following feedback model, which is useful in practical scenarios.
Definition 7 (Oracle Feedback Noise: εΩ ≥ 0). The oracle responses correctly as long as |φ(c)−
φ(c′)| > εΩ (analogously |ψ(d)− ψ(d′)| > εΩ). Otherwise, it may provide incorrect answers.

In other words, the oracle may respond incorrectly if the confusions are too close as measured by the
metric φ (analogously ψ). Next, we discuss elicitation guarantees for DLPM and LPM elicitation.
Theorem 1. Given ε, εΩ ≥ 0, and a 1-Lipschitz DLPM ψ∗ parametrized by a∗. Then the output â of
Algorithm 1 after O((k − 1) log 1

ε ) queries to the oracle satisfies ‖a∗ − â‖∞ ≤ O(ε+
√
εΩ), which

is equivalent to ‖a∗ − â‖2 ≤ O(
√
k(ε+

√
εΩ)) using standard norm bounds.

The following theorem guarantees LPM elicitation when the sphere radius dominates the oracle noise.
Theorem 2. Given ε, εΩ ≥ 0, and a 1-Lipschitz LPM φ∗ parametrized by a∗. Suppose λ� εΩ, then
the output â of Algorithm 2 after O

(
z1 log(z2/(qε

2))(q − 1) log π
2ε

)
queries satisfies ‖a∗ − â‖2 ≤

O(
√
q(ε+

√
εΩ/λ)), where z1, z2 are constants independent of ε and q.

We see that the algorithms are robust to noise, and their query complexity depends linearly in the
unknown entities. The term z1 log(z2/(qε

2)) may attribute to the number of cycles in Algorithm 2,
but due to the curvature of the sphere, we observe that it is not a dominating factor in the query
complexity. For instance, we find that when ε = 10−2, two cycles (i.e. T = 2(q − 1) in Algorithm 2)
are sufficient for achieving elicitation up to the error tolerance

√
qε. One remaining question for LPM

elicitation is to select a sufficiently large value of λ. Algorithm 3 (Appendix D) provides an offline
procedure to compute a λ ≥ r̃/k, where r̃ is the radius of the largest ball contained in the set C.

ME with Finite Samples: As a final step, we consider the following questions when working with
finite samples: (a) do we get the correct feedback from querying Ω(ĉ, ĉ′) instead of querying Ω(c, c′)?
(b) what is the effect of η̂i’s when used in place of true ηi’s? The answers are straightforward. Since
the sample estimates of confusion matrices are consistent estimators and the metrics discussed are
1-Lipschitz with respect to the confusion matrices, with high probability, we gather correct oracle
feedback as long as we have sufficient samples. Furthermore, subject to regularity assumptions,
Lemma 3 of Hiranandani et al. [7] shows that the errors due to using η̂ affect the (binary) confusion
matrices on the boundary in a controlled manner. Since Algorithm 1 uses pairwise RBO (binary)
classifiers, it inherits the error guarantees in the multiclass case. Due to limited space, we do not
repeat the details here. On the other hand, since Algorithm 2 does not use the boundary, its results are
agnostic to finite sample error as long as the sphere is contained within the feasible region C.

6 Experiments
In this section, we empirically validate the results of theorems 1 and 2 and investigate sensitivity due
to finite sample estimates.1 For the ease of judgments, we show results for k = 3 and k = 4 classes.

6.1 Synthetic Data Experiments

We assume a joint distribution forX = [−1, 1] and Y = [k]. This is given by the marginal distribution
fX = U[−1, 1] and ηi(x) = 1

1+epix for i ∈ [k], where U[−1, 1] is the uniform distribution on [−1, 1]

and {pi}ki=1 are the parameters controlling the degree of noise in the labels. We fix (p1, p2, p3) =
(1, 3, 5) and (p1, p2, p3, p4) = (1, 3, 6, 10) for experiments with three and four classes, respectively.
To verify elicitation, we first define a true metric ψ∗ or φ∗. This specifies the query outputs of
Algorithm 1 or Algorithm 2. Then we run the algorithms to check whether or not we recover the same

1A subset of results is shown here. Refer Appendix F for more results.
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Table 3: LPM elicitation at ε = 0.01 for synthetic data. #Q denotes the number of queries.

Classes φ∗ = a∗ φ̂ = â #Q
3 (-0.37, -0.89, -0.09, -0.23, -0.04, -0.03) (-0.37, -0.89, -0.09, -0.23, -0.04, -0.03) 320
3 (-0.80, -0.55, -0.18, -0.08, -0.14, -0.05) (-0.80, -0.55, -0.18, -0.08, -0.14, -0.05) 320

4 (-0.90, -0.28 -0.10, -0.31, -0.04, -0.05, (-0.90, -0.28, -0.10, -0.31, -0.04, -0.05, 704-0.03, -0.04, -0.02, -0.01, -0.01, -0.01) -0.03, -0.04, -0.02, -0.01, -0.01, -0.01)

4 (-0.54, -0.10, -0.62, -0.52, -0.03, -0.07, (-0.55, -0.11, -0.62, -0.51, -0.03, -0.07, 704-0.11, -0.07, -0.14, -0.03, -0.03, -0.04) -0.11, -0.07, -0.14, -0.03, -0.03, -0.04)
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Figure 3: DLPM elicitation on real data for ε = 0.01. For randomly chosen hundred a∗, we show the
proportion of times our estimates â obtained with 4(k−1)

⌈
log(1/ε)

⌉
queries satisfy ‖a∗− â‖∞ ≤ ω.

metric. Some results are shown in Table 2 and Table 3. Results verify that we elicit the true metrics
even for small ε = 0.01, and as predicted, this requires only 4(k− 1)

⌈
log(1/ε)

⌉
and 4T

⌈
log(π/2ε)

⌉
queries for DLPM and LPM elicitation respectively, where d·e is the ceil function and T = 2(q − 1).

