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Abstract

We introduce a new neural network-based continual learning algorithm, dubbed
as Uncertainty-regularized Continual Learning (UCL), which builds on traditional
Bayesian online learning framework with variational inference. We focus on two
significant drawbacks of the recently proposed regularization-based methods: a)
considerable additional memory cost for determining the per-weight regularization
strengths and b) the absence of gracefully forgetting scheme, which can prevent
performance degradation in learning new tasks. In this paper, we show UCL can
solve these two problems by introducing a fresh interpretation on the Kullback-
Leibler (KL) divergence term of the variational lower bound for Gaussian mean-
field approximation. Based on the interpretation, we propose the notion of node-
wise uncertainty, which drastically reduces the number of additional parameters
for implementing per-weight regularization. Moreover, we devise two additional
regularization terms that enforce stability by freezing important parameters for past
tasks and allow plasticity by controlling the actively learning parameters for a new
task. Through extensive experiments, we show UCL convincingly outperforms
most of recent state-of-the-art baselines not only on popular supervised learning
benchmarks, but also on challenging lifelong reinforcement learning tasks. The
source code of our algorithm is available at jhttps://github.com/csm9493/UCL.

1 Introduction

Continual learning, also called as lifelong learning, is a long-standing open problem in machine
learning in which data from multiple tasks continuously arrive and the learning algorithm should
constantly adapt to new tasks as well as not forget what it has learned in the past. The main challenge
is to resolve the so-called stability-plasticity dilemma |2} [18]. Namely, a learning agent should be
able to preserve what it has learned, but focusing too much on the stability may hinder it from quickly
learning a new task. On the other hand, when the agent focuses too much on the plasticity, it tends
to quickly forget what it has learned. Particularly, for the artificial neural network (ANN)-based
models, which became the mainstream of the machine learning methods, it is well-known that they
are prone to such catastrophic forgetting phenomenon [17, 4]. As opposed to the ANNs, humans are
able to maintain the obtained knowledge while learning a new task, and the forgetting in human brain
happens gradually rather than drastically. This difference motivates active research in developing
neural network based continual learning algorithms.

As given in a comprehensive survey [20] on this topic, approaches for tackling the catastrophic
forgetting in neural network based continual learning can be roughly grouped into three categories:
regularization-based [14} 112} 130, [19]], dynamic network architecture-based [23}29], and dual memory
system-based [22} [15 127, [10]. While each category has its own merit, of particular interest are the
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regularization-based methods, since they pursue to maximally utilize the limited network capacity by
imposing constraints on the update of the network given a new task. Computationally, they typically
are realized by adding regularization terms that penalize the changes in the network parameters when
learning a new task. This approach makes sense since it is well-known that neural network models
are highly over-parametrized, and once successful, it can be also complementary to other approaches
since it can lead to the efficient usage of network capacity as the number of tasks grows, as in [25].

The recent state-of-the-art regularization-based methods typically implement the per-parameter
regularization parameters based on several different principles inferring the importance of each
parameter for given tasks; e.g., diagonal Fisher information matrix for EWC [12]], variance term
associated with each weight parameter for VCL [19], and the path integrals of the gradient vector
fields for SI [30]. While these methods are shown to be very effective in several continual learning
benchmarks, a common caveat is that the amount of the memory required to store the model is
twice the original neural network parameters, since they need to store the individual regularization
parameters. We note that this could be a limiting factor for being deployed with large network size.

In this paper, we propose a new regularization-based continual learning algorithm, dubbed as
Uncertainty-regularized Continual Learning (UCL), that stores much smaller number of additional
parameters for regularization terms than the recent state-of-the-arts, but achieves much better perfor-
mance in several benchmark datasets. Followings summarize our key contributions.

e We adopt the standard Bayesian online learning framework, but make a fresh interpretation
of the Kullback-Leibler (KL) divergence term of the variational lower bound for the Gaussian
mean-field approximation case.

e We define a novel notion of “uncertainty” for each hidden node in a network by tying the
learnable variances of the incoming weights of a node. Moreover, we add two additional
regularization terms to freeze the weights that are identified to be important and to gracefully
forget what was learned before and control the actively learning weights.

e We achieve state-of-the-art performances on a number of continual learning benchmarks,
including supervised learning (SL) tasks with deep convolutional neural networks and
reinforcement learning (RL) tasks with different state-action spaces. Performing well on
both SL and RL continual learning tasks is a unique strength of our UCL.

