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Abstract

This paper provides a unifying theoretical framework for stochastic optimization
algorithms by means of a latent stochastic variational problem. Using techniques
from stochastic control, the solution to the variational problem is shown to be equiv-
alent to that of a Forward Backward Stochastic Differential Equation (FBSDE).
By solving these equations, we recover a variety of existing adaptive stochastic
gradient descent methods. This framework establishes a direct connection between
stochastic optimization algorithms and a secondary latent inference problem on
gradients, where a prior measure on gradient observations determines the resulting
algorithm.

1 Introduction

Stochastic optimization algorithms are tools which are crucial to solving optimization problems
arising in machine learning. The initial motivation for these algorithms comes from the fact that
computing the gradients of a target loss function becomes increasingly difficult as the scale and
dimension of an optimization problem grows larger. In these large-scale optimization problems,
deterministic gradient-based optimization algorithms perform poorly due to the computational load
of repeatedly computing gradients. Stochastic optimization algorithms remedy this issue by replacing
exact gradients of the target loss with a computationally cheap gradient estimator, trading off noise in
gradient estimates for computational efficiency at each step.

To illustrate this idea, consider the problem of minimizing a generic risk function f : Rd ! R, taking
the form

f (x) =
1
|N| Â

z2N
`(x;z) , (1)

where ` : Rd ⇥Z ! R, and where we define the set N := {zi 2 Z , i = 1, . . . ,N} to be a set of
training points. In this definition, we interpret `(x;z) as the model loss at a single training point z 2N
for the parameters x 2 Rd .

When N and d are typically large, computing the gradients of f can be time-consuming. Knowing
this, let us consider the path of an optimization algorithm as given by {xt}t2N. Rather than computing
— f (xt) directly at each point of the optimization process, we may instead collect noisy samples of
gradients as

gt =
1

|Nm
t |

Â
z2Nm

t

—x`(xt ;z) , (2)

where for each t, Nm
t
✓N is an independent sample of size m from the set of training points. We

assume that m ⌧ N is chosen small enough so that gt can be computed at a significantly lower cost
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than — f (xt). Using the collection of noisy gradients {gt}t2N, stochastic optimization algorithms
construct an estimator c— f (xt) of the gradient — f (xt) in order to determine the next step xt+1 of the
optimizer.

This paper presents a theoretical framework which provides new perspectives on stochastic optimiza-
tion algorithms, and explores the implicit model assumptions that are made by existing ones. We
achieve this by extending the approach taken by Wibisono et al. (2016) to stochastic algorithms. The
key step in our approach is to interpret the task of optimization with a stochastic algorithm as a latent
variational problem. As a result, we can recover algorithms from this framework which have built-in
online learning properties. In particular, these algorithms use an online Bayesian filter on the stream
of noisy gradient samples, gt , to compute estimates of — f (xt). Under various model assumptions on
— f and g, we recover a number of common stochastic optimization algorithms.

1.1 Related Work

There is a rich literature on stochastic optimization algorithms as a consequence of their effectiveness
in machine learning applications. Each algorithm introduces its own variation on the gradient
estimator c— f (xt) as well as other features which can improve the speed of convergence to an
optimum. Amongst the simplest of these is stochastic gradient descent and its variants Robbins
and Monro (1951), which use an estimator based on single gradient samples. Others, such as Lucas
et al. (2018); Nesterov, use momentum and acceleration as features to enhance convergence, and can
be interpreted as using exponentially weighted moving averages as gradient estimators. Adaptive
gradient descent methods such as AdaGrad from Duchi et al. (2011) and Adam from Kingma and Ba
(2014) use similar moving average estimators, as well as dynamically updated normalization factors.
For a survey paper which covers many modern stochastic optimization methods, see Ruder (2016).

There exist a number of theoretical interpretations of various aspects of stochastic optimization. Cesa-
Bianchi et al. (2004) have shown a parallel between stochastic optimization and online learning. Some
previous related works, such as Gupta et al. (2017) provide a general model for adaptive methods,
generalizing the subgradient projection approach of Duchi et al. (2011). Aitchison (2018) use a
Bayesian model to explain the various features of gradient estimators used in stochastic optimization
algorithms . This paper differs from these works by naturally generating stochastic algorithms from a
variational principle, rather than attempting to explain their individual features. This work is most
similar to that of Wibisono et al. (2016) who provide a variational model for continuous deterministic
optimization algorithms.

