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Abstract

We consider a generic empirical composition optimization problem, where there are
empirical averages present both outside and inside nonlinear loss functions. Such
a problem is of interest in various machine learning applications, and cannot be
directly solved by standard methods such as stochastic gradient descent. We take a
novel approach to solving this problem by reformulating the original minimization
objective into an equivalent min-max objective, which brings out all the empirical
averages that are originally inside the nonlinear loss functions. We exploit the
rich structures of the reformulated problem and develop a stochastic primal-dual
algorithm, SVRPDA-I, to solve the problem efficiently. We carry out extensive
theoretical analysis of the proposed algorithm, obtaining the convergence rate, the
computation complexity and the storage complexity. In particular, the algorithm is
shown to converge at a linear rate when the problem is strongly convex. Moreover,
we also develop an approximate version of the algorithm, named SVRPDA-II,
which further reduces the memory requirement. Finally, we evaluate our proposed
algorithms on several real-world benchmarks, and experimental results show that
the proposed algorithms significantly outperform existing techniques.

1 Introduction

In this paper, we consider the following regularized empirical composition optimization problem:

min
θ

1

nX

nX−1∑
i=0

φi

(
1

nYi

nYi−1∑
j=0

fθ(xi, yij)

)
+ g(θ), (1)

where (xi, yij) ∈ Rmx × Rmy is the (i, j)-th data sample, fθ : Rmx × Rmy → R` is a function
parameterized by θ ∈ Rd, φi : R` → R+ is a convex merit function, which measures a certain loss of
the parametric function fθ, and g(θ) is a µ-strongly convex regularization term.

Problems of the form (1) widely appear in many machine learning applications such as reinforcement
learning [5, 3, 2, 13], unsupervised sequence classification [12, 21] and risk-averse learning [15, 18,
9, 10, 19] — see our detailed discussion in Section 2. Note that the cost function (1) has an empirical
average (over xi) outside the (nonlinear) merit function φi(·) and an empirical average (over yij)
inside the merit function, which makes it different from the empirical risk minimization problems
that are common in machine learning [17]. Problem (1) can be understood as a generalized version
of the one considered in [9, 10].3 In these prior works, yij and nYi are assumed to be independent of
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i and fθ is only a function of yj so that problem (1) can be reduced to the following special case:

min
θ

1

nX

nX−1∑
i=0

φi

(
1

nY

nY −1∑
j=0

fθ(yj)

)
. (2)

Our more general problem formulation (1) encompasses wider applications (see Section 2). Fur-
thermore, different from [2, 19, 18], we focus on the finite sample setting, where we have empirical
averages (instead of expectations) in (1). As we shall see below, the finite-sum structures allows us to
develop efficient stochastic gradient methods that converges at linear rate.

While problem (1) is important in many machine learning applications, there are several key chal-
lenges in solving it efficiently. First, the number of samples (i.e., nX and nYi) could be extremely
large: they could be larger than one million or even one billion. Therefore, it is unrealistic to use
batch gradient descent algorithm to solve the problem, which requires going over all the data samples
at each gradient update step. Moreover, since there is an empirical average inside the nonlinear merit
function φi(·), it is not possible to directly apply the classical stochastic gradient descent (SGD) algo-
rithm. This is because sampling from both empirical averages outside and inside φi(·) simultaneously
would make the stochastic gradients intrinsically biased (see Appendix A for a discussion).

To address these challenges, in this paper, we first reformulate the original problem (1) into an
equivalent saddle point problem (i.e., min-max problem), which brings out all the empirical averages
inside φi(·) and exhibits useful dual decomposition and finite-sum structures (Section 3.1). To fully
exploit these properties, we develop a stochastic primal-dual algorithm that alternates between a dual
step of stochastic variance reduced coordinate ascent and a primal step of stochastic variance reduced
gradient descent (Section 3.2). In particular, we develop a novel variance reduced stochastic gradient
estimator for the primal step, which achieves better variance reduction with low complexity (Section
3.3). We derive the convergence rate, the finite-time complexity bound, and the storage complexity of
our proposed algorithm (Section 4). In particular, it is shown that the proposed algorithms converge at
a linear rate when the problem is strongly convex. Moreover, we also develop an approximate version
of the algorithm that further reduces the storage complexity without much performance degradation
in experiments. We evaluate the performance of our algorithms on several real-world benchmarks,
where the experimental results show that they significantly outperform existing methods (Section 5).
Finally, we discuss related works in Section 6 and conclude our paper in Section 7.