2 Related Work

Continual learning There are numerous approaches in continual learning and we refer the readers
to [20]] for an extensive review. We only list work relevant to our method. The main approach of
regularization-based methods in continual learning is to identify the important weights for the learned
tasks and penalize the large updates on those weights when learning a new task. LwF [14] contains
task-specific layers, and keeps the similar outputs for the old tasks by utilizing knowledge distillation
[9]. In EWC [12], the diagonal of the Fisher information matrix at the learned parameter of the
given task is used for giving the relative regularization strength. An extended version of EWC, IMM
[13]], merged the posteriors based on the mean and the mode of the old and new parameters. SI [30]
computes the parameter importance considering a path integral of gradient vector fields during the
parameter updates. VCL [19] also adopts Bayesian online learning framework as ours, but simply
applies standard techniques that results in some drawbacks, which are elaborated in Section [3.1]

Some work approached continual learning differently than the regularization-based method for the
limited network capacity case. PackNet [16] picks out task-specific weights based on the weight
pruning method, which requires saving the learnable binary masks for the weights. HAT [26]
employs node-wise attention mechanism per layer using the task identifier embedding, but requires a
knowledge on the number of tasks a priori, which is a critical limitation.

Variational inference In standard Bayesian learning, the main idea of learning is efficiently ap-
proximating the posterior distribution on the models. [6] introduces a practical variational inference
technique for neural networks, which suggested that variational parameters can be learned using
back-propagation. Another approach in variational inference is [[11] which introduces the approx-
imated lower bound of likelihood, and learn variational parameter using re-parameterization trick.
In [L]], they introduce Unbiased Monte Carlo, which also uses back-propagation, but many kinds of
priors can be used in the Unbiased Monte Carlo. In addition, there are several practical methods for
variational inference in neural networks, such as using dropout [5] or Expectation-Propagation [§].



3 Uncertainty-regularized Continual Learning (UCL)

3.1 Notations and a review on Bayesian online learning

Consider a discriminative neural network model, p(y|x, W), that returns a probability distribution
over the output y given an input x and parameters VY. In standard Bayesian learning, YV is assumed
to be sampled from some prior distribution p(W|c) that depends on some parameter «, and after
observing some data D = {(x;,y;)}" ,, obtaining the posterior p(W|a, D) becomes the central
problem to learn the model parameters. Since exactly obtaining the posterior becomes intractable,
variational inference [1, 3, 6] instead tries to approximate this posterior with a more tractable
distribution ¢(W)|0). The approximation is done by minimizing (over ) the so-called variational
free energy, which can be written as

F(D,0) =Eywie)[—log p(DIW)] + Dk .(g(W|0)|[p(W]|e)), (1)

in which log p(D|W) is the log-likelihood of the data D determined by the model p(y|x, W), and
D, (+) is the Kullback-Leibler divergence. Moreover, the commonly used ¢(WW|@) is the so-called
Gaussian mean-field approximation, ¢(W|0) = [], N'(w;|ui, 0;) with @ = (u, o), and € can be
learned via reparameterization trick [[11] and the standard back-propagation.

In Bayesian online learning framework, standard variational inference can be applied to the continual
learning setting. Namely, when a dataset for task ¢, D; arrives, the framework solves to minimize

F(Dt,0:) =Eqowie,) [~ log p(DeW)] + Dk r.(¢(W|0:)]|g(W|0:-1)) 2

over 8; = (4, 0), in which ¢(W)|0;_1) stands for the posterior learned after observing D;_ acting
as a prior for learning ¢(W)|6,). Note in , we can observe that the KL-divergence term naturally
acts as a regularization term. In VCL [19], they showed that the network learned by sequentially
solving (2) by using projection operator of the variational inference for each task ¢ can successfully
combat the catastrophic forgetting problem to some extent.