There is a large body of research on continuous-time approximations to deterministic optimization
algorithms via dynamical systems (ODEs) (da Silva and Gazeau (2018); Krichene et al. (2015); Su
et al. (2014); Wilson et al. (2016)), as well as approximations to stochastic optimization algorithms by
stochastic differential equations (SDEs) (Krichene and Bartlett (2017); Mertikopoulos and Staudigl
(2018); Raginsky and Bouvrie (2012); Xu et al. (2018a,b)). In particular, the most similar of these
works, Raginsky and Bouvrie (2012); Xu et al. (2018a,b), study continuous approximations to
stochastic mirror descent by adding exogenous Brownian noise to the continuous dynamics derived
in Wibisono et al. (2016). This work differs by deriving continuous stochastic dynamics for optimizers
from a broader theoretical framework, rather than positing the continuous dynamics as-is. Although
the equations studied in these papers may resemble some of the results derived in this one, they
differ in a number of ways. Firstly, this paper finds that the source of randomness present in the
optimizer dynamics obtained in this paper are not generated by an exogenous source of noise, but are
in fact an explicit function of the randomness generated by observed stochastic gradients during the
optimization process. Another important difference is that the optimizer dynamics presented in this
paper make no use of the gradients of the objective function, — f (which is inaccessible to a stochastic
optimizer), and are only a function of the stream of stochastic gradients gt .

1.2 Contribution

To the author’s knowledge, this is the first paper to produce a theoretical model for stochastic
optimization based on a variational interpretation. This paper extends the continuous variational
framework Wibisono et al. (2016) to model stochastic optimization. From this model, we derive
optimality conditions in the form of a system of forward-backward stochastic differential equations
(FBSDEs), and provide bounds on the expected rate of convergence of the resulting optimization
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algorithm to the optimum. By discretizing solutions of the continuous system of equations, we
can recover a number of well-known stochastic optimization algorithms, demonstrating that these
algorithms can be obtained as solutions of the variational model under various assumptions on the
loss function, f (x), that is being minimized.

1.3 Paper Structure

In Section 2 we define a continuous-time surrogate model of stochastic optimization. Section 3
uses this model to motivate a stochastic variational problem over optimizers, in which we search
for stochastic optimization algorithms which achieve optimal average performance over a collection
of minimization problems. In Section 4 we show that the necessary and sufficient conditions for
optimality of the variational problem can be expressed as a system of Forward-Backward Stochastic
Differential Equations. Theorem 4.2 provides rates of convergence for the optimal algorithm to the
optimum of the minimization problem. Lastly, Section 5 recovers SGD, mirror descent, momentum,
and other optimization algorithms as discretizations of the continuous optimality equations derived in
Section 4 under various model assumptions. The proofs of the mathematical results of this paper are
found within the appendices.

2 A Statistical Model for Stochastic Optimization

Over the course of the section, we present a variational model for stochastic optimization. The
ultimate objective will be to construct a framework for measuring the average performance of an
algorithm over a random collection of optimization problems. We define random variables in an
ambient probability space (W,P,G= {Gt}t2[0,T ]), where Gt is a filtration which we will define at
a later point in this section. We assume that loss functions are drawn from a random variable
f : W !C

1(Rd). Each draw from the random variable satisfies f (x) 2 R for fixed x 2 Rd , and f is
assumed to be an almost-surely continuously differentiable in x. In addition, we make the technical
assumption that Ek— f (x)k2 < • for all x 2 Rd .

We define an optimizer X = (Xn
t
)t�0 as a controlled process satisfying X

n
t
2 Rd for all t � 0, with

initial condition X0 2Rd . The paths of X are assumed to be continuously differentiable in time so that
the dynamics of the optimizer may be written as dX

n
t
= nt dt, where nt 2 Rd represents the control,

where we use the superscript to express the explicit dependence of X
n on the control n . We may

also write the optimizer in its integral form as X
n
t
= X0 +

R
t

0 nu du, demonstrating that the optimizer
is entirely characterized by a pair (n ,X0) consisting of a control process n and an initial condition
X0. Using an explicit Euler discretization with step size e > 0, the optimizer can be approximately
represented through the update rule X

n
t+e ⇡ X

n
t
+ e nt . This leads to the interpretation of nt as the

(infinitesimal) step the algorithm takes at each point t during the optimization process.

