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Abstract

Topic models are becoming increasingly relevant probabilistic models for dimen-
sionality reduction of text data, inferring topics that capture meaningful themes of
frequently co-occurring terms. We formulate topic modelling as an information
retrieval task, where the goal is, based on the latent topic representation, to cap-
ture relevant term co-occurrence patterns. We evaluate performance for this task
rigorously with regard to two types of errors, false negatives and positives, based
on the well-known precision-recall trade-off and provide a statistical model that
allows the user to balance between the contributions of the different error types.
When the user focuses solely on the contribution of false negatives ignoring false
positives altogether our proposed model reduces to a standard topic model. Exten-
sive experiments demonstrate the proposed approach is effective and infers more
coherent topics than existing related approaches.

1 Introduction

Topic models are ubiquitous probabilistic models for text data suitable for corpus exploration and
summarisation as well as for predictive tasks (Blei et al., 2003). The inferred topics are deemed to
be useful and meaningful for human interpretation. Accordingly, there is a strong need to develop
inexpensive quantitative evaluation methods to assess the quality of the inferred topics efficiently
and accurately, because human-based evaluations are slow and elaborate.

Mimno et al. (2011) present a useful data-based quantitative evaluation criterion for measuring qual-
ity of the topics. The measure relies on pair-wise word co-occurrence statistics computed efficiently
over the corpus and agrees well with human-based topical quality evaluations. Wallach et al. (2009)
present evaluation methods based on predictive performance (held-out data likelihood). However,
Chang et al. (2009) demonstrate with large-scale human-based evaluations that predictive likelihood
may not be a useful criterion; models with better predictive ability may infer less semantically mean-
ingful topics. The finding undermines the core modelling assumptions, complicating development
of human-interpretable models. Even though many authors (Arora et al., 2012; AlSumait et al.,
2009; Griffiths et al., 2004; Minka and Lafferty, 2002; Teh and Jordan, 2010) have proposed partic-
ular topic model variants, based on different modelling assumptions, empirically reporting improved
topic coherences, all these assumptions may not be interpreted or justified with a robust quantitative
evaluation framework.

In this work, we formulate topic modelling as a novel information retrieval task, where the goal
is to retrieve recurring word co-occurrence patterns based on the latent topic representation. We
quantify the task performance regarding two types of errors, false negatives (referred to as, misses)
and false positives, measured via concepts of recall and precision, respectively. We present a novel
topic model that allows the user to trade-off between contributions of the two error types efficiently,
and show that taking precision also into account significantly improves topic quality. We show
that standard topic models emphasise recall, penalising only misses, at the expense of discarding
precision altogether not taking into account false positives.
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The paper is structured as follows. Section 2 provides sufficient background on topic modelling
and shows that standard topic models emphasise the contribution of misses. In Section 3, we first
formulate topic modelling as an information retrieval task and present formulations of recall and
precision suitable for the task. Then we present a novel model, that is able to balance between recall
and precision, accompanied with an efficient inference algorithm. Section 3.3 discusses relevant
related work, Section 4 contains experiments and results, and Section 5 concludes the paper.

Notation: Consider M documents ym, where m = 1, . . . ,M , such that ym,d, where d = 1, . . . , D,
denotes a frequency of the dth term in the vocabulary for the mth document. We denote Nm in-
dividual words for the mth document as wm,n ∈ {1, D}, where n = 1, . . . , Nm, and note that
ym,d =

∑Nm

n=1 I[wm,n = d], where I[·] denotes the indicator function taking value one if argument
is true and zero otherwise.

2 Topic models are recall-biased

Standard topic models, prominently Latent Dirichlet Allocation (LDA; Blei et al., 2003), assume
multinomial likelihood

Lm =
∏D

d=1
q
ym,d

m,d ,

where qm ∈ ∆D denotes an unknown expectation parameter of the multinomial distribution, sat-
isfying qm,d ≥ 0 and

∑D
d=1 qm,d = 1. The goal of topic modelling is, based on the corpus, to

infer a set of K topics capturing a lower dimensional representation suitable for summarisation and
prediction tasks. Topic models assume the expectations qm decompose as a linear decomposition

qm =
∑

k
ηkθm,k,

where ηk ∈ ∆D, for k = 1, . . . ,K, correspond to the topics and θm ∈ ∆K to topic proportions.

