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Abstract

In the problem of learning mixtures of linear regressions, the goal is to learn a col-
lection of signal vectors from a sequence of (possibly noisy) linear measurements,
where each measurement is evaluated on an unknown signal drawn uniformly from
this collection. This setting is quite expressive and has been studied both in terms
of practical applications and for the sake of establishing theoretical guarantees. In
this paper, we consider the case where the signal vectors are sparse; this generalizes
the popular compressed sensing paradigm. We improve upon the state-of-the-art
results as follows: In the noisy case, we resolve an open question of Yin et al. (IEEE
Transactions on Information Theory, 2019) by showing how to handle collections
of more than two vectors and present the first robust reconstruction algorithm, i.e.,
if the signals are not perfectly sparse, we still learn a good sparse approximation
of the signals. In the noiseless case, as well as in the noisy case, we show how to
circumvent the need for a restrictive assumption required in the previous work. Our
techniques are quite different from those in the previous work: for the noiseless
case, we rely on a property of sparse polynomials and for the noisy case, we provide
new connections to learning Gaussian mixtures and use ideas from the theory of
error correcting codes.

1 Introduction

Learning mixtures of linear regressions is a natural generalization of the basic linear regression
problem. In the basic problem, the goal is to learn the best linear relationship between the scalar
responses (i.e., labels) and the explanatory variables (i.e., features). In the generalization, each scalar
response is stochastically generated by picking a function uniformly from a set of L unknown linear
functions, evaluating this function on the explanatory variables and possibly adding noise; the goal
is to learn the set of L unknown linear functions. The problem was introduced by De Veaux [11]
over thirty years ago and has recently attracted growing interest [8, 14, 22, 24, 25, 27]. Recent
work focuses on a query-based scenario in which the input to the randomly chosen linear function
can be specified by the learner. The sparse setting, in which each linear function depends on only
a small number of variables, was recently considered by Yin et al. [27], and can be viewed as a
generalization of the well-studied compressed sensing problem [7, 13]. The problem has numerous
applications in modelling heterogeneous data arising in medical applications, behavioral health, and
music perception [27].
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Formal Problem Statement. There are L unknown distinct vectors �1,�2, . . . ,�L 2 Rn and
each is k-sparse, i.e., the number of non-zero entries in each �i is at most k where k is some known
parameter. We define an oracle O which, when queried with a vector x 2 Rn, returns the noisy
output y 2 R:

y = hx,�i+ ⌘ (1)

where ⌘ is a random variable with E⌘ = 0 that represents the measurement noise and � is chosen
uniformly1 from the set B = {�1,�2, . . . ,�L}. The goal is to recover all vectors in B by making
a set of queries x

1

,x
2

, . . . ,x
m

to the oracle. We refer to the values returned by the oracle given
these queries as samples. Note that the case of L = 1 corresponds to the problem of compressed
sensing. Our primary focus is on the sample complexity of the problem, i.e., minimizing the number
of queries that suffices to recover the sparse vectors up to some tolerable error.

Related Work. The most relevant previous work is by Yin et al. [27]. For the noiseless case, i.e.,
⌘ = 0, they show that O(kL log(kL)) queries are sufficient to recover all vectors in B with high
probability. However, their result requires a restrictive assumption on the set of vectors and do not
hold for an arbitrary set of sparse vectors. Specifically, they require that for any �,�0 2 B,

�
j

6= �0
j

for each j 2 supp(�) \ supp(�0
) . (2)

Their approach depends crucially on this assumption and this limits the applicability of their approach.
Note that our results will not depend on such an assumption. For the noisy case, the approach taken
by Yin et al. only handles the L = 2 case and they state the case of L > 2 as an important open
problem. Resolving this open problem will be another one of our contributions.

More generally, both compressed sensing [7, 13] and learning mixtures of distributions [10, 23]
are immensely popular topics across statistics, signal processing and machine learning with a large
body of prior work. Mixture of linear regressions is a natural synthesis of mixture models and
linear regression, a very basic machine learning primitive [11]. Most of the work on the problem
has considered learning generic vectors, i.e., not necessary sparse, and they propose a variety of
algorithmic techniques to obtain polynomial sample complexity [8, 14, 19, 24, 26]. To the best of our
knowledge, Städler et al. [22] were the first to impose sparsity on the solutions. However, many of
the earlier papers on mixtures of linear regression, essentially consider the queries to be fixed, i.e.,
part of the input, whereas in this paper, and in Yin et al. [27], we are interested in designing queries
in such a way to minimize the number of queries.