In order to capture the essence of stochastic optimization, we construct our model so that optimizers
have restricted access to the gradients of the loss function f . Rather than being able to directly observe
— f over the path of X

n
t

, we assume that the algorithm may only use a noisy source of gradient samples,
modeled by a càdlàg semi-martingale1

g = (gt)t�0. As a simple motivating example, we can consider
the model gt = — f (Xn

t
)+xt , where xt is a white noise process. This particular model for the noisy

gradient process can be interpreted as consisting of observing — f (Xn
t
) plus an independent source of

noise. This concrete example will be useful to keep in mind to make sense of the results which we
present over the course of the paper.

To make the concept of information restriction mathematically rigorous, we restrict ourselves only to
optimizers X

n which are measurable with respect to the information generated by the noisy gradient
process g. To do this, we first define the global filtration G , as Gt = s

�
(gu)u2[0,t], f

�
as the sigma

algebra generated by the paths of g as well as the realizations of the loss surface f . The filtration Gt

is defined so that it contains the complete set of information generating the optimization problem
until time t.

1A càdlàg (continue à droite, limite à gauche) process is a continuous time process that is almost-surely
right-continuous with finite left limit at each point t. A semi-martingale is the sum of a process of finite variation
and a local martingale. For more information on continuous time stochastic processes and these definitions, see
the canonical text Jacod and Shiryaev (2013).
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Next, we define the coarser filtration Ft = s(gu)u2[0,t] ⇢Gt generated strictly by the paths of the noisy
gradient process. This filtration represents the total set of information available to the optimizer up
until time t. This allows us to formally restrict the flow of information to the algorithm by restricting
ourselves to optimizers which are adapted to Ft . More precisely, we say that the optimizer’s control
n is admissible if

n 2 A :=
⇢

w = (wt)t�0 : w is F -adapted , E
Z

T

0
kwtk2+k— f (Xw

t
)k2

dt < •
�

. (3)

The set of optimizers generated by A can be interpreted as the set of optimizers which may only use
the source of noisy gradients, which have bounded expected travel distance and have square-integrable
gradients over their path.

3 The Optimizer’s Variational Problem

Having defined the set of admissible optimization algorithms, we set out to select those which are
optimal in an appropriate sense. We proceed similarly to Wibisono et al. (2016), by proposing an
objective functional which measures the performance of the optimizer over a finite time period.

The motivation for the optimizer’s performance metric comes from a physical interpretation of the
optimization process. We can think of our optimization process as a particle traveling through a
potential field define by the target loss function f . As the particle travels through the potential field, it
may either gain or lose momentum depending on its location and velocity, which will in turn affect
the particle’s trajectory. Naturally, we may seek to find the path of a particle which reaches the
optimum of the loss function while minimizing the total amount of kinetic and potential energy that
is spent. We therefore turn to the Lagrangian interpretation of classical mechanics, which provides a
framework for obtaining solutions to this problem. Over the remainder of this section, we lay out the
Lagrangian formalism for the optimization problem we defined in Section 2.

To define a notion of energy in the optimization process, we provide a measure of distance in the
parameter space. We use the Bregman Divergence as the measure of distance within our parameter
space, which can embed additional information about the geometry of the optimization problem. The
Bregman divergence, Dh, is defined as

Dh(y,x) = h(y)�h(x)�h—h(x),y� xi (4)

where h : Rd !R is a strictly convex function satisfying h 2C
2. We assume here that the gradients of

h are L-Lipschitz smooth for a fixed constant L > 0. The choice of h determines the way we measure
distance, and is typically chosen so that it mimics features of the loss function f . In particular, this
quantity plays a central role in mirror descent and non-linear sub-gradient algorithms. For more
information on this connection and on Bregman Divergence, see Nemirovsky and Yudin (1983)
and Beck and Teboulle (2003).