2 Motivation and Applications

To motivate our composition optimization problem (1), we discuss several important machine learning
applications where cost functions of the form (1) arise naturally.

Unsupervised sequence classification: Developing algorithms that can learn classifiers from unla-
beled data could benefit many machine learning systems, which could save a huge amount of human
labeling costs. In [12, 21], the authors proposed such unsupervised learning algorithms by exploiting
the sequential output structures. The developed algorithms are applied to optical character recognition
(OCR) problems and automatic speech recognition (ASR) problems. In these works, the learning
algorithms seek to learn a sequence classifier by optimizing the empirical output distribution match
(Empirical-ODM) cost, which is in the following form (written in our notation):

min
θ

{
−
nX−1∑
i=0

pLM(xi) log

(
1

nY

nY −1∑
j=0

fθ(xi, yj)

)}
, (3)

where pLM is a known language model (LM) that describes the distribution of output sequence (e.g.,
xi represents different n-grams), and fθ is a functional of the sequence classifier to be learned, with
θ being its model parameter vector. The key idea is to learn the classifier so that its predicted output
n-gram distribution is close to the prior n-gram distribution pLM (see [12, 21] for more details).
The cost function (3) can be viewed as a special case of (1) by setting nYi = nY , yij = yj and
φi(u) = −pLM (xi) log(u). Note that the formulation (2) cannot be directly used here, because of
the dependency of the function fθ on both xi and yj .

Risk-averse learning: Another application where (1) arises naturally is the risk-averse learning
problem, which is common in finance [15, 18, 9, 10, 19, 20]. Let xi ∈ Rd be a vector consisting of
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the rewards from d assets at the i-th instance, where 0 ≤ i ≤ n − 1. The objective in risk-averse
learning is to find the optimal weights of the d assets so that the average returns are maximized while
the risk is minimized. It could be formulated as the following optimization problem:

min
θ
− 1

n

n−1∑
i=0

〈xi, θ〉+
1

n

n−1∑
i=0

(
〈xi, θ〉−

1

n

n−1∑
j=0

〈xj , θ〉
)2

, (4)

where θ ∈ Rd denotes the weight vector. The objective function in (4) seeks a tradeoff between the
mean (the first term) and the variance (the second term). It can be understood as a special case of (2)
(which is a further special case of (1)) by making the following identifications:

nX=nY =n, yi≡xi, fθ(yj)=[θT, −〈yj , θ〉]T, φi(u)=(〈xi, u0:d−1〉+ud)2−〈xi, u0:d−1〉, (5)

where u0:d−1 denotes the subvector constructed from the first d elements of u, and ud denotes the
d-th element. An alternative yet simpler way of dealing with (4) is to treat the second term in (4) as a
special case of (1) by setting

nX = nYi = n, yij ≡ xj , fθ(xi, yij) = 〈xi − yij , θ〉, φi(u) = u2, u ∈ R. (6)

In addition, we observe that the first term in (4) is in standard empirical risk minimization form,
which can be dealt with in a straightforward manner. This second formulation leads to algorithms
with lower complexity due to the lower dimension of the functions: ` = 1 instead of ` = d+ 1 in the
first formulation. Therefore, we will adopt this formulation in our experiment section (Section 5).

Other applications: Cost functions of the form (1) also appear in reinforcement learning [5, 2, 3]
and other applications [18]. In Appendix D, we demonstrate its applications in policy evaluation.

3 Algorithms

3.1 Saddle point formulation

Recall from (1) that there is an empirical average inside each (nonlinear) merit function φi(·), which
prevents the direct application of stochastic gradient descent to (1) due to the inherent bias (see
Appendix A for more discussions). Nevertheless, we will show that minimizing the original cost
function (1) can be transformed into an equivalent saddle point problem, which brings out all the
empirical averages inside φi(·). In what follows, we will use the machinery of convex conjugate
functions [14]. For a function ψ : R` → R, its convex conjugate function ψ∗ : R` → R is defined as
ψ∗(y) = supx∈R`(〈x, y〉−ψ(x)). Under certain mild conditions on ψ(x) [14], one can also express
ψ(x) as a functional of its conjugate function: ψ(x) = supy∈R`(〈x, y〉−ψ∗(y)). Let φ∗i (wi) denote
the conjugate function of φi(u). Then, we can express φi(u) as