However, we argue that this Bayesian approach of VCL has several drawbacks as well. First, due to
the Monte-Carlo sampling of the model weights for computing the likelihood term in (2)), the time
and space complexity for learning grows with the sample size. Second, since the variance term is
defined for every weight parameter, the number of parameters to maintain becomes exactly twice the
size of network weights. This becomes problematic when deploying a large-sized network, as is the
case in modern deep learning. In this paper, we present a novel approach which can resolve above
problems. Our key idea is rooted in a fresh interpretation of the closed form of KL-divergence term
in (2)) for the Gaussian mean-field approximation and the Bayesian neural network pruning [6} [1].

3.2 Interpreting KL-divergence and motivation of UCL

While the KL divergence in (2) acts as a generic regularization term, we give a closer look at
it, particularly for the Gaussian mean-field approximation case. Namely, after some algebra and
evaluating the Gaussian integral, the closed-form of D 1,(¢(W)|60:)|/¢(W|0:—1)) becomes:
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in which L is the number of layers in the network, ( ugl), o't(l)) are the mean and standard deviation of

the weight matrix for layer [ that are subject to learning for task ¢, ( ugl) 1 o't(l)l) are the same quantity

that are learned up to the previous task, the fraction notation means the element-wise division between
tensors, and || - |3 stands for the Frobenius norm of a matrix. The detailed derivation of (3 is given
in the Supplementary Materials. the term (a) in (3) can be interpreted as a square of the Mahalanobis

distance between the vectorized u( ) and ugljl, in which the covariance matrix is diag((o-t(l)l) ), and

it acts as a regularization term for ug ), Namely, when minimizing (3)) over 0,51) =(p g ) (l)) the

inverse of the variance learned up to task (¢ — 1) is acting as per-weight regularization strengths for

i ® deviating from ,ug )1 This makes sense since each element of (a't( )1) can be regarded as an

uncertainty measure for the corresponding mean weight of ""t(t—)l’ and a weight with small uncertainty



should be treated as important such that high penalty is imposed when significantly getting updated
for a new task ¢. Moreover, the term (b) in , which is convex in (oygl))2 and is minimized when

o't(l) = O't(Ql, is acting as a regularization term for o2. Note it promotes to preserve the learned

uncertainty measure when updating for a new task. This also makes sense for preventing catastrophic
forgetting since the weights identified as important in previous tasks should be kept as important for
future tasks as well such that the weights do not get updated too much by the term (a). Based on this
interpretation, we modify each term and devise a new loss function for UCL.

3.3 Modifying the term (a)

We modify the term (a) in (3) based on the following three intuitions. First, instead of maintaining the
uncertainty measure for each mean weight parameter of p1,, we devise a notion of uncertainty for each
node of the network. Second, based on the node uncertainty, we set the high regularization strength
for a weight when either of the nodes it connects has low uncertainty. Third, we add additional
¢ -regularizer such that a weight gets even more stringent penalty for getting updated when the weight
has large magnitude or low uncertainty, inspired by [l [6]. We elaborate each of these intuitions
below.

While it is plausible to maintain the weight-level importance as in other work [[12} |19} 30]], we believe
maintaining the importance (or uncertainty in our case) at the level of node makes more sense, not
only for the purpose of reducing the model parameters, but also because the node value (or the
activation) is the basic unit for representing the learned information from a task. A similar intuition
of working at node-level also appears in HAT [26]], which devised a hard attention mechanism for
important nodes, or dropout [28], which randomly drops nodes while training. In our setting, we
define the uncertainty of a node as illustrated in Figure [T} first constrain the incoming weights to
the node to have the same standard deviation parameters as in node j of layer (I — 1) in Figure
then set the variance as the uncertainty of the node. For the Gaussian mean-field approximation case,
this constraint corresponds to adding zero-mean i.i.d Gaussian noise (with difference variances for
different nodes) to the incoming weights when sampling for the variational learning.