We define an empirical word occurrence distribution over the vocabulary for the mth document
pm,d = ym,d/Nm,

noting that qm should be similar to pm, for m = 1, . . . ,M . Because the decomposition is uniden-
tifiable, similarities need to be computed between pm and qm. Naturally, inferring qm that is closer
to pm leads to more accurate topics.

The mean multinomial log likelihood,

1/Nm logLm = 1/Nm

∑
d
ym,d log qm,d =

∑
d
pm,d log qm,d,

relates to the KL-divergence between empirical and latent word distributions,

KL(pm, qm) =
∑

d
(pm,d log pm,d − pm,d log qm,d) = Hm − 1/Nm logLm, (1)

where Hm is the negative entropy of pm. The asymmetric KL-divergence (1) provides a similarity
measure between the empirical and latent distributions, that is sensitive to the contribution of misses,
corresponding to terms for which pm are large but the corresponding qm are small, and, thus, closely
relates to the concept of recall. The model may infer dense and spurious topics, because qm must be
non-zero for all pm > 0, proportionally to the actual counts. Even though, these topics emphasise
recall, they may have very low precision, containing intruder terms that capture false similarities.

3 Information retrieval aspect

We formulate topic modelling as an information retrieval task: based on the retrieval model qm,
the goal is to retrieve co-occurring terms. Here, the pm represent relevances (that is, empirical
co-occurrences) and qm should be similar to the pm, avoiding errors. We characterise two classes
of errors, misses as well as false positives: terms for which pm are large but qm are small corre-
spond to misses and terms for which qm are large but pm are small correspond to false positives.
Naturally, concepts of recall and precision may be quantified with the directed KL divergences, be-
cause KL(pm, qm) emphasises misses and the reversed divergence KL(qm,pm) emphasises false
positives. Both measures, or divergences in general, are positive and lower bounded by zero with
equivalence if and only if the arguments equal. Mean divergences over documents may be used to
assess the performance for the corpus.
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3.1 Connections to precision and recall for binary relevances

It is useful to consider maximum entropy distributions for p and q to further illustrate connections
between theKL-divergences and standard recall and precision that are suitable for binary relevances
(a term is or is not relevant). The maximum entropy distributions, denoted as p∗ and q∗, take uniform
values over the support of the distributions, denoted as P andQ, respectively, whereas the remaining
values are (arbitrarily close to) zero. In the following, we denote these zero-probabilities with a very
small positive number ε, 1� ε ≈ 0, noting that log ε� 0.

KL(p∗, q∗) consists of the negative entropy of p∗,
∑
i p
∗
i log p∗i = − log |P |, where | · | computes

set cardinality, and the cross-divergence,
∑
i p
∗
i log q∗i , which further decomposes into |P ∩Q| true

positives with weight 1
|P | log 1

|Q| , |(P ∪Q)c| true negatives1 with weight ε log ε, |Q|− |P ∩ Q| false
positives with weight ε log 1

|Q| and |P | − |P ∩Q| misses with weight 1
|P | log ε. Because ε ≈ 0, the

divergence is dominated by misses, terms that are in P (relevant) but not in Q (retrieved). Thus,

KL(p∗, q∗) = C +
|P ∩Q|
|P |

log ε, (2)

whereC contains the remaining expressions, is proportional to standard recall, proportion of relevant
terms that are retrieved.

On the other hand, KL(q∗,p∗) consists of the negative entropy of q∗, − log |Q|, and the cross-
divergence,

∑
i q
∗
i log p∗i , which decomposes into |P ∩ Q| true positives with weight 1

|Q| log 1
|P | ,

|(P ∪Q)c| true negatives with weight ε log ε, |Q|− |P ∩Q| false positives with weight 1
|Q| log ε and

|P | − |P ∩Q| misses with weight ε log 1
|P | . Following similar reasoning as above, the divergence is

dominated by false positives, terms that are in Q (retrieved) but not in P (relevant). Thus,

KL(q∗,p∗) = C +
|P ∩Q|
|Q|

log ε, (3)

is proportional to standard precision, proportion of retrieved terms that are relevant.