Our Results and Techniques. We present results for both the noiseless and noisy cases. The latter
is significantly more involved and is the main technical contribution of this paper.

Noiseless Case: In the case where there is no noise and the L unknown vectors are k-sparse, we show
that O(kL log(kL)) queries suffice and that ⌦(kL) queries are necessary. The upper bound matches
the query complexity of the result by Yin et al. but our result applies for all k-sparse vectors rather
than just those satisfying the assumption in Eq. 2. The approach we take is as follows: In compressed
sensing, exact recovery of k-sparse vectors is possible by taking samples with an m⇥ n matrix with
any 2k columns linearly independent. Such matrices exists with m = 2k (such as Vandermonde
matrices) and are called MDS matrices. We use rows of such a matrix repeatedly to generate samples.
Since there are L different vectors in the mixture, with O(L logL) measurements with a row we will
be able to see the samples corresponding to each of the L vectors with that row. However, even if this
is true for measurements with each rows, we will still not be able to align measurements across the
rows. For example, even though we will obtain hx,�`i for all ` 2 [L] and for all x that are rows of an
MDS matrix, we will be unable to identify the samples corresponding to �1. To tackle this problem,
we propose using a special type of MDS matrix that allows us to align measurements corresponding
to the same �s. After that, we just use the sparse recovery property of the MDS matrix to individually
recover each of the vectors.

Noisy Case: We assume that the noise ⌘ is a Gaussian random variable with zero mean. Going forward,
we write N (µ,�2

) to denote a Gaussian distribution with mean µ and variance �2. Furthermore, we
will no longer assume vectors in B are necessarily sparse. From the noisy samples, our objective is to

1Many of our results can be generalized to non-uniform distributions but we will assume a uniform distribution
throughout for the sake of clarity.
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recover an estimate ˆ� for each � 2 B such that

k� � ˆ�k  ck� � �⇤k, (3)
where c is an absolute constant and �⇤ is the best k-sparse approximation of �, i.e., all except the
largest (by absolute value) k coordinates set to 0. The norms in the above equation can be arbitrary
defining the strength of the guarantee, e.g., when we refer to an `

1

/`
1

guarantee both norms are k · k
1

.
Our results should be contrasted with [27], where results not only hold for only L = 2 and under
assumption (2), but the vectors are also strictly k-sparse. However, like [27], we assume ✏-precision
of the unknown vectors, i.e., the value in each coordinate of each � 2 B is an integer multiple of ✏.2

Notice that in this model the noise is additive and not multiplicative. Hence, it is possible to increase
the `

2

norm of the queries arbitrarily so that the noise becomes inconsequential. However, in a real
setting, this cannot be allowed since increasing the strength (norm) of the queries has a cost and it
is in our interest to minimize the cost. Suppose the algorithm designs the ith query vector by first
choosing a distribution Q

i

and subsequently sampling a query vector x
i

⇠ Q
i

. Let us now define the
signal to noise ratio as follows:

SNR = max

i

min

`

E
xi⇠Qi |hxi

,�`i|2
E⌘2 . (4)

Our objective in the noisy setting is to recover the unknown vectors �1,�2, . . . ,�L 2 Rn while
minimizing the number of queries and the SNR at the same time. In this setting, assuming that
all the unknown vectors have unit norm, we show that O(k log3 n exp((�/✏)2/3)) queries with
SNR = O(1/�2

) suffice to reconstruct the L = O(1) vectors in B with the approximation guarantees
given in Eq. (3) with high probability if the noise ⌘ is a zero mean gaussian with a variance of �2.
This is equivalent to stating that O(k log3 n exp(1/(✏

p
SNR)2/3)) queries suffice to recover the L

unknown vectors with high probability.
Note that in the previous work ✏

p
SNR is assumed to be at least constant and, if this is the case,

our result is optimal up to polynomial factors since ⌦(k) queries are required even if L = 1. More
generally, the dependence upon ✏

p
SNR in our result improves upon the dependence in the result by

Yin et al. Note that we assumed L = O(1) in our result because the dependence of sample complexity
on L is complicated as it is implicit in the signal-to-noise ratio.