We define the total energy in our problem as the kinetic energy, accumulated through the movement
of the optimizer, and the potential energy generated by the loss function f . Under the assumption that
f almost surely admits a global minimum x

? = argmin
x2Rd f (x), we may represent the total energy

via the Bregman Lagrangian as

L (t,X ,n) = e
gt (e

at Dh

�
X + e

�at n ,X
�

| {z }
Kinetic Energy

�e
bt ( f (X)� f (x?))
| {z }

Potential Energy

) , (5)

for fixed inputs (t,X ,n), and where we assume that g,a,b : R+ ! R are deterministic, and satisfy
g,a,b 2 C

1. The functions g,a,b can be interpreted as hyperparameters which tune the energy
present at any state of the optimization process. An important property to note is that the Lagrangian
is itself a random variable due to the randomness introduced by the latent loss function f .

The objective is then to find an optimizer within the admissible set A which can get close to the
minimum x

? = min
x2Rd f (x), while simultaneously minimizing the energy cost over a finite time

period [0,T ]. The approach taken in classical mechanics and in Wibisono et al. (2016) fixes the
endpoint of the optimizer at x

?. Since we assume that the function f is not directly visible to our
optimizer, it is not possible to add a constraint of this type that will hold almost surely. Instead, we
introduce a soft constraint which penalizes the algorithm’s endpoint in proportion to its distance to
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the global minimum, f (XT )� f (x?). As such, we define the expected action functional J : A ! R
as

J (n) = E
h Z

T

0
L (t,Xn

t
,nt)dt

| {z }
Total Path Energy

+e
dT

�
f (Xn

T
)� f (x?)

�

| {z }
Soft End Point Constraint

i
, (6)

where dT 2C
1 is assumed to be an additional model hyperparameter, which controls the strength of

the soft constraint.

With this definition in place, the objective will be to select amongst admissible optimizers for those
which minimize the expected action. Hence, we seek optimizers which solve the stochastic variational
problem

n⇤ = arg min
n2A

J (n) . (7)

Remark 1. Note that the variational problem (7) is identical to the one with Lagrangian

L̃ (t,X ,n) = e
gt (eat Dh

�
X + e

�at n ,X
�
� e

bt f (X)) (8)

and terminal penalty e
dT f (Xn

T
), since they differ by constants independent of n . Because of this, the

results presented in Section 4 also hold the case where x
?

and f (x?) do not exist or are infinite.

4 Critical Points of the Expected Action Functional

In order to solve the variational problem (7), we make use techniques from the calculus of variations
and infinite dimensional convex analysis to provide optimality conditions for the variational prob-
lem (7). To address issues of information restriction, we rely on the stochastic control techniques
developed by Casgrain and Jaimungal (2018a,b,c).

The approach we take relies on the fact that a necessary condition for the optimality of a Gâteaux
differentiable functional J is that its Gâteaux derivative vanishes in all directions. Computing the
Gâteaux derivative of J , we find an equivalence between the Gâteaux derivative vanishing and a
system of Forward-Backward Stochastic Differential Equations (FBSDEs), yielding a generalization
of the Euler-Lagrange equations to the context of our optimization problem. The precise result is
stated in Theorem 4.1 below.
Theorem 4.1 (Stochastic Euler-Lagrange Equation). A control n⇤ 2 A is a critical point of J if

and only if (( ∂L

∂n ),M ) is a solution to the system of FBSDEs,

d

✓
∂L

∂n

◆

t

= E
✓

∂L

∂X

◆

t

���Ft

�
dt +dMt 8t < T ,

✓
∂L

∂n

◆

T

=�e
dT E

h
— f (XT )

���FT

i
, (9)

where we define the processes

✓
∂L

∂X

◆

t

= e
gt+at(—h(Xn⇤

t
+ e

�at n⇤
t
)�—h(Xn⇤

t
)� e

�at —2
h(Xn⇤

t
)n⇤

t
� e

bt — f (Xn⇤
t
)) (10)

✓
∂L

∂n

◆

t

= e
gt

⇣
—h(Xn⇤

t
+ e

�at n⇤
t
)�—h(Xn⇤

t
)
⌘
, (11)

and where the process M = (Mt)t2[0,T ] is an F -adapted martingale. As a consequence, if the

solution to this FBSDE is unique, then it is the unique critical point of the functional J up to null

sets.