For our second intuition, we derive the weight-level reg-

ularization scheme based on the following arguments. :important node - information loss
Namely, as shown in Figure|[I] suppose a node is identified
as important (the orange nodes), i.e., has low uncertainty,
for the past tasks, and the learning of a new task is taking
place. We believe there are two major sources that can ! i o m
cause the catastrophic forgetting of the past tasks when o) o)
a weight update for a new task happens; 1) the negative L

transfer (blue region) happening in the incoming weights
of an important node, and 2) the information loss (pink
region) happening in the outgoing weights of an important O\ gD
node. From the perspective of the important node, it is b Y

clear that when any of the incoming weights are signif- 1-2

icantly updated during the learning of the new task, the

node’s representation of the past tasks will significantly Figure 1: Information loss and negative
get altered as the node will differently combine informa-  (.ansfer of an important node.

tion from the lower layer, and hurt the past tasks accuracy.

On the other hand, when the outgoing weights of the important node are significantly updated, the
information of that node will get washed out during forward propagation, hence, it may not play an
important role in computing the prediction, causing the accuracy drop for the past task.

: unimportant node : negative transfer

From above argument, we devise the weight-level regularization such that weight gets high regular-
ization strength when either of the node it connects has low uncertainty. This is realized by replacing
the term (a) of (3) with the following:

LS (A0 O _ 0| 0 a Out T
3 (A0 n? = p2],). where A9 & max{ g T} @
1=1

O¢_1,4 Ot—1,5

in which o¥)

.t 18 the initial standard deviation hyperparameter for all weights on the /-th layer, L is

the number of layers in the network, ugl) is the mean weight matrix for layer [ and task ¢, ® is the

element-wise multiplication between matrices, and the matrix A(") defines the regularization strength



§l2 ;> L.e., when either U,E )1 4 or at(l 11) is small, ufj ; gets high regularization strength.

We note setting al(m)t

for the weight p
correctly is important to control the stability of the learning process.

While (@) is a sensible replacement of the term (a) in (3)), our third intuition above is based on the

observation that (4) does not take into account of the magnitude of the learned weights, i.e. ;l,( ). In
[1L16], they applied a heuristic for pruning network weights learned by variational 1nference ie., only
keeps the weight if the magnitude of the ratio /o is large, and prunes otherwise. Inspired by the
pruning heuristic, we devise an additional /¢ 1 norm based regularizer

My l l
1n1t H( Izl)) ()_/""1(5)1)‘1

in which the division and square inside the El -norm should be understood as the element-wise
. 1 . . i . 1
operations. Note o,”; has the same dimension as p,”;, and the ¢-th row of o-t 1 has the same

&)

variance value associated with the i-th node in layer [. Thus, in ll if the ratio (ut 145/ at 1) s

large, the ¢1-norm will promote sparsity and ,ug ) will tend to freeze to ME )1,i e

3.4 Modifying the term (b)

Regarding the term (b) in (3), we can also devise a similar loss on the uncertainties associated with
nodes. As mentioned in Section the loss will promote crt(l) = Ut@p meaning that once a node
becomes important at task (¢ — 1), it tends to stay important for a new task as well. While this makes
sense for preventing the catastrophic forgetting as it may induce high regularization parameters for
penalties in (@) and (3)), one caveat is that the network capacity can quickly fill up when the number
of tasks grows. Therefore, we choose to add one more regularization term to the term (b) in (E[)

1
517 (")~ 1og(a(")?), ©)

which inflates o't( ) to get close to \/§U§Q1 when minimized together with the term (b). The detailed

derivation of the minimizer is given in the Supplementary Materials. Therefore, if a node becomes
uncertain when training current task, the regularization strength becomes smaller. Since our initial
standard deviation o-l(rfl)t is usually set to be small, the additional term in (EI) compared to the term (b)
in (@) will tend to increase the number of “actively” learning nodes that have incoming weights with
sufficiently large standard deviation values for exploration. Moreover, when a new task arrives while
most of the nodes have low uncertainty, (6) will force some of them to increase the uncertainty level
to learn the new task, resulting in gracefully forgetting the past tasks.