As in noiseless case, our approach is to use a compressed sensing matrix and use its rows multiple
time as queries to the oracle. At the first step, we would like to separate out the different �s from
their samples with the same rows. Unlike the noiseless case, even this turns out to be a difficult task.
Under the assumption of Gaussian noise, however, we are able to show that this is equivalent to
learning a mixture of Gaussians with different means. In this case, the means of the Gaussians belong
to an “✏-grid", because of the assumption on the precision of �s. This is not a standard setting in the
literature of learning Gaussian mixtures, e.g., [1, 16, 20]. Note that, this is possible if the vector that
we are sampling with has integer entries. As we will see a binary-valued compressed sensing matrix
will do the job for us. We will rely on a novel complex-analytic technique to exactly learn the means
of a mixture of Gaussians, with means belonging to an ✏-grid. This technique is paralleled by the
recent developments in trace reconstructions where similar methods were used for learning a mixture
of binomials [18, 21].

Once for each query, the samples are separated, we are still tasked with aligning them so that we
know the samples produced by the same � across different queries. The method for the noiseless case
fails to work here. Instead, we use a new method motivated by error-correcting codes. In particular,
we perform several redundant queries, that help us to do this alignment. For example, in addition to
the pair of queries x

i

,x
j

, we also perform the queries defined by x

i

+ x

j

and x

i

� x

j

.

After the alignment, we use the compressed sensing recovery to estimate the unknown vectors. For
this, we must start with a matrix that with minimal number of rows, will allow us to recover any
vector with a guarantee such as (3). On top of this, we also need the matrix to have integer entries so
that we can use our method of learning a mixture of Gaussians with means on an ✏-grid. Fortunately,
a random binary ±1 matrix satisfies all the requirements [3]. Putting now these three steps of learning
mixtures, aligning and compressed sensing, lets us arrive at our results.

While we concentrate on sample complexity in this paper, our algorithm for the noiseless case is
computationally efficient, and the only computationally inefficient step in the general noisy case is

2Note that we do not assume ✏-precision in the noiseless case.
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Algorithm 1 Noiseless Recovery The algorithm for extracting recovering vectors via queries to
oracle in noiseless setting.
Require: Number of unknown sparse vectors L, dimension n, sparsity k.

1: Let t 2
R

{0, 1, 2, . . . , k2L2 � 1} and define ↵
1

,↵
2

, . . . ,↵
2k

where ↵
j

=

2kt+j

2k

3
L

2 .
2: for i = 1, 2, . . . , 2k do
3: Make L log(Lk2) oracle queries with vector [1 ↵

i

↵2

i

. . . ↵n�1

i

]. Refer to these as a batch.
4: end for
5: for i = 1, 2, . . . , 2k do
6: For each batch of query responses corresponding to the same query vector, retain unique values

and sort them in ascending order. Refer to this as the processed batch.
7: end for
8: Set matrix Q of dimension 2k ⇥ L such that its jth row is the processed batch corresponding to

the query vector [1 ↵
j

↵2

j

. . . ↵n�1

j

]

9: for i = 1, 2, . . . , L do
10: Decode the ith column of the matrix Q to recover �i.
11: end for
12: Return �1,�2, . . . ,�L.

that of learning Gaussian mixtures. However, in practice one can perform a simple clustering (such
as Lloyd’s algorithm) to learn the means of the mixture.

Organization and Notation. In Section 2, we present our results for the noiseless case. In Section
3.1 we consider the case with noise when L = 2 and then consider noise and general L in Section
3.2. Most proofs are deferred to the appendix in the supplementary material. Throughout, we write
x 2

R

X to denote taking an element x from a finite set X uniformly at random. For n 2 N, let
[n] := {1, 2, . . . , n}.

2 Exact sparse vectors and noiseless samples

To begin, we deal with the case of uniform mixture of exact sparse vectors with the oracle returning
noiseless answers when queried with a vector. For this case, our scheme is provided in Algorithm 1.
The main result for this section is the following.
Theorem 1. For a collection of L vectors �1,�2, . . . ,�L 2 Rn

such that k�ik
0

 k 8i 2 [L], one

can recover all of them exactly with probability at least 1� 3/k with a total of 2kL logLk2 oracle

queries. See Algorithm 1.