Because of the connections (2) and (3), we may interpret the directed divergences as generalisations
of the concepts of recall and precision for continuously-valued grades of relevances.

3.2 Precision-recall balanced topic model

Following the well-known precision-recall trade-off, we present a new model that is able to com-
promise between the contributions of misses and false positives, both capturing recurring word co-
occurrence patterns and avoiding false similarities. We generalise over standard topic models that
are only able to account for misses.

Our model is based on the K-divergence (Lin, 1991),

K(pm, qm) =
∑

d
pm,d log

pm,d
(1− λ)qm,d + λpm,d

(4)

where 0 < λ < 1 is a user-defined parameter. In the following, we show that λ intuitively trade-offs
the balance between recall and precision; Section 4 further establishes experimental evidence sup-
porting this property. We also show that for this divergence inference can be carried out efficiently.

The K-divergence equals zero if and only if pm = qm and is both lower as well as upper bounded,
0 ≤ K(pm, qm) ≤ − log(λ).

The K-divergence is always well-defined for all values for qm ∈ ∆; this is especially relevant at the
boundaries of ∆. Consequently, the K-divergence (4) is not as sensitive to misses as KL(pm, qm),
which approaches infinity close to the boundaries imposing infinite penalty for misses, essentially,
imposing a barrier function.

We note that for the maximum entropy distributions, as considered in Section 3.1, the K-divergence
becomes, for ε→ 0,

K(p∗, q∗) = −|P ∩Q|
|P |

log

(
1 + λ̂

|P ∩Q|
|Q|

(
|P ∩Q|
|P |

)−1)
− log(λ),

1Upper index (·)c stands for set complement.

3



where λ̂ = 1−λ
λ . Applying the logarithmic inequality, x

x+1 < log(1 +x) < x; x > −1∧x 6= 0, we
further notice, that the first expression on the right hand side of the divergence is bounded between
weighted harmonic mean of precision and recall and weighted precision,

1− λ
λ
( |P∩Q|
|Q|

)−1
+ (1− λ)

( |P∩Q|
|P |

)−1 < |P ∩Q||P |
log

(
1 + λ̂

|P ∩Q|
|Q|

(
|P ∩Q|
|P |

)−1)
< λ̂
|P ∩Q|
|Q|

.

For λ close to zero, the divergence emphasises recall, whereas for increasing λ it takes precision
also into account.

We complement the topic model with a mixture of the qm and document-specific distribution bm ∈
∆D. For bm = pm, the corresponding likelihood for the ym is

LKm =
∏

d

(
(1− λ)qm,d + λbm,d

)ym,d

and we note that the likelihood is connected to the K-divergence,

1/Nm logLKm = Hm −K(pm, qm).

In order to retain the properties of the K-divergence suitable for the information retrieval setting
considered, we assume bm = pm, estimating the bm based on the observed counts. We emphasise
that even though we may not generate data from the prior distribution we may use the predictive and
posterior distributions as usual. There is little or no need in practice to generate data from the prior
distribution and all inferences condition on the observed data.

To carry out inference, we apply an MCMC framework in an empirical Bayesian setting, follow-
ing Casella (2001), employing the empirical distributions as well as introducing prior distributions
for the topics as well as topic proportions. We prefer using MCMC over approximate VB or EP
approaches that fail to address the true posterior distribution.

We introduce i) word-specific binary assignment variables

xm,n ∼ Bernoulli(λ),

for m = 1, . . . ,M and n = 1, . . . , Nm, to indicate whether wm,n is explained by the qm or pm and
ii) categorical topic assignment variables cm,n ∈ {1, . . . ,K} for words that are generated based on
the qm, respectively. When xm,n = 0 with probability 1− λ, the word is explained by the qm as in
standard topic models. Given the word assignment

cm,n ∼ Categorical(θm)

the word is generated from the cm,nth topic,

wm,n ∼ Categorical(ηcm,n
).