Output [ N ) ®
o0 o ° — — é
& be e
Input (N | . o

Figure 2: Colored hidden nodes and edges denote important nodes and highly regularized weights
due to (@), respectively. The width of colored edge denotes the regularization strength of (5). Note as
new task comes the uncertainty level of a node can vary due to (6), respresented with color changes.

3.5 Final loss function for UCL

Combining (@), (B), and (@), the final loss function for our UCL for task ¢ becomes

L 0)
LRl ICRTHEEN Y o RN
=1 1

() e (%) el sl )
t—1

(1
01




which is minimized over {ugl), ail)}{;l and has two hyperparameters, {ai(nli)t}lL:1 and /3. The former

serves as pivot values determining the degree of uncertainty of each node, and the latter controls the

increasing or decreasing speed of o-t(l). As elaborated in above sections, it is clear that the uncertainty

of a node plays a critical role in setting the regularization parameters, hence, justifies the name UCL.
Illustration of the regularization mechanism of UCL is given in Figure[2| At the beginning epoch
of task ¢, we sample from ¢(WW|6;) with ; = 0,_1, then continue to update 6, in the subsequent
iterations. The model parameters are sampled every iteration, like in the usual Monte Carlo sampling,
but we set the number of sampling to 1 for each iteration. This is an important differentiation that
enables the application of UCL to reinforcement learning tasks, which was impossible for VCL [19].

4 Experimental Results

4.1 Supervised learning

We evaluate the performance of UCL together with EWC [12], ST [30], VCL [19], and HAT [26]. We
also make a comparison with Coreset VCL proposed in [[19]]. The number of sampling weights was
10 for VCL, and 1 for UCL. All of the results are averaged over 5 different seeds. For the experiments
with MNIST datasets, we used fully-connected neural networks (FNN), and with CIFAR-10/100 and
Omniglot datasets, we used convolutional neural networks (CNN). The detailed architectures are
given in each experiment section. Moreover, the initial standard deviations for UCL, {Ui(rfi)t L |, were
set to be 0.06 for FNNs and adaptively set like the He initialization [7] for deeper CNNs, of which
details are given in the Supplementary Material. The hyperparameter selections among the baselines
are done fairly, and we list the selected hyperparameters in the Supplementary Materials.
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Figure 3: Experimental results on Permuted / Row Permuted MNIST with a single headed network.

Permuted / Row Permuted MNIST We first test on the popular Permuted MNIST dataset. We
used single-headed FNN that has two hidden layers with 400 nodes and ReLLU activations for all
methods. We compare the average test accuracy over the learned tasks in Figure[3| (left). After training
on 10 tasks sequentially, EWC, SI, and VCL show little difference of performance among them
achieving 91.8%, 91.1%, and 91.3% respectively. Although VCL with the coreset size of 200 makes
an improvement of 2%, UCL outperforms all other baselines achieving 94.5%. Interestingly, HAT
keeps almost the same average accuracy as UCL until the first 5 tasks, but it starts to significantly
deteriorate after task 7. This points out the limitation of applying HAT in a single-headed network.
As a variation of Permuted MNIST, we shuffled only rows of MNIST images instead of shuffling all
the image pixels, and we denoted it as Row Permuted MNIST. We empirically find that all algorithms
are more prone to forgetting in Row Permuted MNIST. Looking at the accuracy scale of Figure[3]
(right), all the methods show severe degradation of performance compared to Permuted MNIST. This
may be due to permuting of the correlated row blocks causing more weight changes in the network.
After 10 tasks, UCL again achieved the highest average accuracy, 86.5%, in this experiment as well.