A Vandermonde matrix is a matrix such that the entries in each row of the matrix are in geometric
progression i.e., for an m ⇥ n dimensional Vandermonde matrix the entry in the (i, j)th entry is
↵j

i

where ↵
1

,↵
2

, . . . ,↵
m

2 R are distinct values. We will use the following useful property of the
Vandermonde matrices; see, e.g., [15, Section XIII.8] for the proof.
Lemma 1. The rank of any m ⇥ m square submatrix of a Vandermonde matrix is m assuming

↵
1

,↵
2

, . . . ,↵
m

are distinct and positive.

This implies that, with the samples from a 2k ⇥ n Vandermonde matrix, a k-sparse vector can be
exactly recovered. This is because for any two unknown vectors � and ˆ�, the same set of responses
for all the 2k rows of the Vandermonde matrix implies that a 2k ⇥ 2k square submatrix of the
Vandermonde matrix is not full rank which is a contradiction to Lemma 1.

We are now ready to prove Theorem 1.

Proof. For the case of L = 1, note that the setting is the same as the well-known compressed sensing
problem. Furthermore, suppose a 2k ⇥ n matrix has the property that any 2k ⇥ 2k submatrix is full
rank, then using the rows of this matrix as queries is sufficient to recover any k-sparse vector. By
Lemma 1, any 2k ⇥ n Vandemonde matrix has the necessary property.

Let �1,�2, . . . ,�L be the set of unknown k-sparse vectors. Notice that a particular row of the
Vandermonde matrix looks like [1 z z2 z3 . . . zn�1

] for some value of z 2 R. Therefore, for
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some vector �i and a particular row of the Vandermonde matrix, the inner product of the two can be
interpreted as a degree n polynomial evaluated at z such that the coefficients of the polynomial form
the vector �i. More formally, the inner product can be written as f i

(z) =
P

n�1

j=0

�i

j

zj where f i is
the polynomial corresponding to the vector �i. For any value z 2 Rn, we can define an ordering over
the L polynomials f1, f2, . . . , fL such that f i > f j iff f i

(z) > f j

(z).

For two distinct indices i, j 2 [L], we will call the polynomial f i � f j a difference polynomial.
Each difference polynomial has at most 2k non-zero coefficients and therefore has at most 2k
positive roots by Descartes’ Rule of Signs [9]. Since there are at most L(L� 1)/2 distinct difference
polynomials, the total number of distinct values that are roots of at least one difference polynomial
is less than kL2. Note that if an interval does not include any of these roots, then the ordering of
f1, . . . , fL remains consistent for any point in that interval. In particular, consider the intervals
(0, �], (�, 2�], . . . , (1 � �, 1] where � = 1/(k2L2

). At most kL2 of these intervals include a root
of a difference polynomial and hence if we pick a random interval then with probability at least
1� 1/k, the ordering of f1, . . . , fL are consistent throughout the interval. If the interval chosen is
(t�, (t+ 1)�] then set ↵

j

= t� + j�/(2k) for j = 1, . . . , 2k.

Now for each value of ↵
i

, define the vector x
i

⌘ [1 ↵
i

↵2

i

↵3

i

. . . ↵n�1

i

]. For each i 2 [2k], the
vector x

i

will be used as query to the oracle repeatedly for L logLk2 times. We will call the set of
query responses from the oracle for a fixed query vector x

i

a batch. For a fixed batch and �j ,

Pr(�j is not sampled by the oracle in the batch) 
⇣

1� 1

L

⌘

L logLk

2

 e� logLk

2

=

1

Lk2
.

Taking a union bound over all the vectors (L of them) and all the batches (2k of them), we get that in
every batch every vector �j for j 2 [L] is sampled with probability at least 1� 2/k. Now, for each
batch, we will retain the unique values (there should be exactly L of them with high probability) and
sort the values in each batch. Since the ordering of the polynomial remains same, after sorting, all
the values in a particular position in each batch correspond to the same vector �j for some unknown
index j 2 [L]. We can aggregate the query responses of all the batches in each position and since
there are 2k linear measurements corresponding to the same vector, we can recover all the unknown
vectors �j using Lemma 1. The failure probability of this algorithm is at most 3/k.