φi(u) = sup
wi∈R`

(〈u,wi〉 − φ∗i (wi)), (7)

where wi is the corresponding dual variable. Substituting (7) into the original minimization problem
(1), we obtain its equivalent min-max problem as:

min
θ

max
w

{
L(θ, w) + g(θ) ,

1

nX

nX−1∑
i=0

[〈 1

nYi

nYi−1∑
j=0

fθ(xi, yij), wi

〉
− φ∗i (wi)

]
+ g(θ)

}
, (8)

where w,{w0, . . . , wnX−1}, is a collection of all dual variables. We note that the transformation of
the original problem (1) into (8) brings out all the empirical averages that are present inside φi(·).
This new formulation allows us to develop stochastic variance reduced algorithms below.

3.2 Stochastic variance reduced primal-dual algorithm

One common solution for the min-max problem (8) is to alternate between the step of minimization
(with respect to the primal variable θ) and the step of maximization (with respect to the dual variable
w). However, such an approach generally suffers from high computation complexity because each
minimization/maximization step requires a summation over many components and requires a full
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pass over all the data samples. The complexity of such a batch algorithm would be prohibitively
high when the number of data samples (i.e., nX and nYi ) is large (e.g., they could be larger than one
million or even one billion in applications like unsupervised speech recognition [21]). On the other
hand, problem (8) indeed has rich structures that we can exploit to develop more efficient solutions.

To this end, we make the following observations. First, expression (8) implies that when θ is fixed, the
maximization over the dual variable w can be decoupled into a total of nX individual maximizations
over different wi’s. Second, the objective function in each individual maximization (with respect to
wi) contains a finite-sum structure over j. Third, by (8), for a fixed w, the minimization with respect
to the primal variable θ is also performed over an objective function with a finite-sum structure. Based
on these observations, we will develop an efficient stochastic variance reduced primal-dual algorithm
(named SVRPDA-I). It alternates between (i) a dual step of stochastic variance reduced coordinate
ascent and (ii) a primal step of stochastic variance reduced gradient descent. The full algorithm is
summarized in Algorithm 1, with its key ideas explained below.

Dual step: stochastic variance reduced coordinate ascent. To exploit the decoupled dual maxi-
mization over w in (8), we can randomly sample an index i, and update wi according to:

w
(k)
i = argmin

wi

{
−
〈 1

nYi

nYi−1∑
j=0

fθ(k−1)(xi, yij), wi

〉
+ φ∗i (wi) +

1

2αw
‖wi − w(k−1)

i ‖2
}
, (9)

while keeping all other wj’s (j 6= i) unchanged, where αw denotes a step-size. Note that each step
of recursion (9) still requires a summation over nYi components. To further reduce the complexity,
we approximate the sum over j by a variance reduced stochastic estimator defined in (12) (to be
discussed in Section 3.3). The dual step in our algorithm is summarized in (13), where we assume
that the function φ∗i (wi) is in a simple form so that the argmin could be solved in closed-form. Note
that we flip the sign of the objective function to change maximization to minimization and apply
coordinate descent. We will still refer to the dual step as “coordinate ascent” (instead of descent).

Primal step: stochastic variance reduced gradient descent We now consider the minimization
in (8) with respect to θ when w is fixed. The gradient descent step for minimizing L(θ, w) is given by

θ(k) = argmin
θ

{〈 nX−1∑
i=0

nYi−1∑
j=0

1

nXnYi
f ′θ(k−1)(xi, yij)w

(k)
i , θ

〉
+

1

2αθ
‖θ − θ(k−1)‖2

}
, (10)

where αθ denotes a step-size. It is easy to see that the update equation (10) has high complexity, it
requires evaluating and averaging the gradient f ′θ(·, ·) at every data sample. To reduce the complexity,
we use a variance reduced gradient estimator, defined in (15), to approximate the sums in (10) (to be
discussed in Section 3.3). The primal step in our algorithm is summarized in (16) in Algorithm 1.

