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We thank all reviewers for the very important comments and suggestions for improving our paper.

The control problems in our setting may seem more basic than what is typically considered from a learning perspective.
However, these are exactly the challenge problems that have occupied the control theory community for many decades
and are far from being satisfactorily solved. For example: Tesla autopilot disclaims responsibility for turning safely
in high speed; aircraft control needs to maintain very small angles-of-attack to avoid dangerous stalling; and in the
recent DARPA challenge on robotics, all teams failed to robustly balance humanoid robots. These are direct results of
failing to ensure large enough region of attraction when controlling nonlinear systems (at the scale of examples in our
paper, with known dynamics). It is often claimed that these core nonlinear control problems can not benefit from recent
progress in learning-based approaches, because of the need for precise global optimization. We counter this belief by
showing that deep learning can deliver significantly better solutions than known methods, with provable guarantee. We
are excited to see the power of neural networks in precisely capturing the nonconvex landscapes, and that constraint
solving algorithms can rigorously verify global properties of these networks at the scale relevant to practical control.

Our approach is novel not just in the use of neural networks, but also in designing the combination of non-convex
optimization methods to deliver precise global search required by the Lyapunov methods. Reviewer 2 questions the
difference with [21]. Please note that [21] only estimates the ROA for a given controller, which is significantly simpler
than our goal of designing controllers. Despite the easier goal, [21] only approximately models the ROA, treating it
as a classification problem. There was no attempt in ensuring global properties of the networks. Moreover, [21] only
works on the well-studied inverted pendulum example (on which we have reported a similarly-sized ROA, but with
provable guarantee), and does not work on the other more complex examples in our paper. For designing controllers,
existing methods (LQR and SOS) always rely on reduction to convex problems. For instance, SOS methods avoid
full-scale global optimization by using polynomials that are positive-definite by design, at the cost of severely limiting
the landscapes that can be captured. Our approach is the first that shows feasibility of using non-convex optimization
methods and generic function approximators to rigorously satisfy the Lyapunov conditions. The control designs are
strictly better than known solutions, for being more robust without using more complex control policy classes.

We agree with all reviewers that the numerical details of the experiments can be moved to the Appendix. We included
them because the use of neural networks is very nonstandard in this setting, and we wish to give complete details of
the learned results for easy validation of their correctness. We will expand explanations of the background and move
algorithmic descriptions and more experiment statistics from the Appendix to the main sections.

Reviewer 1: Will Lyapunov risk as cost function yield robust feedback controllers even in nonsmooth cases?
Very likely. In ongoing work we see benefits of minimizing Lyapunov risk in actor-critic RL, when the Lyapunov risk
and policy gradients do not misguide each other. Do ReLU networks work in practice? Because of non-smoothness
of ReLU, direct encoding does not work for the Lie derivatives. Approximation is possible, but we need to appropriately
bound the encoding error. Note that the networks are small, and the choice of nonlinear unit does not affect training
speed much. Have you tried more complex systems with learned dynamics model or with uncertainty? We
can extend the examples with bounded noise and compare with LQ-Gaussian methods, although rigorous claims
require extending the theory to systems with differential inclusions. Please provide learning curves for the various
experiments. How often does it fail? Failure happens when verification takes too long. For instance, we can extend
the humanoid model to more links; then the Lyapunov risk can still be minimized well, but the constraint solving time
can increase exponentially, reflecting the inherent complexity of the problem. Is there a connection to Contraction
Theory? Definitely. We see exciting possibilities for contraction theory based on neural network Lyapunov functions.

Reviewer 2: Is the contribution simply in using a NN instead of other function approximators? No. See Line
13 above. Explain better the non-linear constraint problem and delta-complete algorithms. We will add more
background. You could consider the constraints as defining a multivariate nonlinear cost function, and the constraint
solving problem is about finding its global minimum, which is NP-hard. Clearer presentation of the experimental
setting. Yes, we will move more details to the main text. State more clearly: known dynamics and small NN. Yes,
we will add to Line 19 in the introduction. Reformulate bold claims. Yes, we will remove speculations and focus
on technical claims. The final region of attraction does not cover the whole state space. This means that you
cannot guarantee that the Lyapunov stability condition holds everywhere. Incorrect. The Lyapunov conditions are
guaranteed to hold everywhere within the entire red circle in the graphs (it is why the computation is hard). Falsification
terminates for that entire region. Within this region, the ROA also needs to be fully contained in some level set of the
Lyapunov function (Def 7). Thus, the ROA is always a proper subset of the fully-validated larger region.

Reviewer 3: Commentary about how that cost differs from other approaches would be more immediately useful
to the reader. Yes, we will move Table 1 from the Appendix to the main text and add more columns. I would also
have loved to see validation on a real physical system with real-world complexity. Yes, we can add evaluation of
the control designs in physical wheeled robots. More discussion of the limitation of the approach. Yes, we will
rewrite the introduction to improve clarity, by further elaborating on some points mentioned in this rebuttal.