The following theorem establishes that our method is almost optimal in terms of sample complexity.
Theorem 2. At least 2Lk oracle queries are necessary to recover an arbitrary set of L vectors that

are k-sparse.

3 Noisy Samples and Sparse Approximation

We now consider the more general setting where the oracle is noisy and the vectors �1, . . . ,�L are
not necessarily sparse. We assume L is an arbitrary constant, i.e., it does not grow with n or k and
that the unknown vectors have ✏ precision, i.e., each entries is an integer multiple of ✏. The noise will
be Gaussian with zero mean and variance �2, i.e., ⌘ ⇠ N (0,�2

). Our main result of this section is
the following.
Theorem 3. It is possible to recover approximations with the `

1

/`
1

guarantee in Eq. (3) with

probability at least 1� 2/n of all the unknown vectors �` 2 {0,±✏,±2✏,±3✏, . . . }n, ` = 1, . . . , L
with O(k(log3 n) exp((�/✏)2/3) oracle queries where SNR = O(1/�2

).

Before we proceed with the ideas of proof, it would be useful to recall the restricted isometry property

(RIP) of matrices in the context of recovery guarantees of (3). A matrix � 2 IR

m⇥n satisfies the
(k, �)-RIP if for any vector z 2 IR

n with kzk
0

 k,

(1� �)kzk2
2

 k�zk2
2

 (1 + �)kzk2
2

. (5)

It is known that if a matrix is (2k, �)-RIP with � <
p
2� 1, then the guarantee of (3) (in particular,

`
1

/`
1

-guarantee and also an `
2

/`
1

-guarantee) is possible [6] with the the basis pursuit algorithm, an
efficient algorithm based on linear programming. It is also known that a random ±1 matrix (with
normalized columns) satisfies the property with c

s

k log n rows, where c
s

is an absolute constant [3].

There are several key ideas of the proof. Since the case of L = 2 is simpler to handle, we start with
that and then provide the extra steps necessary for the general case subsequently.
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Algorithm 2 Noisy Recovery for L = 2 The algorithm for recovering best k-sparse approxima-
tion of vectors via queries to oracle in noisy setting.

Require: SNR = 1/�2, Precision of unknown vectors ✏, and the constant c
s

where c
s

k log n rows
are sufficient for RIP in binary matrices.

1: for i = 1, 2, . . . , c
s

k log(n/k) do
2: Call SampleAndRecover(v

i

) where v

i

2
R

{+1,�1}n.
3: end for
4: for i 2 [log n] and j 2 [c

s

k log(n/k)] with j 6= i do
5: Call SampleAndRecover((v

i

+ v

j

)/2) and SampleAndRecover((v
i

� v

j

)/2)
6: end for
7: Choose vector v from {v

1

,v
2

, . . . ,v
logn

} such that hv,�1i 6= hv,�2i.
8: for i = 1, 2, . . . , k log(n/k) and v

i

6= v do
9: Label one of hv

i

,�1i,hv
i

,�2i to be hv,�1i if their sum is in the pair hvi+v

2

,�1i,hvi+v

2

,�2i
and their difference is in the pair hv�vi

2

,�1i,hv�vi
2

,�2i. Label the other hv,�2i.
10: end for
11: Aggregate all (query, denoised query response pairs) labelled hv,�1i and hv,�2i separately and

multiply all denoised query responses by a factor of 1/(
p

c
s

k log(n/k)).
12: Return best k-sparse approximation of �1 and �2 by using Basis Pursuit algorithm on each

aggregated cluster of (query, denoised query response) pairs.

13: function SampleAndRecover (v)
14: Issue T = c

2

exp

�

(�/✏)2/3
�

queries to oracle with v.
15: Return hv,�1i, hv,�2i via min-distance estimator (Gaussian mixture learning, lemma 2).
16: end function

3.1 Gaussian Noise: Two vectors

Algorithm 2 addresses the setting with only two unknown vectors. We will assume k�1k
2

= k�2k
2

=

1, so that we can subsequently show that the SNR is simply 1/�2. This assumption is not necessary
but we make this for the ease of presentation. The assumption of ✏-precision for � was made in
Yin et al. [27], and we stick to the same assumption. On the other hand, Yin et al. requires further
assumptions that we do not need to make. Furthermore, the result of Yin et al. is restricted to exactly
sparse vectors, whereas our result holds for general sparse approximation.