3.3 Low-complexity stochastic variance reduced estimators

We now proceed to explain the design of the variance reduced gradient estimators in both the dual
and the primal updates. The main idea is inspired by the stochastic variance reduced gradient (SVRG)
algorithm [7]. Specifically, for a vector-valued function h(θ) = 1

n

∑n−1
i=0 hi(θ), we can construct its

SVRG estimator δk at each iteration step k by using the following expression:

δk = hik(θ)− hik(θ̃) + h(θ̃), (17)

where ik is a randomly sampled index from {0, . . . , n − 1}, and θ̃ is a reference variable that is
updated periodically (to be explained below). The first term hi(θ) in (17) is an unbiased estimator
of h(θ) and is generally known as the stochastic gradient when h(θ) is the gradient of a certain
cost function. The last two terms in (17) construct a control variate that has zero mean and is
negatively correlated with hi(θ), which keeps δk unbiased while significantly reducing its variance.
The reference variable θ̃ is usually set to be a delayed version of θ: for example, after every M
updates of θ, it can be reset to the most recent iterate of θ. Note that there is a trade-off in the choice
of M : a smaller M further reduces the variance of δk since θ̃ will be closer to θ and the first two
terms in (17) cancel more with each other; on the other hand, it will also require more frequent
evaluations of the costly batch term h(θ̃), which has a complexity of O(n).
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Algorithm 1 SVRPDA-I
1: Inputs: data {(xi, yij) : 0≤ i<nX , 0≤j<nYi}; step-sizes αθ and αw; # inner iterations M .
2: Initialization: θ̃0 ∈ Rd and w̃0 ∈ R`nX .
3: for s = 1, 2, . . . do
4: Set θ̃= θ̃s−1, θ(0)= θ̃, w̃= w̃s−1, w(0)= w̃s−1, and compute the batch quantities (for each 0≤ i<nX ):

U0 =

nX−1∑
i=0

nYi−1∑
j=0

f ′
θ̃
(xi, yij)w

(0)
i

nXnYi
, f i(θ̃) ,

nYi−1∑
j=0

fθ̃(xi, yij)

nYi
, f

′
i(θ̃) =

nYi−1∑
j=0

f ′
θ̃
(xi, yij)

nYi
. (11)

5: for k = 1 to M do
6: Randomly sample ik ∈ {0, . . . , nX−1} and then jk ∈ {0, . . . , nYik−1} at uniform.
7: Compute the stochastic variance reduced gradient for dual update:

δwk = fθ(k−1)(xik , yikjk )− fθ̃(xik , yikjk ) + f ik (θ̃). (12)

8: Update the dual variables:

w
(k)
i =

argmin
wi

[
− 〈δwk , wi〉+ φ∗i (wi) +

1

2αw
‖wi − w(k−1)

i ‖2
]

if i = ik

w
(k−1)
i if i 6= ik

. (13)

9: Update Uk (primal batch gradient at θ̃ and w(k)) according to the following recursion:

Uk = Uk−1 +
1

nX
f
′
ik
(θ̃)
(
w

(k)
ik
− w(k−1)

ik

)
. (14)

10: Randomly sample i′k ∈ {0, . . . , nX − 1} and then j′k ∈ {0, . . . , nYi′
k
− 1}, independent of ik and jk,

and compute the stochastic variance reduced gradient for primal update:

δθk = f ′θ(k−1)(xi′
k
, yi′

k
j′
k
)w

(k)

i′
k
− f ′θ̃(xi′k , yi′kj′k )w

(k)

i′
k

+ Uk. (15)

11: Update the primal variable:

θ(k) = argmin
θ

[
〈δθk, θ〉+ g(θ) +

1

2αθ
‖θ − θ(k−1)‖2

]
. (16)

12: end for
13: Option I: Set w̃s = w(M) and θ̃s = θ(M).
14: Option II: Set w̃s = w(M) and θ̃s = θ(t) for randomly sampled t ∈ {0, . . . ,M−1}.
15: end for
16: Output: θ̃s at the last outer-loop iteration.

Based on (17), we develop two stochastic variance reduced estimators, (12) and (15), to approximate
the finite-sums in (9) and (10), respectively. The dual gradient estimator δwk in (12) is constructed in a
standard manner using (17), where the reference variable θ̃ is a delayed version of θ(k)4. On the other
hand, the primal gradient estimator δθk in (15) is constructed by using reference variables (θ̃, w(k));
that is, we uses the most recent w(k) as the dual reference variable, without any delay. As discussed
earlier, such a choice leads to a smaller variance in the stochastic estimator δkθ at a potentially higher
computation cost (from more frequent evaluation of the batch term). Nevertheless, we are able to
show that, with the dual coordinate ascent structure in our algorithm, the batch term Uk in (15), which
is the summation in (10) evaluated at (θ̃, w(k)), can be computed efficiently. To see this, note that,
after each dual update step in (13), only one term inside this summation in (10), has been changed,
i.e., the one associated with i = ik. Therefore, we can correct Uk for this term by using recursion
(14), which only requires an extra O(d`)-complexity per step (same complexity as (15)).