For a better understanding of our model, Figure [ visualize the learned standard deviations of nodes
in all layers as the training proceeds. After the model trained on task 1, we find that just a few of
them become smaller than the initialized value of 0.06, and most of them become much larger in
the first hidden layer. Interestingly, the uncertain nodes in layer 1 show a drastic decline of their
standard deviations at a specific task as the learning progresses, which means the model had to make
them certain for adapting to the new task. On the other hand, all the nodes in the output layer had to
reduce their uncertainty as early as possible considering even a small randomness can lead to a totally
different prediction. Most of the nodes in layer 2, in addition, do not show a monotonic tendency.
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Figure 4: Standard deviation histogram in the Permuted MNIST experiment. We randomly selected
100 standard deviations for layer 1 and 2. In layer 3, all 10 nodes are shown.

This can be interpreted as many of them need not belong to a particular task. As a result, this gives
the plasticity and gracefully forgetting trait of our UCL.
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Figure 5: Ablation study in Permuted MNIST. Each line denotes the test accuracy.

We also carry out an ablation study on UCL’s additional regularization terms. Figure [5|shows the
results of three variations that lack one of the ingredients of the proposed UCL on Permuted MNIST.

“UCL w/o upper freeze” stands for using AZ(-;-) = Ji(lfi)t / ot(Ql , in (4), and we observe regularizing
the outgoing weights of an important node in UCL very important. “UCL w/o (3)” stands for the
removing (5) from (7)), and we clearly see the pruning heuristic based weight freezing is also very
important. “UCL w/o (6)” stands for not using (6) and it shows that while the accuracy of Task 1 & 2
are even higher than UCL, but the accuracy drastically decreases after Task 3. This is because due to

the rapid decrease of model capacity since “actively” learning weights reduce when (6) is not used.

Split MNIST We test also in the splitted dataset setting that each task consists of 2 consecutive
classes of MNIST dataset. This benchmark was used in [30l and has total 5 tasks. We used
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1 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 1 2 3 45
Tasks Tasks Tasks Tasks Tasks Tasks
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Figure 6: Experimental results on Split MNIST(top) and Split notMNIST(bottom)

multi-headed FNN hat has two hidden layers with 256 nodes and ReLU activations for all methods.
In Figure [] (top), we compare the test accuracy of each task together with the average accuracy
over all observed tasks at the right end. UCL accomplishes the same 5 tasks average accuracy as
HAT; 99.7%, which is slightly better than the results of SI and VCL with coreset, 99.0%, and 98.7%,
respectively. Note UCL significantly outperforms EWC and VCL. We also point out that HAT makes
a critical assumption to know the number of tasks a priori, while UCL need not.



Split notMNIST Here, we make an assessment on another splitted dataset tasks with notMNIST
dataset, which has 10 character classes. We split the characters of notMNIST into 5 groups same as
VCLI[19]]: A/F, B/G, C/H, D/1, and E/J. We used multi-headed FNN hat has four hidden layers with
150 nodes and ReLLU activations for all methods. Unlike the previous experiments, SI shows similar
results to EWC around 84% average accuracy, and VCL attains a better result of 90.1% (in Figure [6)
(bottom). Our UCL again achieves a superior an outstanding result of 95.7%, that is higher than HAT
and VCL with coreset: 95.2% and 93.7%, respectively.

Split CIFAR and Omniglot To check the effectiveness of UCL beyond the MNIST tasks, we
experimented our UCL on three additional datasets, Split CIFAR-100, Split CIFAR10/100 and
Omniglot. For Split CIFAR-100, each task consists of 10 consecutive classes of CIFAR-100, for Split
CIFAR-10/100, we combined CIFAR-10 and Split CIFAR-100, and for Omniglot, each alphabet is
treated as a single task, and we used all 50 alphabets. For Omniglot, as in [25]], we rescaled all images
to 28 x 28 and augmented the dataset by including 20 random permutations (rotations and shifting)
for each image. For these datasets, unlike in the previous experiments using FNNs, we used deeper
CNN architectures, in which the notion of uncertainty in the convolution layer is defined for each
channel (i.e., filter). We used multi-headed outputs for all experiments, and 8 different random seed
runs are averages for all datasets. The details of experiments using CNNs, including the architectures
and hyperparameters, are given in the Supplementary Materials. In Figure [/, we compared UCL
with EWC and SI and carried out extensive hyperparameter search for fair comparison. We did not
compare with VCL since it did not have any results on vision datasets with CNN architectures.
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(a) Split CIFAR-100 (b) Split CIFAR-10/100
Figure 7: Experiments on supervised learning using convolutional neural network