6.2 Real-World Data Experiments

Finite samples may affect the size of the sphere Sλ in LPM elicitation, but we observe that as long as
λ is greater than εΩ LPMs can be elicited (Appendix F.2). Thus, here we emprically validate only
DLPM elicitation with finite samples. We consider two real-world datasets: (a) SensIT (Acoustic)
dataset [5] (78823 instances, 3 classes), and (b) Vehicle dataset [21] (846 instances, 4 classes).
From each dataset, we create two other datasets containing randomly chosen 50% and 75% of the
datapoints. So, we have six datasets in total. For all the datasets, we standardize the features and
split the dataset into two parts S1 and S2. On S1, we learn {η̂i(x)}ki=1 using a regularized softmax
regression model. We use S2 for making predictions and computing sample confusions.

We randomly selected 100 DLPMs i.e. a∗’s. We then used Algorithm 1 with ε = 0.01 to recover the
estimates â’s. In Figure 3, we show the proportion of times ‖a∗ − â‖∞ ≤ ω for different values of ω.
We see improved elicitation as we increase the number of datapoints in both the datasets, suggesting
that ME improves with larger datasets. In particular, for the full SensIT (Acoustic) dataset, we elicit
all the metrics within ω = 0.12. We also observe that ω ∈ [0.04, 0.08] is an overly tight evaluation
criterion that can result in failures. This is because the elicitation routine gets stuck at the closest
achievable sample confusions, which need not be optimal within the (small) search tolerance ε.

7 Discussion Points and Future Work

• Extensions. The family of human evaluation metrics is believed to be large and now that we have
discussed elicitation and guarantees for linear metrics, we can certainly aim for eliciting broader
metric families.

(a) Linear-fractional metrics e.g. F-measure [15] are common in classification problems because
often one measures classification quality using proportions of predictions with respect to
different classes. For eliciting linear-fractional metrics, we exploit their quasiconcave and
quasiconvex nature. Intuitively, we aim to get a supporting hyperplane `

∗
at the maximizer

c∗ and a supporting hyperplane ` ∗ at the minimizer c∗ (see Figure 2(c)), which results in
two non-linear systems of equations. Then we find a common solution to both the systems
resulting in the true metric in just twice the number of queries required in the linear case.
Due to limited space, we defer the details of diagonal and full linear-fractional elicitation to
appendices E.1 and E.2, respectively.
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(b) When the oracle’s metric is just monotonically increasing in diagonal confusions without even
having a restricted functional form, then Algorithm 1 can return a first order approximation at
the BO diagonal confusion. Notice that even this may be of high importance to practitioners.
The elicitation details are discussed in Appendix E.3.

• Practical Convenience. Our procedures can also be applied by posing pairwise classifier compar-
isons directly. One way is to use A/B testing [22] where the user population acts an oracle. Another
way is to use comparisons from a single expert, perhaps combined with interpretable machine
learning techniques [19, 4]. We suggest the approach proposed by Narasimhan [14] for estimating
the classifier associated with a given confusion matrix.

• Advantage of Algorithm 1. When there is a reason to restrict the metric search to DLPM e.g. due
to prior knowledge, then Algorithm 1 is preferred for its lower query complexity.

• Future Work. We conjecture that our query complexity bounds are tight; however, we leave this
detail for the future. We also plan to extend our procedures for the oracles that are only probably
correct. This can be done easily by applying majority voting over repeated queries [11].

8 Related Work
The closest line of work to ours is Hiranandani et al. [7], who proposed the problem of ME but solved
it only for a simpler setting of binary classification. As we move to multiclass performance ME, we
find that the form of metrics and the complexity of the query space increases. This results in stark
differences in the elicitation algorithms. Algorithm 1, which is closest to the binary approach, only
works for Restricted Bayes Optimal classifiers, and Algorithm 2 requires a coordinate-wise binary-
search approach. As a result, novel methods are also required to provide query complexity guarantees.
The LPM elicitation problem can be posed as a Derivative-Free Optimization [9] to a certain extent,
but only after exploiting the geometry as we have. In addition, passively learning linear functions
using pairwise comparisons has been studied before [6, 10, 16], but these approaches fail to control
sample (i.e. query) complexity and end up utilizing more queries than the active approaches [20, 8, 12].
Papers which actively control the query samples for linear elicitation, e.g. [18], exploit the query
space like us in order to achieve lower query complexity. However, unlike us, [18] does not provide
theoretical bounds and is also applied to a different query space.

9 Conclusion
We study the space of multiclass confusions and propose robust, efficient algorithms to elicit diagonal-
linear and linear performance metrics using preference feedback. We extend elicitation to other
families e.g. linear-fractional metrics, thus covering a wide range of metrics encountered in practice.
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