Note that SVRPDA-I (Algorithm 1) requires to compute and store all the f
′
i(θ̃) in (11), which is

O(nXd`)-complexity in storage and could be expensive in some applications. To avoid the cost,
we develop a variant of Algorithm 1, named as SVRPDA-II (see Algorithm 1 in the supplementary
material), by approximating f ik(θ̃) in (14) with f ′

θ̃
(xik , yikj′′k ), where j′′k is another randomly sampled

index from {0, . . . , nYi − 1}, independent of all other indexes. By doing this, we can significantly

4As in [7], we also consider Option II wherein θ̃ is randomly chosen from the previous M θ(k)’s.
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Table 1: The total complexities of different stochastic composition optimization algorithms. For C-
SAGA, α = 2/3 in the minibatch setting and α = 1 when batch-size=1. In the bound for ASCVRG,
the dependency on κ has been dropped since it was not reported in [10].

Methods SVRPDA-I (Ours) Comp-SVRG [9] C-SAGA [22] MSPBE-SVRG/SAGA [5] ASCVRG [10]

General: problem (1) (nXnY +nXκ)ln
1
ε ��� ��� ��� ���

Special: problem (2) (nX+nY+nXκ)ln
1
ε

(nX+nY+κ3)ln 1
ε

(nX+nY+(nX+nY )ακ)ln 1
ε ��� (nX+nY )ln 1

ε
+ 1
ε3

Special: (2) & nX =1 (nY +κ) ln 1
ε

(nY +κ3) ln 1
ε

(nY +nαY κ) ln
1
ε

(nY+κ2) ln 1
ε

nY ln 1
ε
+ 1
ε3

reduce the memory requirement from O(nXd`) in SVRPDA-I to O(d+ nX`) in SVRPDA-II (see
Section 4.2). In addition, experimental results in Section 5 will show that such an approximation only
cause slight performance loss compared to that of SVRPDA-I algorithm.

4 Theoretical Analysis

4.1 Computation complexity

We now perform convergence analysis for the SVRPDA-I algorithm and also derive their complexities
in computation and storage. To begin with, we first introduce the following assumptions.
Assumption 4.1. The function g(θ) is µ-strongly convex in θ, and each φi is 1/γ-smooth.
Assumption 4.2. The merit functions φi(u) are Lipschitz with a uniform constant Bw:

|φi(u)− φi(u′)| ≤ Bw‖u− u′‖, ∀u, u′; ∀i = 0, . . . , nX − 1.

Assumption 4.3. fθ(xi, yij) is Bθ-smooth in θ, and has bounded gradients with constant Bf :
‖f ′θ1(xi, yij)− f

′
θ2(xi, yij)‖ ≤ Bθ‖θ1 − θ2‖, ‖f ′θ(xi, yij)‖ ≤ Bf , ∀θ, θ1, θ2, ∀i, j.

Assumption 4.4. For each given w in its domain, the function L(θ, w) defined in (8) is convex in θ:
L(θ1, w)− L(θ2, w) ≥ 〈L′θ(θ2, w), θ1 − θ2〉, ∀θ1, θ2.

The above assumptions are commonly used in existing compositional optimization works [9, 10, 18,
19, 22]. Based on these assumptions, we establish the non-asymptotic error bounds for SVRPDA-
I (using either Option I or Option II in Algorithm 1). The main results are summarized in the
following theorems, and their proofs can be found in Appendix E.
Theorem 4.5. Suppose Assumptions 4.1–4.4 hold. If in Algorithm 1 (with Option I) we choose

αθ =
1

nXµ(64κ+ 1)
, αw =

nXµ

γ
αθ, M =

⌈
78.8nXκ+1.3nX+1.3

⌉
where dxe denotes the roundup operation and κ = B2

f/γµ+B2
wB

2
θ/µ

2, then the Lyapunov function
Ps := E‖θ̃s − θ∗‖2 + γ

µ ·
64κ+3

64nXκ+nX+1E‖w̃s − w
∗‖2 satisfies Ps ≤ (3/4)sP0. Furthermore, the

overall computational cost (in number of oracle calls5) for reaching Ps ≤ ε is upper bounded by
O
(
(nXnY + nXκ+ nX) ln(1/ε)