For the two-vector case the result we aim to show is following.

Theorem 4. Algorithm 2 uses O(k log3 n exp((�/✏)2/3)) queries to recover both the vectors �1

and

�2

with an `
1

/`
1

guarantee in Eq. (3) with probability at least 1� 2/n.

This result is directly comparable with [27]. On the statistical side, we improve their result in
several ways: (1) we improve the dependence on �/✏ in the sample complexity from exp(�/✏) to
exp((�/✏)2/3),3 (2) our result applies for dense vectors, recovering the best k-sparse approximations,
and (3) we do not need the overlap assumption (eq. (2)) used in their work.

Once we show SNR = 1/�2, Theorem 4 trivially implies Theorem 3 in the case L = 2. Indeed,
from Algorithm 2, notice that we have used vectors v sampled uniformly at random from {+1,�1}n
and use them as query vectors. We must have E

v

|hv,�`i|2/E⌘2 = k�`k2
2

/�2

= 1/�2 for ` = 1, 2.
Further, we have used the sum and difference query vectors which have the form (v

1

+ v

2

)/2 and
(v

1

� v

2

)/2 respectively where v
1

, v
2

are sampled uniformly and independently from {+1,�1}n.
Therefore, we must have for ` = 1, 2, E

v1,v2 |h(v1

± v

2

)/2,�`i|2/E⌘2 = 1/2�2. According to our
definition of SNR, we have that SNR = 1/�2.

A description of Algorithm 2 that lead to proof of Theorem 4 can be found in Appendix B. We
provide a short sketch here and state an important lemma that we will use in the more general case.

The main insight is that for a fixed sensing vector v, if we repeatedly query with v, we obtain samples
from a mixture of Gaussians 1

2

N (hv,�1i,�2

) +

1

2

N (hv,�2i,�2

). If we can exactly recover the

3Note that [27] treat �/✏ as constant in their theorem statement, but the dependence can be extracted from
their proof.
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means of these Gaussians, we essentially reduce to the noiseless case from the previous section. The
first key step upper bounds the sample complexity for exactly learning the parameters of a mixture of
Gaussians.
Lemma 2 (Learning Gaussian mixtures). Let M =

1

L

P

L

i=1

N (µ
i

,�2

) be a uniform mixture of L

univariate Gaussians, with known shared variance �2

and with means µ
i

2 ✏Z. Then, for some

constant c > 0 and some t = !(L), there exists an algorithm that requires ctL2

exp((�/✏)2/3)
samples from M and exactly identifies the parameters {µ

i

}L
i=1

with probability at least 1� 2e�2t

.

If we sense with v 2 {�1,+1}n then hv,�1i, hv,�2i 2 ✏Z, so appealing to the above lemma, we
can proceed assuming we know these two values exactly. Unfortunately, the sensing vectors here are
more restricted — we must maintain bounded SNR and our technique of mixture learning requires
that the means have finite precision — so we cannot simply appeal to our noiseless results for the
alignment step. Instead we design a new alignment strategy, inspired by error correcting codes. Given
two query vectors v

1

,v
2

and the exact means hv
i

,�ji, i, j 2 {1, 2}, we must identify which values
correspond to �1 and �2. In addition to sensing with any pair v

1

and v
2

we sense with v1±v2
2

, and
we use these two additional measurements to identify which recovered means correspond to �1 and
which correspond to �2. Intuitively, we can check if our alignment is correct via these reference
measurements.

Therefore, we can obtain aligned, denoised inner products with each of the two parameter vectors. At
this point we can apply a standard compressed sensing result as mentioned at the start of this section
to obtain the sparse approximations of vectors.

3.2 General value of L

In this setting, we will have L > 2 unknown vectors �1,�2, . . . ,�L 2 Rn of unit norm each from
which the oracle can sample from with equal probability. We assume that L does not grow with n or
k and as before, all the elements in the unknown vectors lie on a ✏-grid. Here, we will build on the
ideas for the special case of L = 2.