Proof. See Appendix C

Theorem 4.1 presents an analogue of the Euler-Lagrange equation with free terminal boundary. Rather
than obtaining an ODE as in the classical result, we obtain an FBSDE2, with backwards process

2For a background on FBSDEs, we point readers to Carmona (2016); Ma et al. (1999); Pardoux and Tang
(1999). At a high level, the solution to an FBSDE of the form (9) consists of a pair of processes (∂L/∂n,M ),
which simultaneously satisfy the dynamics and the boundary condition of (9). Intuitively, the martingale part of
the solution can be interpreted as a random process which guides (∂L/∂X)t towards the boundary condition at
time T .
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(∂L/∂n)t , and forward state processes E[(∂L/∂X)t |Ft ],
R

t

0 knuk du and X
n⇤
t

. We can also interpret the
dynamics of equation (9) as being the filtered optimal dynamics of (Wibisono et al., 2016, Equation
2.3), E[(∂L/∂X)t |Ft ], plus the increments of data-dependent martingale Mt , with mechanics similar
to that of the ‘innovations process’ of filtering theory. This martingale term should not be interpreted
as a source of noise, but as an explicit function of the data, as is evident from its explicit form

Mt = E
Z

T

0

✓
∂L

∂X

◆

u

du� e
dT — f (XT )

���Ft

�
. (12)

A feature of equation (9), is that optimality relies on the projection of (∂L/∂X)t onto Ft . Thus,
the optimization algorithm makes use of past noisy gradient observations in order to make local
gradient predictions. Local gradient predictions are updated using a Bayesian mechanism, where
the prior model for — f is conditioned with the noisy gradient information contained in Ft . This
demonstrates that the solution depends only on the gradients of f along the path of Xt and no higher
order properties.

4.1 Expected Rates of Convergence of the Continuous Algorithm

Using the dynamics (9) we obtain a bound on the rate of convergence of the continuous optimization
algorithm that is analogous to Wibisono et al. (2016, Theorem 2.1). We introduce the Lyapunov
energy functional

Et = Dh(x
?,Xn⇤

t
+ e

�at nt)+ e
bt

⇣
f (Xn⇤

t
)� f (x?)

⌘
� [—h(Xn⇤

+ e
�at n),Xn⇤

+ e
�at n ]t , (13)

where we define x
? to be a global minimum of f . Under additional model assumptions, and by

showing that this quantity is a super-martingale with respect to the filtration F , we obtain an upper
bound for the expected rate of convergence from Xt towards the minimum.
Theorem 4.2 (Convergence Rate). Assume that the function f is almost surely convex and that

the scaling conditions ġt = e
at and ḃt  e

at hold. Moreover, assume that in addition to h having

L-Lipschitz smooth gradients, h is also µ-strongly-convex with µ > 0. Define x
? = argmin

x2Rd f (x)
to be a global minimum of f . If x

?
exists almost surely, the optimizer defined by FBSDE (9) satisfies

E [ f (Xt)� f (x?)] = O

⇣
e
�bt max

�
1 ,E

⇥
[e�gt M ]t

⇤ ⌘
, (14)

where [e�gt M ]
t

represents the quadratic variation of the process e
�gt Mt , where M is the martingale

part of the solution defined in Theorem 4.1.

Proof. See Appendix D.

We may interpret the term E [ [e�gt M ]t ] as a penalty on the rate of convergence, which scales with
the amount of noise present in our gradient observations. To see this, note that if there is no noise
in our gradient observations, we obtain that Ft = Gt , and hence Mt ⌘ 0, which recovers the exact
deterministic dynamics of Wibisono et al. (2016) and the optimal convergence rate O(e�bt ). If
the noise in our gradient estimates is large, we can expect E [ [e�g

M ]t ] to grow at quickly and to
counteract the shrinking effects of e

�bt . Thus, in the case of a convex objective function f , any
presence of gradient noise will proportionally hurt rate of convergence to an optimum. We also point
out, that there will be a nontrivial dependence of E [ [e�g

M ]t ] on all model hyperparameters, the
specific definition of the random variable f , and the model for the noisy gradient stream, (gt)t�0.
Remark 2. We do not assume that the conditions of Theorem 4.2 carry throughout the remainder of

the paper. In particular, Sections 5 study models which may not guarantee almost-sure convexity of

the latent loss function.