To complete the model description, we assume

ηk ∼ Dirichlet(γ1), θm ∼ Dirichlet(α),

where γ and αk, for k = 1, . . . ,K, denote parameters of the Dirichlet distributions.

We present a collapsed Gibbs sampling algorithm building on Griffiths and Steyvers (2004) to carry
out posterior computations efficiently. We jointly sample the two types of assignment variables. The
probability that wm,n = d is assigned to the kth topic is

p(cm,n = k, xm,n = 0) ∝
N
−(wm,n)
k,m + αk∑

k′ N
−(wm,n)
k′,m +

∑
k′ αk′

×
G
−(wm,n)
k,d + γ∑

d′ G
−(wm,n)
k,d′ + γD

and the probability that the term is explained by the empirical distribution is

p(xm,n = 1) ∝ λ

1− λ
pm,d.

Here the upper index (·)−(wm,n) denotes discarding contribution of the current word from topic-
document and topic-term count matrices denoted by Nk,m and Gk,d, respectively. Each sampling
step updates all the assignments. The algorithm has little additional computational load compared to
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collapsed Gibbs sampling for LDA, obtained when setting λ = 0, because the empirical distributions
may be cached.

Spatio-temporal extension: In addition to text data, we also demonstrate the model on crime data.
Here, the terms correspond to crime occurrences within an area and documents collect occurrences in
non-overlapping time windows. Accordingly, to impose smoothness, we modify only the priors for
θm and ηk; the topics may be interpreted as crime maps, more mass is assigned to areas with higher
crime rates. We introduce βk ∼ Normal(0,Q−1), for k = 1, . . . ,K, and use ηk ∝ exp(βk)2. The
elements of Q for off-diagonal elements take value −δ for two neighbouring areas, otherwise zero,
and the diagonal contains the total number of neighbours for each area plus an additive constant
κ > 0 multiplied by δ. We use θm,k ∝ exp(αm,k), where αm,k ∼ Normal(αm−1,k, τ−1), for
m > 1, and α1,k ∼ Normal(0, 10). We fix κ to a small value (10−2) and infer αm,k and βk,d using
slice sampling, and employ Gibbs for δ and MH for τ with Gamma(1, 10−3) priors.

3.3 Related work

Chemudugunta et al. (2006) present a related topic model that is able to infer, in addition to topics
that are shared by all documents, document-specific distributions that explain document-specific
words. Following our model notation, the model introduces λm for each document and infers bm
based on the data, employing symmetric and weakly informative Beta and Dirichlet priors for the
λm and bm, respectively. For this model, almost surely bm 6= pm, meaning that the model has no
connection to the K-divergence and, importantly, to the information retrieval setting and is unable
to balance between precision and recall, as considered in this work. In other words, bm biases the
latent representation qm. Interestingly, we show that our model may be interpreted as a limiting
case when adopting strongly informative and asymmetric priors, as follows. Assume

λm ∼ Beta ((1− λ) v, λv) and bm ∼ Dir(pmv + ε1),

where v denotes strength of the prior and ε ≈ 0. When v → ∞, the priors reduce to point distribu-
tions and the model becomes equivalent to our model. Both computationally and conceptually, our
model is simpler; in practice, tuning the prior strengths is not straightforward. This tuning can be
expensive and is further data-set dependent.

Stochastic Neighbour Embedding (SNE; Hinton and Roweis, 2002) is a statistical model for nor-
malised similarity data suitable for nonlinear dimensionality reduction. The model applies KL-
divergences between the observed similarities (distributions) and latent distributions as likelihoods.
Peltonen and Kaski (2011) propose a variant of SNE, that applies K-divergence instead, although
the authors do not cite the original work of Lin (1991), and show that the model provides improved
visualisation performance compared to the original SNE.