The main result of this section is the following.

Theorem 5. Algorithm 3 uses O
⇣

k(log n)3 exp
⇣

(

�

✏

)

2/3

⌘⌘

queries with SNR = O(1/�2

) to recover

all the vectors �1, . . . ,�L

with `
1

/`
1

guarantees in Eq. (3) with probability at least 1� 2/n.

Theorem 3 follows as a corollary of this result.

The analysis of Algorithm 3 and the proofs of Theorems 3 and 5 are provided in detail in Appendix D.
Below we sketch some of the main points of the proof.

There are two main hurdles in extending the steps explained for L = 2. For a query vector v, we define
the denoised query means to be the set of elements {hv,�ii}L

i=1

. Recall that a query vector v is de-
fined to be good if all the elements in the set of denoised query means {hv,�1i, hv,�2i, . . . , hv,�Li}
are distinct. For L = 2, the probability of a query vector v being good for L = 2 is at least 1/2 but
for a value of L larger than 2, it is not possible to obtain such guarantees without further assumptions.
For a more concrete example, consider L � 4 and the unknown vectors �1,�2, . . . ,�L to be such
that �i has 1 in the ith position and zero everywhere else. If v is sampled from {+1,�1}n as before,
then hv,�ii can take values only in {�1, 0,+1} and therefore it is not possible that all the values
hv,�ii are distinct. Secondly, even if we have a good query vector, it is no longer trivial to extend
the clustering or alignment step. Hence a number of new ideas are necessary to solve the problem for
any general value of L.

We need to define a few constants which are used in the algorithm. Let � <
p
2� 1 be a constant

(we need a � that allow k-sparse approximation given a (2k, �)-RIP matrix). Let c0 be a large positive
constant such that

�2

16

� �3

48

� 1

c0
> 0. (A)

Secondly, let ↵? be another positive constant that satisfies the following for a given value of c0,

↵?

= max

n

↵ :

↵↵

(↵� 1)

↵�1

< exp

⇣ �2

16

� �3

48

� 1

c0

⌘o

. (B)
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Algorithm 3 Noisy Recovery for any constant L The algorithm for recovering best k-sparse
approximation of vectors via queries to oracle in noisy setting.

Require: c0,↵?, z? as defined in equations (A), (B) and (C) respectively, Variance of noise E⌘2 = �2

and precision of unknown vectors as ✏.
1: for i = 1, 2, . . . ,

p
↵?

log n+ c0↵?k log(n/k) do
2: Let v

i

2
R

{+1,�1}n, r
i

2
R

{�2z?,�2z? + 1, . . . , 2z?}n, q
i

2
R

{1, 2, . . . , 4z? + 1}
3: Make c

2

exp((�/✏)2/3) queries to the oracle using each of the vectors (q
i

� 1)r

i

,v
i

+ q
i

r

i

and v

i

+ r

i

.
4: Recover h{(q

i

� 1)r

i

,�ti}L
t=1

,{hv
i

+ r

i

,�ti}L
t=1

,{hv
i

+ q
i

r

i

,�ti}L
t=1

by using min-distance
estimator (Gaussian mixture learning, lemma 2).

5: end for
6: for i 2 [

p
↵?

log n] and j 2 [↵?k log(nk)] do
7: Make c

2

exp((�/✏)2/3) queries to the oracle using the vector r
i+j

+ r

i

.
8: Recover {hr

i+j

+r

i

,�ti}L
t=1

, by using the min-distance estimator (Gaussian mixture learning,
Lemma 2).

9: end for
10: Choose vector (v?, r?, q?) from {(v

t

, r
t

, q
t

)}
p
↵

?
logn

t=1

such that (v?

+ r

?, (q� 1)r

?,v?

+ q?r?)
is good. Call a triplet (v + r, (q � 1)r,v + qr) to be good if no element in {hv + qr,�ii}L

i=1

can be written in two possible ways as sum of two elements, one each from {hv + r,�ii}L
i=1

and {h(q � 1)r,�ii}L
i=1

.
11: Initialize S

j

= � for j = 1, . . . , L

12: for i =
p
↵?

log n+ 1, 2, . . . ,
p
↵?

log n+ c0↵?k log n

k

do
13: if (v

i

+ r

i

, (q
i

� 1)r

i

,v
i

+ qr
i

) is matching good with respect to (v

?