)
. (18)

where, with a slight abuse of notation, nY is defined as nY = (nY0 + · · ·+ nYnX−1)/nX .
Theorem 4.6. Suppose Assumptions 4.1–4.4 hold. If in Algorithm 1 (with Option II) we choose

αθ =
(25B2

f

γ
+10BθBw+

80B2
wB

2
θ

µ

)−1
, αw =

µ

40B2
f

, M = max

(
10

αθµ
,
2nX
αwγ

, 4nX

)
,

then Ps := E‖θ̃s−θ∗‖2+ γ
nXµ

E‖w̃s−w∗‖2 ≤ (5/8)sP0. Furthermore, let κ =
B2
f

γµ +
B2
wB

2
θ

µ2 . Then,
the overall computational cost (in number of oracle calls) for reaching Ps ≤ ε is upper bounded by

O
(
(nXnY + nXκ+ nX) ln(1/ε)

)
. (19)

The above theorems show that the Lyapunov function Ps for SVRPDA-I converges to zero at a linear
rate when either Option I or II is used. Since E‖θ̃s − θ∗‖2 ≤ Ps, they imply that the computational
cost (in number of oracle calls) for reaching E‖θ̃s− θ∗‖2 ≤ ε is also upper bounded by (18) and (19).

5One oracle call is defined as querying fθ , f ′θ , or φi(u) for any 0 ≤ i < n and u ∈ R`.
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Table 2: The storage complexity of SVRPDA-I and SVRPDA-II.

Methods U0 {f i} {f ′i} θ(k) θ̃ {w(k)
i } δθk δwk Total

SVRPDA-I O(d) O(nX`) O(nXd`) O(d) O(d) O(nX`) O(d) O(`) O(nXd`)
SVRPDA-II O(d) O(nX`) ��� O(d) O(d) O(nX`) O(d) O(`) O(d+nX`)

Comparison with existing composition optimization algorithms Table 1 summarizes the com-
plexity bounds for our SVRPDA-I algorithm and compares them with existing stochastic composition
optimization algorithms. First, to our best knowledge, none of the existing methods consider the
general objective function (1) as we did. Instead, they consider its special case (2), and even in this
special case, our algorithm still has better (or comparable) complexity bound than other methods. For
example, our bound is better than that of [9] since κ2 > nX generally holds, and it is better than that
of ASCVRG, which does not achieve linear convergence rate (as no strong convexity is assumed).
In addition, our method has better complexity than C-SAGA algorithm when nX = 1 (regardless
of mini-batch size in C-SAGA), and it is better than C-SAGA for (2) when the mini-batch size is
1.6 However, since we have not derived our bound for mini-batch setting, it is unclear which one
is better in this case, and is an interesting topic for future work. One notable fact from Table 1 is
that in this special case (2), the complexity of SVRPDA-I is reduced from O((nXnY +nXκ) ln

1
ε ) to

O((nX+nY +nXκ) ln
1
ε ). This is because the complexity for evaluating the batch quantities in (11)

(Algorithm 1) can be reduced from O(nXnY ) in the general case (1) to O(nX + nY ) in the special
case (2). To see this, note that fθ and nYi = nY become independent of i in (2) and (11), meaning
that we can factor U0 in (11) as U0 = 1

nXnY

∑nY −1
j=0 f ′

θ̃
(yj)

∑nX
i=0 w

(0)
i , where the two sums can be

evaluated independently with complexity O(nY ) and O(nX), respectively. The other two quantities
in (11) need only O(nY ) due to their independence of i. Second, we consider the further special case
of (2) with nX = 1, which simplifies the objective function (1) so that there is no empirical average
outside φi(·). This takes the form of the unsupervised learning objective function that appears in [12].
Note that our results O((nY +κ) log

1
ε ) enjoys a linear convergence rate (i.e., log-dependency on ε)

due to the variance reduction technique. In contrast, stochastic primal-dual gradient (SPDG) method
in [12], which does not use variance reduction, can only have sublinear convergence rate (i.e., O( 1ε )).