4 Results

We compare our model against LDA and, as discussed in Section 3.3, to the closely related model
by Chemudugunta et al. (2006), referred to as SW model. For all the models, based on text data, we
employ collapsed Gibbs sampling for inference.

We quantitatively evaluate topic semantic coherences (Mimno et al., 2011) and entropies, directed
KL-divergences, corresponding to concepts of precision and recall, standard recall and precision for
binarised relevances as well as (metric) variational (`1) distances and adjusted rand index (ARI) for
document clustering (when category information is available) for various data collections and for a
wide range of different values for λ.

We compute the divergences and distances for held-out (test) data not used for inferring the top-
ics. We sample 1/5 of the documents for each data collection to create a test set containing M̂
documents. We estimate the latent test distribution as

q̂m =
1

S

∑
s

∑
k

η
(s)
k θ̂

(s)
m,k,

2For identifiability, we fix βk,1 ≈ 0 by setting the corresponding variance to an arbitrarily small value.
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averaging over S posterior samples3. To ease presentation of results, we denote mean divergences
for the held-out data as

(mean) recall = − 1

M̂

∑
m
KL(p̂m, q̂m) and (mean) precision = − 1

M̂

∑
m
KL(q̂m, p̂m),

where p̂m denotes the test empirical distributions. We also evaluate (mean) standard recall and
precision; here Pm contains all the terms that occur at least once for the mth test document and Qm
contains the top-J retrieved terms based on q̂m, correspondingly. We note that for both measures
higher values indicate better performance. When computing the test divergence KL(q̂m, p̂m), we
smooth the p̂m by adding a very small constant to the counts before normalisation in order to prevent
numerical problems; the cost of false positives should be large but finite. We also compute (mean)
`1 distances as

1

M̂

∑
m

∑
d

|q̂m,d − p̂m,d|.

Computation of the topic coherences requires specifying a threshold for sorting T most probable
terms for each topic in decreasing order. The measure penalises for intruder and random terms
corresponding to false similarities. We show results for T = {5, 10, 15, 20}. For the entropies,
we note that topics with low entropy focus the probability mass on few terms, indicating sparsity;
a highly desired property for improving interpretability. We average values for coherences and
entropies over the topics. When category information is available, we cluster documents according
to the most active topic for each document based on θ(s)m and compute adjusted Rand index (ARI) to
measure similarity between the inferred clusterings and available category information. We do not
assume the number of clusters to be known; the number of potential clusters is constrained by the
number of topics.

We show the model performance for three subsets of publicly available data collections, NYTIMES4,
movie reviews5 and 20newsgroup6, as well as for textual product descriptions combined with cate-
gorical information that we employ for further evaluations. Category information is also available
for 20newsgroup. Table 1 shows relevant statistics for each collection.

Table 1: Data statistics.

Data set M D
∑
mNm

NYTIMES 6800 19908 2.00× 106

PRODUCTS 7743 14237 1.29× 106

MOVIES 4997 25884 0.80× 106

20NEWSGROUP 18307 28794 2.03× 106

We initialise the assignments randomly and set αk = 0.1 and γ = 0.01, corresponding to weakly
informative priors, and use 5 × 103 sampling steps as burnin. After the burnin we collect posterior
averages for S = 200 samples. We find the number of steps for burnin sufficient for convergence by
monitoring log likelihood. We infer the models for K = 200 topics and for 21 equi-spaced values
between (0, 0.2) for λ, noting that, λ = 0, corresponds to the standard topic model (LDA).