5 Recovering Discrete Optimization Algorithms

In this section, we use the optimality equations of Theorem 4.1 to produce discrete stochastic
optimization algorithms. The procedure we take is as follows. We first define a model for the processes
(— f (Xt),gt)t2[0,T ]. Second, we solve the optimality FBSDE (9) in closed form or approximate the
solution via the first-order singular perturbation (FOSP) technique, as described in Appendix A.
Lastly, we discretize the solutions with a simple Forward-Euler scheme in order to recover discrete
algorithms.
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Over the course of Sections 5.1 and 5.2, we show that various simple models for (— f (Xt),gt)t2[0,T ]
and different specifications of h produce many well-known stochastic optimization algorithms. These
establish the conditions, in the context of the variational problem of Section 2, under which each of
these algorithms are optimal. As a consequence, this allows us to understand the prior assumptions
which these algorithms make on the gradients of the objective function they are trying to minimize,
and the way noise is introduced in the sampling of stochastic gradients, (gt)t�0.

5.1 Stochastic Gradient Descent and Stochastic Mirror Descent

Here we propose a Gaussian model on gradients which loosely represents the behavior of mini-batch
stochastic gradient descent with a training set of size n and mini-batches of size m. By specifying
a martingale model for — f (Xt), we recover the stochastic gradient descent and stochastic mirror
descent algorithms as solutions to the variational problem described in Section 2.

Let us assume that — f (Xt) = sW
f

t , where s > 0 and (W f

t )t�0 is a Brownian motion. Next, assume
that the noisy gradients samples obtained from mini-batches over the course of the optimization,
evolve according to the model gt = s(W f

t +rW
e

t
), where r =

p
(n�m)/m and W

e is an independent
copy of W

f

t . Here, we choose r so that V[gt ] = (n/m)V[— f (Xt)] = O(m�1), which allows the variance
to scale in m and n as it does with mini-batches.

Using symmetry, we obtain the trivial solution to the gradient filter, E[— f (Xt)|Ft ] = (1+r2)�1
gt ,

implying that the best estimate of the gradient at the point Xt will be the most recent mini-batch
sample observed. re-scaled by a constant depending on n and m. Using this expression for the filter,
we obtain the following result.
Proposition 5.1. The FOSP approximation to the solution of the optimality equations (9) can be

expressed as

dXt = e
at

⇣
—h

⇤ �—h(Xt)� F̃t(1+r2)�1
gt

�
�X

n⇤
t

⌘
dt , (15)

where h
⇤

is the convex dual of h and where F̃t = e
�gt (F0 +

R
t

0 e
au+bu+gu du) is a deterministic

learning rate with F0 = e
dT �

R
T

0 e
au+bu+gu du. When h has the form h(x) = x

|
Mx for a symmetric

positive-definite matrix M, the FOSP approximation is exact, and (15) is the exact solution to

the optimality FBSDE (9). The martingale portion of the solution to (9) can be expressed as

Mt = M0 � (1+r2)�1 R t

0 e
au+bu+gu dgu.

Proof. See Appendix E.1.
To obtain a discrete optimization algorithm from the result of 5.1, we employ a forward-Euler
discretization of the ODE (15) on the finite mesh T = {t0 = 0 , tk+1 = tk + e

�at
k : k 2 N}. This

discretization results in the update rule
Xtk+1 = —h

⇤ �—h(Xtk
)� F̃tk

gtk

�
, (16)

corresponding exactly to mirror descent (e.g. see Beck and Teboulle (2003)) using the noisy mini-
batch gradients gt and a time-varying learning rate F̃tk

. Moreover, setting h(x) = 1
2kxk2, we recover

the update rule Xtk+1 �Xtk
= �F̃tk

gtk
, exactly corresponding to the mini-batch SGD with a time-

dependent learning rate.

This derivation demonstrates that the solution to the variational problem described in Section 2, under
the assumption of a Gaussian model for the evolution of gradients, recovers mirror descent and SGD.
In particular, the martingale gradient model proposed in this section can be roughly interpreted as
assuming that gradients behave as random walks over the path of the optimizer. Moreover, the optimal
gradient filter E[— f (Xt)|Ft ] = (1+r2)�1

gt shows that, for the algorithm to be optimal, mini-batch
gradients should be re-scaled in proportion to (1+r2)�1 = m/n.