Relation to SPDC [23] Lastly, we consider the case where nYi = 1 for all 1 ≤ i ≤ nX and fθ is a
linear function in θ. This simplifies (1) to the problem considered in [23], known as the regularized
empirical risk minimization of linear predictors. It has applications in support vector machines,
regularized logistic regression, and more, depending on how the merit function φi is defined. In this
special case, the overall complexity for SVRPDA-I becomes (see Appendix F):

O
(
(nX + κ) ln(1/ε)

)
, (20)

where the condition number κ = B2
f/µγ. In comparison, the authors in [23] propose a stochastic

primal dual coordinate (SPDC) algorithm for this special case and prove an overall complexity of
O
((
nX +

√
nXκ

)
ln
(
1
ε

))
to achieve an ε-error solution. It is interesting to note that the complexity

result in (20) and the complexity result in [23] only differ in their dependency on κ. This difference
is most likely due to the acceleration technique that is employed in the primal update of the SPDC
algorithm. We conjecture that the dependency on the condition number of SVRPDA-I can be further
improved using a similar acceleration technique.

4.2 Storage complexity

We now briefly discuss and compare the storage complexities of both SVRPDA-I and SVRPDA-II. In
Table 2, we report the itemized and total storage complexities for both algorithms, which shows that
SVRPDA-II significantly reduces the memory footprint. We also observe that the batch quantities
in (11), especially f

′
i(θ̃), dominates the storage complexity in SVRPDA-I. On the other hand, the

memory usage in SVRPDA-II is more uniformly distributed over different quantities. Furthermore,
although the total complexity of SVRPDA-II, O(d+ nX`), grows with the number of samples nX ,
the nX` term is relatively small because the dimension ` is small in many practical problems (e.g.,
` = 1 in (3) and (4)). This is similar to the storage requirement in SPDC [23] and SAGA [4].

6In Appendix D, we also show that our algorithms outperform C-SAGA in experiments.
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OP datasets

ME datasets

INV datasets

Figure 1: Performance of different algorithms on the risk-averse learning for portfolio management
optimization problem. The performance is measured in terms of the number of oracle calls required
to achieve a certain objective gap.

5 Experiments

In this section we consider the problem of risk-averse learning for portfolio management optimization
[9, 10], introduced in Section 2.7 Specifically, we want to solve the optimization problem (4) for a
given set of reward vectors {xi ∈ Rd : 0 ≤ i ≤ n − 1}. As we discussed in Section 2, we adopt
the alternative formulation (6) for the second term so that it becomes a special case of our general
problem (1). Then, we rewrite the cost function into a min-max problem by following the argument in
Section 3.1 and apply our SVRPDA-I and SVRPDA-II algorithms (see Appendix C.1 for the details).

We evaluate our algorithms on 18 real-world US Research Returns datasets obtained from the
Center for Research in Security Prices (CRSP) website8, with the same setup as in [10]. In each
of these datasets, we have d = 25 and n = 7240. We compare the performance of our proposed
SVRPDA-I and SVRPDA-II algorithms9 with the following state-of-the art algorithms designed
to solve composition optimization problems: (i) Compositional-SVRG-1 (Algorithm 2 of [9]), (ii)
Compositional-SVRG-2 (Algorithm 3 of [9]), (iii) Full batch gradient descent, and (iv) ASCVRG
algorithm [10]. For the compositional-SVRG algorithms, we follow [9] to formulate it as a special
case of the form (2) by using the identification (5). Note that we cannot use the identification (6) for
the compositional SVRG algorithms because it will lead to the more general formulation (1) with fθ
depending on both xi and yij ≡ xj . For further details, the reader is referred to [9].

As in previous works, we compare different algorithms based on the number of oracle calls required
to achieve a certain objective gap (the difference between the objective function evaluated at the
current iterate and at the optimal parameters). One oracle call is defined as accessing the function fθ,
its derivative f ′θ, or φi(u) for any 0 ≤ i < n and u ∈ R`. The results are shown in Figure 1, which
shows that our proposed algorithms significantly outperform the baseline methods on all datasets. In
addition, we also observe that SVRPDA-II also converges at a linear rate, and the performance loss
caused by the approximation is relatively small compared to SVRPDA-I.