Table 2 collects results for λ = 0.1 for our model, LDA and SW. Unsurprisingly, recall is always
best for LDA (λ = 0). For our model recall decreases, naturally, because the model takes also
precision into account; precision is best for our model. The standard recall (R@J) and precision
(P@J) measures for J = 10 (in percentages) show that standard precision is always best for our
model and similarly for standard recall, except for the 20NG data set. The coherences (coh@T) are
consistently best for our model, except for the PROD data set for T = 20, showing that models
that focus solely on recall do not obtain high coherences. This observation is in agreement with
Chang et al. (2009), who find that models with better predictive performance (i.e., mean recall)
may infer less semantically meaningful topics. Our model also attains smaller (better) mean `1
distances, which evaluate metric distance, between p̂ and q̂. Further, the inferred topics of our
model are more sparse, measured via topic entropies (ent). In addition, our model attains best ARI

3For each sample η
(s)
k , k = 1, . . . ,K, we sample θ̂

(s)

m .
4https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
5http://www.cs.cornell.edu/people/pabo/movie-review-data/
6http://qwone.com/~jason/20Newsgroups/
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Table 2: Quantitative results for our model for λ = 0.1, LDA and SW for various data sets. Bolding
indicates best results that are statistically significant (p < 0.01). For the recall and precision mea-
sures and distances we use the paired one-sided Wilcoxon test over the test documents, and for the
coherences, entropies and ARI the unpaired one-sided Wilcoxon test over the S samples.

NYT recall precision R@J[%] P@J[%] coh@5 coh@10 coh@15 coh@20 `1 ent ARI
Our -3.61 -72.7 5.97 63.6 -16 -77.6 -190 -358 1.63 4.78 -
LDA -2.97 -78.8 5.22 55.6 -23.1 -114 -275 -511 1.74 5.85 -
SW -3.14 -79.3 5.28 56.6 -16.4 -80.8 -200 -378 1.75 5.82 -

20NG recall precision R@J[%] P@J[%] coh@5 coh@10 coh@15 coh@20 `1 ent ARI
Our -5.54 -83.7 8.92 32.3 -18.8 -99.2 -257 -521 1.84 4.49 0.209
LDA -4.22 -86.4 9.85 30.2 -21 -116 -306 -606 1.9 5.81 0.15
SW -4.35 -86.3 9.76 30.4 -20.4 -106 -277 -538 1.9 5.74 0.166

PROD recall precision R@J[%] P@J[%] coh@5 coh@10 coh@15 coh@20 `1 ent ARI
Our -3.62 -70.5 11.7 69.1 -16.9 -87.1 -226 -462 1.56 3.6 0.15
LDA -2.81 -77.8 9.44 55.8 -23.8 -121 -304 -584 1.7 5 0.127
SW -2.98 -77.8 9.94 58.7 -17.9 -90.2 -230 -447 1.7 4.91 0.133

MOV recall precision R@J[%] P@J[%] coh@5 coh@10 coh@15 coh@20 `1 ent ARI
Our -4.41 -73.7 8.53 57.2 -16.1 -88.6 -237 -493 1.67 4.89 -
LDA -3.61 -82.6 7.91 51.5 -25.3 -143 -390 -787 1.82 5.87 -
SW -3.66 -82.1 8.17 52.8 -17.9 -95.5 -255 -522 1.81 5.73 -

values, showing that topics inferred by our model are in closer agreement with the external category
information, providing further quantitative evidence of better performance for our model. We note
that the conclusions based on Table 2 are similar for λ ∈ (0.07, 0.11), showing that obtaining good
results is not sensitive for particular λ. We also experimented with a variant of the SW model that
additionally includes a shared background distribution (referred to as, SWB). The results for SWB
are marginally worse or similar to SW, suggesting that including a common background distribution
is not effective for improving performance.
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Figure 1: Various performance measures for different values for λ for the NYT data set. We note
that LDA corresponds to λ = 0. The curves are similar for the other data sets.

Figure 1 shows results for a wider range of λ for the NYT data set. For the divergences and distances
we plot mean values versus λ and for entropies and coherences we use boxplots, respectively. The
performance curves, as shown in Figure 1, are smooth for a wide range of values for λ, demonstrating
stable computations, and we see that recall is always best for LDA (λ = 0), decreasing for increasing
values for λ, and precision increases for increasing values for λ. Even small deviations from λ = 0
are sufficient to shift the focus from recall to a compromise between recall and precision. For
increasing λ the model also attains smaller (better) mean `1 distances. The saturating distance curves
also show an effective range for λ values; for λ � 0.2 (not shown), the computations eventually
become more unstable, because more and more terms are assigned to the empirical distributions
and the topics become too sparse complicating posterior inference. In particular, the entropies show
how the topics become (on average) more sparse for increasing λ. The coherences are best for our
model for intermediate values for λ. The coherence curves follow similar trend for other values for
the threshold 2 ≤ T ≤ 20. However, the measure is sensitive to topic sparsity; if the support of
the topic distribution is smaller than T the measure becomes more noisy and less meaningful. We
verified that the supports of the topics are larger than T = 20 for the data collections for λ ≤ 0.2.