5.2 Kalman Gradient Descent and Momentum Methods

Using a linear state-space model for gradients, we can recover both the Kalman Gradient Descent
algorithm of Vuckovic (2018) and momentum-based optimization methods of Polyak (1964). We
assume that each component of — f (Xt) = (—i f (Xt))d

i=1 is modeled independently as a linear dif-
fusive process. Specifically, we assume that there exist processes yi = (yi,t)t�0 so that for each i,
—i f (Xt) = b

|
yi,t , where yi,t 2 Rd̃ is the solution to the linear SDE dyi,t =�Ayi,tdt +LdWi,t . In partic-

ular, we the notation ŷi, j,t to refer to element (i, j) of ŷ 2 Rd⇥d̃ , and use the notation ŷ·, j,t = (ŷi, j,t)d

i=1.
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We assume here that A,L 2 Rd̃⇥d̃ are positive definite matrices and each of the Wi = (Wi,t)t�0 are
independent d̃-dimensional Brownian Motions.

Next, we assume that we may write each element of a noisy gradient process as gi,t = b
|
yi,·,t +sxi,t ,

where s > 0 and where xi = (xi,t)t�0 are independent white noise processes. Noting that
E[—i f (Xt+h)|Ft ] = b

|
e
�Ah

yi,t , we find that this model implicitly assumes that gradients are ex-
pected decrease in exponentially in magnitude as a function of time, at a rate determined by the
eigenvalues of the matrix A. The parameters s and L can be interpreted as controlling the scale of the
noise within the observation and signal processes.

Using this model, we obtain that the filter can be expressed as E[—i f (Xt)|Ft ] = b
|
ŷi,t , where ŷi,t =

E[yi,t |Ft ]. The process ŷi,t is expressed as the solution to the Kalman-Bucy3 filtering equations

dŷi,t =�Aŷi,t dt +s�1
P̄t bdB̂i,t , ˙̄

P =�AP̄t � P̄
|
t A�s�2

P̄tbb
|
P̄
|
t +LL

| , (17)

with the initial conditions ŷi,0 = 0 and P̄0 = E[yi,0y
|
i,0], and where we define innovations process

dB̂i,t = s�1 (gi,t �b
|
ŷi,t) dt with the property that each B̂i is an independent F -adapted Brownian

motion.

Inserting the linear state space model and its filter into the optimality equations (9) we obtain the
following result.

Proposition 5.2 (State-Space Model Solution to the FOSP). Assume that the gradient state-space

model described above holds. The FOSP approximation to the solution of the optimality equations (9)
can be expressed as

dXt = e
at(—h

⇤(—h(Xt)�Âd̃

j=1F̃ j,t ŷ·, j,t)�X
n⇤
t
)dt , (18)

where F̃t = e
�gt (b|e

�AtF0+
R

t

0 e
au+bu+gub

|
e
�A(t�u)

du) 2Rd̃
is a deterministic learning rate, where

e
A

represents the matrix exponential, and where F0 = e
dT e

AT �
R

T

0 e
au+bu+gue

Au
du can be chosen to

have arbitrarily large eigenvalues by scaling dT . The martingale portion of the solution of (9) can be

expressed as Mt = M0 �s�1 R t

0 e
au+bu+gub

|
e
�A(t�u)

P̄ubdB̂u.

Proof. See Appendix E.2

5.2.1 Kalman Gradient Descent

In order to recover Kalman Gradient Descent, we discretize the processes X
n⇤
t

and ŷ over the finite
mesh T , defined in equation (18). Applying a Forward-Euler-Maruyama discretization of (18) and
the filtering equations (17), we obtain the discrete dynamics

yi,tk+1 = (I � e
�at

k A)yi,tk +Le
�at wi,k , gi,tk = b

|
yi,tk +se

�at xi,k , (19)

where each of the xi,k and wi,k are standard Gaussian random variables of appropriate size. The
filter ŷi,k = E[ytk

|{gt
k0}

k

k0=1] for the discrete equations can be written as the solution to the discrete
Kalman filtering equations, provided in Appendix B. Discretizing the process X

n⇤ over T with the
Forward-Euler scheme, we obtain discrete dynamics for the optimizer in terms of the Kalman Filter ŷ,
as

Xtk+1 = —h
⇤
⇣

—h(Xtk
)�Âd̃

j=1F̃ j,tk ŷ·, j,k

⌘
, (20)

yielding a generalized version of Kalman gradient descent of Vuckovic (2018) with d̃ states for each
gradient element. Setting h(x) = 1

2kxk2, d̃ = 1 and b = 1 recovers the original Kalman gradient
descent algorithm with a time-varying learning rate.