+ r

?, (q � 1)r

?,v?

+

q?r?) (Call a triplet (v0
+ r

0, (q0 � 1)r

0,v0
+ q0r0) to be matching good w.r.t a good triplet

(v

?

+ r

?, (q? � 1)r

?,v?

+ q?r?) if (v0
+ r

0, (q0 � 1)r

0,v0
+ q0r0) and (r

0, r?, r0 + r

?

) are
good. ) then

14: Label the elements in {hv
i

,�ti}L
t=1

as described in Lemma 18
15: for j = 1, 2, . . . , L do
16: S

j

= S
j

[ {hv
i

,�ti} if label of hv
i

,�ti is hr?,�ji
17: end for
18: end if
19: end for
20: for j = 1, 2, . . . , L do
21: Aggregate the elements of S

j

and scale them by a factor of 1/c0k log(n/k).
22: Recover the vector �j by using basis pursuit algorithms (compressed sensing decoding).
23: end for
24: Return �1,�2, . . . ,�L.

Finally, for a given value of ↵? and L, let z? be the smallest integer that satisfies the following:

z? = min

n

z 2 Z : 1� L3

⇣

3

4z + 1

� 1

4z2 + 1

⌘

� 1p
↵?

o

. (C)

The Denoising Step. In each step of the algorithm, we sample a vector v uniformly at random from
{+1,�1}n, another vector r uniformly at random from G ⌘ {�2z?,�2z? + 1, . . . , 2z? � 1, 2z?}n
and a number q uniformly at random from {1, 2, . . . , 4z? + 1}. Now, we will use a batch of queries
corresponding to the vectors v + r, (q � 1)r and v + qr. We define a triplet of query vectors
(v

1

,v
2

,v
3

) to be good if for all triplets of indices i, j, k 2 [L] such that i, j, k are not identical,

hv
1

,�ii+ hv
2

,�ji 6= hv
3

,�ki.
We show that the query vector triplet (v + r, (q � 1)r,v+ qr) is good with at least some probability.
This implies if we choose O(log n) triplets of such query vectors, then at least one of the triplets are
good with probability 1�1/n. It turns out that, for a good triplet of vectors (v + r, (q�1)r,v+ qr),
we can obtain hv,�ii for all i 2 [L].

Furthermore, it follows from Lemma 2 that for a query vector v with integral entries, a batch size of
T > c

3

log n exp((�/✏)2/3) , for some constant c
3

> 0, is sufficient to recover the denoised query
responses hv,�1i, hv,�2i, . . . , hv,�Li for all the queries with probability at least 1� 1/poly(n).
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The Alignment Step. Let a particular good query vector triplet be (v?

+ r

?, (q?�1)r

?,v?

+q?r?).
From now, we will consider the L elements {hr?,�ii}L

i=1

to be labels and for a vector u, we will
associate a label with every element in {hu,�ii}L

i=1

. The labelling is correct if, for all i 2 [L], the
element labelled as hr?,�ii also corresponds to the same unknown vector �i. Notice that we can
label the elements {hv?,�ii}L

i=1

correctly because the triplet (v?

+ r

?, (q? � 1)r?,v?

+ q?r?) is
good. Consider another good query vector triplet (v0

+ r

0, (q0 � 1)r

0,v0
+ q0r0). This matches with

the earlier query triplet if additionally, the vector triplet (r0, r?, r0 + r

?

) is also good.

Such matching pair of good triplets exists, and can be found by random choice with some probability.
We show that, the matching good triplets allow us to do the alignment in the case of general L > 2.

At this point we would again like to appeal to the standard compressed sensing results. However
we need to show that the matching good vectors themselves form a matrix that has the required RIP
property. As our final step, we establish this fact.
Remark 3 (Refinement and adaptive queries). It is possible to have a sample complexity of

O
⇣

k(log n)2 log k exp
⇣

(✏
p
SNR)�2/3

⌘⌘

in Theorem 3, but with a probability of 1 � poly(k�1

).

Also it is possible to shave-off another log n factor from sample complexity if we can make the queries

adaptive.
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