To summarise, we observe a general trend showing that recall is negatively correlated with the other
performance measures; as recall decreases, the other measures improve. On the other hand, we ob-
serve that precision is positively correlated with the other performance measures, excluding recall.
Higher precision implies that the model infers i) latent distributions that have smaller `1 distance to
test empirical distributions, and ii) topics that are more sparse and more semantically meaningful.
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We emphasise that increased sparsity alone does not indicate improved precision; sparse topic mod-
els that aim to infer sparse topics focus solely on recall. For instance, Wang and Blei (2009) report
improved predictive performance (that is, recall) for sparse models.

Tuning of the LDA hyperparameters is ineffective to trade-off recall and precision. Intuitively,
prior tuning is unable to overcome problems of the likelihood function; here the sensitivity of the
KL(p,q) to misses. We fix this issue by modifying directly the likelihood function. We empirically
varied both α and γ in the range {10−3, 10−2, 0.1, 1} for LDA for all data sets and found that
γ ≤ 0.01 (inducing sparsity) is preferred for topics (larger values produced useless results despite
different α). Although, too small γ may increase computational complexity and the risk of getting
stuck in a locally optimal mode. For a sparse topic prior, increasing α (i) decreases topic entropies
(inferring sparser topics), (ii) coherences improve marginally or remain the same and (iii) both recall
and precision decrease. Recall and precision curves for different γ as a function of α have similar
form peaking at α = {0.01, 0.1} and γ = {10−3, 10−2}, verifying that the adopted setting for LDA
is competitive. Despite the tuning, the precisions and coherences are worse than for our model.
We also repeated the experiment for an asymmetric topic prior, that is proportional to overall term
occurrences, matching the prior strength to equal the strength of the symmetric variant for varying
γ. The results for the asymmetric prior are very similar to the symmetric prior showing that the
asymmetric prior is ineffective to boost precision.

Table 3: Illustration of top topics with top words inferred based on the NYT data.
Our model
T1 point game team shot half minutes play lead season left rebound games guard coach *laker win quarter night played ball

T2 game team playoff season titan games *nfl *jacksonville *miami dolphin play quarterback win *tennessee jaguar *super-bowl *dan-marino played yard won

T3 team player game games season play coach played basketball sport fan win playing championship winning guy won record league football

T4 *al-gore *bill-bradley *bradley campaign *iowa president democratic *new-hampshire health vice care voter debate caucuses support presidential candidates poll vote administration

T5 tablespoon cup minutes add oil pepper large garlic medium serve onion sauce serving bowl fresh pound chopped taste butter chicken

LDA
T1 guy right look thought hard talk tell getting put feel bad remember told trying happen kind give real ago sure

T2 asked question statement called told saying public interview conference meeting comment reporter added issue took decision member matter plan clear

T3 win won record winning victory lost beat past early loss road finished final season home losing start lead close need

T4 need feel help problem kind find try getting job able success important step experience level look right start hard hope

T5 company companies business industry customer market part high product technology executive firm president competition executives line competitor big chief system

SW
T1 company companies business industry million firm customer executive largest executives market billion part analyst chief businesses employees services sales president

T2 team season playoff game *nfl games quarterback coach *super-bowl football player *jacksonville titan *miami dolphin *tennessee played play record *ram

T3 win lead lost won final beat victory point season record loss early home put winning start gave right consecutive losing

T4 guy real right big put look pretty talk course happen tell getting bad mean kid talking wrong hear question head

T5 election presidential candidates campaign voter democratic candidate republican vote political *republican primary president race party democrat *party support poll win

Table 4: Illustration of top terms explained by the empirical distributions (or document-specific
distributions) for the NYT data.