Just as in Section 5.1, we interpret each gtk
as being a mini-batch gradient, as with equation (2). The

algorithm (20) computes a Kalman filter from these noisy mini-batch observations and uses it to
update the optimizer’s position.

3For information on continuous time filtering and the Kalman-Bucy filter we refer the reader to the text of
Bensoussan (2004) or the lecture notes of Van Handel (2007).
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5.2.2 Momentum and Generalized Momentum Methods

By considering the asymptotic behavior of the Kalman gradient descent method described in Sec-
tion 5.2.1, we recover a generalized version of momentum gradient descent methods, which includes
mirror descent behavior, as well as multiple momentum states. Let us assume that at = a0 re-
mains constant in time. Then, using the asymptotic update rule for the Kalman filter, as shown in
Proposition B.2, and equation (20), we obtain the update rule

Xtk+1 = —h
⇤
⇣

—h(Xtk
)�Âd̃

j=1F̃ j,tk ŷ·, j,k

⌘
, ŷi,·,k =

�
Ã�K•b

|
Ã
�

ŷi,·,k +K•gi,k , (21)

where Ã= I�e
�a0A and where K• 2Rd̃ is defined in the statement of the Proposition B.2. This yields

a generalized momentum update rule where we keep track of d̃ momentum states with (ŷi, j,k)d̃

j=1,
and update its position using a linear update rule. This algorithm can be seen as being most similar
to the Aggregated Momentum technique of Lucas et al. (2018), which also keeps track of multiple
momentum states which decay at different rates.

Under the special case where d̃ = 1, b = 1, and h = 1
2kxk2 we recover the exact momentum algorithm

update rule of Polyak (1964) as

Xtk+1 �Xtk
=�F̃tk

ŷk , ŷi,k = p1 ŷk + p2 gtk
, (22)

where we have a scalar learning rate F̃tk
, where p1 = Ã�K•b

|
Ã, p2 = K• are positive scalars, and

where gtk
are mini-batch draws from the gradient as in equation 2.

The recovery of the momentum algorithm of Polyak (1964) has some interesting consequences. Since
p1 and p2 are functions of the model parameters s ,A and a0, we obtain a direct relationship between
the optimal choice for the momentum model parameters, the assumed scale of gradient noise s ,L > 0
and the assumed expected rate of decay of gradients, as given by e

�At . This result gives insight as
to how momentum parameters should be chosen in terms of their prior beliefs on the optimization
problem.

6 Discussion and Future Research Directions

Over the course of the paper we present a variational framework on optimizers, which interprets the
task of stochastic optimization as an inference problem on a latent surface that we wish to optimize.
By solving a variational problem over continuous optimizers with asymmetric information, we find
that optimal algorithms should satisfy a system of FBSDEs projected onto the filtration F generated
by the noisy observations of the latent process.

By solving these FBSDEs and obtaining continuous-time optimizers, we find a direct relationship
between the measure assigned to the latent surface and its relationship to how data is observed.
In particular, assigning simple prior models to the pair of processes (— f (Xt),gt)t2[0,T ], recovers
a number of well-known and widely used optimization algorithms. The fact that this framework
can naturally recover these algorithms begs further study. In particular, it is still an open question
whether it is possible to recover other stochastic algorithms via this framework, particularly those
with second-order scaling adjustments such as ADAM or AdaGrad.

From a more technical perspective, the intent is to further explore properties of the optimization model
presented here and the form of the algorithms it suggests. In particular, the optimality FBSDE 9 is
nonlinear, high-dimensional and intractable in general, making it difficult to use existing FBSDE
approximation techniques, so new tools may need to be developed to understand the full extent of its
behavior.

Lastly, numerical work on the algorithms generated by this framework can provide some insights
as to which prior gradient models work well when discretized. The extension of simplectic and
quasi-simplectic stochastic integrators applied to the BSDEs and SDEs that appear in this paper also
has the potential for interesting future work.
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