5 10 15 20 25 30 35 40 45 50
Task

(c) Omniglot

In Split CIFAR-100, EWC and ST achieve 60.5% and 60.0% respectively. However, UCL outperforms
SI and EWC achieving 63.4%. In a slightly different task, Split CIFAR-10/100, which prevents
overfitting on Split CIFAR-100 using a model pre-trained on CIFAR-10, UCL also outperforms
baselines by achieving 73.2%. In Omniglot, although UCL becomes slightly unstable for the first
task, it eventually achieves 83.9% average accuracy on all 50 tasks. However, EWC and SI only
achieves 68.1% and 74.2% respectively, much lower than UCL. From above three results, we clearly
observe UCL clearly outperforms the baselines for more diverse and sophisticated vision datasets
and for deeper CNN architectures.

Table 1: The number of parameters used for each benchmark.

Dataset\Methods Vanilla | EWC SI HAT VCL UCL
Permuted MNIST 478K | 1435K | 1435K | 486K | 1914K 960K
Split MNIST 270K 808K 808K | 272K | 1077K 538K
Split notMNIST 187K 559K 559K | 190K | 749K 375K
Split CIFAR10/100 | 839K | 2467K | 2467K - - 1655K
Omniglot 1773K | 1995K | 1995K 1884K

Comparison of model parameters Table [I| shows the number of model parameters in each experi-
ment. Vanilla stands for the base network architecture of all methods. It is shown that UCL has fewer
parameters than other regularization-based approaches. Especially, UCL has almost half the number
of VCL, which is based on the similar variational framework. Although HAT shows the least number
of parameters, we stress it has the critical drawback of requiring to know the number of tasks a priori.

4.2 Reinforcement learning

Here, we also tested UCL for the continual reinforcement learning tasks. Roboschool [24] consists of
12 tasks and each task has a different shape of the state and continuous action space, and goal. From
these tasks, we randomly chose eight tasks and sequentially learned each task (with 5 million update



steps) in the following order, { Walker-HumanoidFlagrun-Hooper-Ant-InvertedDouble Pendulum-
Cheetah-Humanoid-InvertedPendulum}. We trained a FNN model using PPO as a training
algorithm and selected EWC and Fine-tuning as baselines. All baselines were experimented in exactly
the same condition, and we carried out an extensive hyperparameter search for fair comparison.
More experimental details, network architectures, and hy-

perparameters are given in the Supplementary Materials.  14] — ucL (off, = 5x10-%, § = 5x10-) |
Figure [§|shows the cumulative normalized rewardsup to ~__, UCL (off, = 5x1072, § = 5x10°°) |
the learned task, and Figure |2| shows the normalized re- —[Ewca si10 i

—— Fine-tuning

-
o

wards for each task with vertical dotted lines showing the
boundaries of the tasks. The normalization in the figures
was done for each task with the maximum rewards ob-
tained by EWC (A = 10). The high cumulative sum thus
corresponds to effectively combating the catastrophic for-
getting (CF), and we note Fine-tuning mostly suffers from 2
CF (e.g., Task2 or Task4). Note we show two versions of
UCL, with different 3 hyperparameter values. In Figure [8]
we observe both versions of UCL significantly outperform  Figure 8: Cumulative normalized re-
both EWC and Fine-tuning. We believe the reason why wards.