7Additional experiments on the application to policy evaluation in MDPs can be found in Appendix D.
8The processed data in the form of .mat file was obtained from https://github.com/tyDLin/SCVRG
9The choice of the hyper-parameters can be found in Appendix C.2, and the code will be released publicly.
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6 Related Works

Composition optimization have attracted significant attention in optimization literature. The stochastic
version of the problem (2), where the empirical averages are replaced by expectations, is studied
in [18]. The authors propose a two-timescale stochastic approximation algorithm known as SCGD,
and establish sublinear convergence rates. In [19], the authors propose the ASC-PG algorithm by
using a proximal gradient method to deal with nonsmooth regularizations. The works that are more
closely related to our setting are [9] and [10], which consider a finite-sum minimization problem (2)
(a special case of our general formulation (1)). In [9], the authors propose the compositional-SVRG
methods, which combine SCGD with the SVRG technique from [7] and obtain linear convergence
rates. In [10], the authors propose the ASCVRG algorithms that extends to convex but non-smooth
objectives. Recently, the authors in [22] propose a C-SAGA algorithm to solve the special case of (2)
with nX = 1, and extend to general nX . Different from these works, we take an efficient primal-dual
approach that fully exploits the dual decomposition and the finite-sum structures.

On the other hand, problems similar to (1) (and its stochastic versions) are also examined in different
specific machine learning problems. [16] considers the minimization of the mean square projected
Bellman error (MSPBE) for policy evaluation, which has an expectation inside a quadratic loss.
The authors propose a two-timescale stochastic approximation algorithm, GTD2, and establish its
asymptotic convergence. [11] and [13] independently showed that the GTD2 is a stochastic gradient
method for solving an equivalent saddle-point problem. In [2] and [3], the authors derived saddle-
point formulations for two other variants of costs (MSBE and MSCBE) in the policy evaluation and
the control settings, and develop their stochastic primal-dual algorithms. All these works consider
the stochastic version of the composition optimization and the proposed algorithms have sublinear
convergence rates. In [5], different variance reduction methods are developed to solve the finite-sum
version of MSPBE and achieve linear rate even without strongly convex regularization. Then the
authors in [6] extends this linear convergence results to the general convex-concave problem with
linear coupling and without strong convexity. Besides, problem of the form (1) was also studied in
the context of unsupervised learning [12, 21] in the stochastic setting (with expectations in (1)).

Finally, our work is inspired by the stochastic variance reduction techniques in optimization [8, 7, 4,
1, 23], which considers the minimization of a cost that is a finite-sum of many component functions.
Different versions of variance reduced stochastic gradients are constructed in these works to achieve
linear convergence rate. In particular, our variance reduced stochastic estimators are constructed
based on the idea of SVRG [7] with a novel design of the control variates. Our work is also related to
the SPDC algorithm [23], which also integrates dual coordinate ascent with variance reduced primal
gradient. However, our work is different from SPDC in the following aspects. First, we consider a
more general composition optimization problem (1) while SPDC focuses on regularized empirical
risk minimization with linear predictors, i.e., nYi ≡ 1 and fθ is linear in θ. Second, because of the
composition structures in the problem, our algorithms also needs SVRG in the dual coordinate ascent
update, while SPDC does not. Third, the primal update in SPDC is specifically designed for linear
predictors. In contrast, our work is not restricted to that by using a novel variance reduced gradient.

7 Conclusions and Future Work

We developed a stochastic primal-dual algorithms, SVRPDA-I to efficiently solve the empirical
composition optimization problem. This is achieved by fully exploiting the rich structures inherent in
the reformulated min-max problem, including the dual decomposition and the finite-sum structures.
It alternates between (i) a dual step of stochastic variance reduced coordinate ascent and (ii) a primal
step of stochastic variance reduced gradient descent. In particular, we proposed a novel variance
reduced gradient for the primal update, which achieves better variance reduction with low complexity.
We derive a non-asymptotic bound for the error sequence and show that it converges at a linear
rate when the problem is strongly convex. Moreover, we also developed an approximate version
of the algorithm named SVRPDA-II, which further reduces the storage complexity. Experimental
results on several real-world benchmarks showed that both SVRPDA-I and SVRPDA-II significantly
outperform existing techniques on all these tasks, and the approximation in SVRPDA-II only caused a
slight performance loss. Future extensions of our work include the theoretical analysis of SVRPDA-II,
the generalization of our algorithms to Bregman divergences, and applying it to large-scale machine
learning problems with non-convex cost functions (e.g., unsupervised sequence classifications).
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