Our model
million percent home plan team right system company
problem part need game official point early money
american president run play business public record talk
high head set government told place night show big
country season decision control deal half return found
look line left find help called family group newspaper

SW model
*mccain percent *governor-bush *john-mccain
*bill-bradley *george-bush *bradley women *bush drug
*clinton *al-gore *internet fund *bleated-nato abortion
union *ram *party test *black children card
*harvard-pilgrim gun *steve-forbes bill *army *gore game
cancer *cowboy *buc firm companies *republican *russia

Table 3 shows top-5 topics, based on one posterior sample, sorted according to decreasing topic size,
another useful measure for topic quality (Mimno et al., 2011), for the NYT data collection, for our
model for λ = 0.1, LDA and SW model. Named entities are referred to as using ∗-symbol for the
terms. The topics for our model are semantically meaningful, capturing certain intuitive themes, as
desired. On the other hand, the LDA topics capture frequently occurring words but the topics are
not as meaningful and do not correspond to any evident themes. Inspection of such poor quality
topics, thought to be the most representative, undermine users’ confidence in trusting the inferred
model. The SW model falls between our model and LDA, retaining topics similar to LDA that are
not meaningful.

Table 4 shows top words assigned to the empirical distributions (or document-specific distributions)
bm for our and SW models. For our model these terms correspond to frequently occurring terms
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over the collection that pollute the latent representation of LDA. Our model is able to explain these
terms via the empirical distributions leading to more meaningful and more sparse topics, also in-
ferring more accurate latent representations, as verified in Figure 1. The terms for the SW model
are document-specific capturing names of persons or places; most of the terms correspond to the
named entities. Thus the model still needs to explain the frequently occurring terms over the whole
collection, similarly to LDA, inferring poor quality topics that are dense as verified by the large topic
entropies. Also, the bias introduced by the bm leads to inaccurate latent representations as measured
in terms of `1 distances and the divergences.
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Figure 2: Various performance measures for different values for λ for crime prediction.

Spatio-temporal extension: We use publicly available crime data for London7 for crime prediction.
We discretise the data both in space and time, resulting in M = 71 months (finest resolution avail-
able), D = 3.06× 104 and

∑
mNm = 2.68× 105. For the spatial discretisation and computing Q,

we use R-INLA8. Our task is to predict ’hot spots’, a collection of mesh points where crime occurs.
Following Flaxman et al. (2018), we use predictive efficiency and accuracy indices (PEI and PAI,
respectively) for evaluation (the higher, the better). PAI penalises the values by the predicted area
size, giving large values for crime hotspots using the smallest area. PEI computes a ratio between the
number of crimes occurred in the predicted hotspots and the maximum number of crimes that could
have occurred in same area size. In general, PAI and PEI may be interpreted as generalisations of
precision and recall, correspondingly, for spatial crime hotspot prediction. We compute the number
of hot spots by simulation based on q̂m, taking mean of non-zero areas (that is, support of the distri-
bution, |Q̂m|) and set top-|Q̂m| areas as hot spots. Again, we remove 1/5 as test data and estimate
q̂m by simulation from the posterior. For K = 5, Figure 2 shows: i) the recall-precision trade-off,
ii) better PEI and PAI for increasing values of λ and iii) smaller `1 distances for intermediate λ. For
0.3 ≤ λ ≤ 0.5, the results are statistically meaningful compared to the LDA variant (λ = 0)9. The
conclusions are similar for K = {4, 5, . . . , 10} and the performance does not improve significantly
for K > 5.

5 Discussion

In this work, we present new insights into topic modelling from an information retrieval perspective
and propose a novel statistical topic model combined with an efficient inference algorithm that
allows the user to balance between contributions of precision and recall, inferring more coherent
and meaningful topics. Based on extensive experiments for various data collections and settings, the
results demonstrate the proposed approach is effective and useful.
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