EWC does not excel as in Figure 4B of the original EWC

paper is because we consider pure continual learning setting, while allows learning tasks
multiple times in a recurring fashion. Moreover, a possible reason why UCL achieves such high
rewards in RL setting may be due to the by-product of our weight sampling procedure; namely, the
Gaussian perturbation of the weights for the variational inference enables an effective exploration of
policies for RL as suggested in [21]]. Figure [0]shows UCL overwhelmingly surpasses EWC partic-
ularly for Task1 and Task3 (by both achieving high rewards and not forgetting), and it contributes
to the significant difference between EWC in Figure[8] We also experimentally checked the role
of 3 for gracefully forgetting; although UCL with 3 =5 x 10~° results in overall better rewards,
with 3 =5 x 10~° does better in learning new tasks, e.g., Task5/7/8, by adding more plasticity to
the network. To the best of our knowledge, this result shows for the first time that the pure continual
learning is possible for reinforcement learning with continuous action space and different observation
shapes. We stress that there are very few algorithms in the literature that work well on both SL and
RL continual learning setting, and our UCL is very competitive in that sense.

Accumulated performance
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Figure 9: Normalized rewards for each task throughout learning of 8 RL tasks. Each task is learned
with 5 million training steps. UCL excels in both not forgetting past tasks and learning new tasks.

5 Conclusion

We proposed UCL, a new uncertainty-based regularization method for overcoming catastrophic
forgetting. We proposed the notion of node-wise uncertainty motivated from the Bayesian online
learning framework and devised novel regularization terms for dealing with stability-plasticity
dilemma. As a result, UCL convincingly outperformed other state-of-the-art baselines in both
supervised and reinforcement learning benchmarks with much fewer additional parameters.



Acknowledgements

This work is supported in part by ICT R&D Program [No. 2016-0-00563, Research on adaptive ma-
chine learning technology development for intelligent autonomous digital companion], AI Graduate
School Support Program [No.2019-0-00421], and ITRC Support Program [IITP-2019-2018-0-01798]
of MSIT / IITP of the Korean government.

References

[1] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. In International Conference on Machine Learning (ICML), pages 1613-1622,
2015.

[2] Gail A Carpenter and Stephen Grossberg. Art 2: Self-organization of stable category recognition
codes for analog input patterns. Applied Optics, 26(23):4919-4930, 1987.

[3] Geoffrey E. Hinton and Drew Van Camp. Keeping neural networks simple by minimizing the
description length of the weights. Proceedings of COLT-93, 07 1999.

[4] Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cognitive
Sciences, 3(4):128-135, 1999.

[5] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning (ICLR), pages
1050-1059, 2016.

[6] Alex Graves. Practical variational inference for neural networks. In Advances in Neural
Information Processing Systems (NIPS), pages 2348-2356, 2011.

[7] K. He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Computer Vision and Pattern Recognition (CVPR), 2015.

[8] José Miguel Herndndez-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In International Conference on Machine Learning (ICML),
pages 1861-1869, 2015.

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[10] Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental learning.
In International Conference on Learning Representations (ICLR), 2018.

[11] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations (ICLR), 2014.

[12] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catas-
trophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
114(13):3521-3526, 2017.

[13] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In Advances in Neural Information
Processing Systems (NIPS), pages 4652—-4662. 2017.

[14] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2935-2947, 2017.

[15] David Lopez-Paz and Marc Aurelio Ranzato. Gradient episodic memory for continual learning.
In Advances in Neural Information Processing System (NIPS), pages 6467-6476. 2017.

[16] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network
by iterative pruning. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

10



[17] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:

The sequential learning problem. In Psychology of Learning and Motivation, volume 24, pages
109-165. Elsevier, 1989.

[18] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: In-
vestigating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers
in Psychology, 4:504, 2013.

[19] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual
learning. In International Conference on Learning Representations (ICLR), 2018.

[20] German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. CoRR, abs/1802.07569, 2018.

[21] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations (ICLR), 2018.

[22] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2001-2010, 2017.

[23] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[24] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[25] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-
work for continual learning. In International Conference on Machine Learning (ICML), pages
4528-4537, 2018.

[26] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning
(ICML), pages 4548-4557, 2018.

[27] Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. Continual learning with deep
generative replay. In Advances in Neural Information Processing System (NIPS), pages 2990—
2999. 2017.

[28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15:1929-1958, 2014.

[29] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. In International Conference on Learning Representations
(ICLR), 2018.

[30] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In International Conference on Machine Learning (ICML), pages 3987-3995,
2017.

11



