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Abstract

Stochastic composite mirror descent (SCMD) is a simple and efficient method able
to capture both geometric and composite structures of optimization problems in
machine learning. Existing strategies require to take either an average or a random
selection of iterates to achieve optimal convergence rates, which, however, can
either destroy the sparsity of solutions or slow down the practical training speed. In
this paper, we propose a theoretically sound strategy to select an individual iterate
of the vanilla SCMD, which is able to achieve optimal rates for both convex and
strongly convex problems in a non-smooth learning setting. This strategy of out-
putting an individual iterate can preserve the sparsity of solutions which is crucial
for a proper interpretation in sparse learning problems. We report experimental
comparisons with several baseline methods to show the effectiveness of our method
in achieving a fast training speed as well as in outputting sparse solutions.

1 Introduction

Gradient-based methods have found wide applications to solve various optimization problems. A
basic and representative method of this type is the gradient descent, which iteratively moves iterates
along the minus gradient direction of the current iterate. However, gradient descent applied to
machine learning problems requires to go through all training examples at each iteration, which is not
efficient when the sample size is large. Stochastic gradient descent (SGD) relieves this computational
burden by approximating the true gradient of the objective function with an unbiased estimation
based on a randomly selected training example. With this strategy, SGD can achieve sample-size
independent computational cost per iteration and therefore can be successfully applied to very large
datasets which are becoming ubiquitous in the big data era [2, 4, 44].

From different viewpoints, SGD has been extended in various ways. For example, the trick of variance-
reduction has been introduced to exploit the finite summation structure of objective functions for
reducing the inherent variance [16, 33, 40, 43]. Adaptive step sizes were proposed to dynamically
incorporate the knowledge of the geometry of the data observed [9]. Decreasing step sizes in a
stagewise manner is used as a common trick in practice [14, 19, 41]. The trick of momentum is
widely used to accelerate SGD by choosing an appropriate direction to pursue per iteration [18, 26, 29].
Proximal operators have been introduced to capture a structure of optimization problems [28], which
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separates the regularizer and data-fitting terms to achieve a desired regularization effect. The concept
of mirror map has been introduced to induce a Bregman distance for reflecting the geometry of the
associated optimization problem [3, 25]. Empirical studies have shown that these variants can further
improve the practical performance of SGD [4]. In this paper, we consider stochastic composite mirror
descent (SCMD), which combines the technique of mirror map and proximal operator to capture both
the composite and geometry structure of the associated optimization problem.

Theoretical studies of SCMD have attracted much attention since its appearance and many results
have been derived to understand its promising behavior in practice. If the objective function is
convex, then the expected suboptimality of the uniform average of iterates decays with the rate
O(T−

1
2 ) after T iterations [6–8, 30, 46]. If the objective function is strongly convex, then the

expected suboptimality of the uniform average of iterates decays with the rate O(T−1 log T ) [17, 35],
which is unimprovable if the objective function is not smooth [31]. Surprisingly, some averaging
schemes have been proposed to achieve the optimal rate O(T−1) [14, 20, 31, 37]. Although taking
averages of previous iterates can achieve theoretically minimax optimal rates [1], it can have some
practical side effects [31, 36, 37]2. For example, it can destroy the sparsity of the solution which
is often crucial for a proper interpretation of models in many applications. Moreover, averaging
can affect the practical training speed due to the existence of some possibly poor iterates in the
iterate sequence produced by SCMD [31, 36]. The side effect of destroying sparsity can be resolved
by randomly drawing an individual iterate with probabilities proportional to the weights in the
optimal averaging scheme. However, this strategy of selecting a random iterate would introduces
new variances, which may further slow down the training speed due to the possibility of selecting
a poor iterate. Outputting the last SGD iterate is a natural strategy in practice, which would not
affect sparsity and practical training speed. However, the suboptimality for the last SGD iterate
converges with suboptimal rates O(T−

1
2 log T ) and O(T−1 log T ) in the convex and strongly convex

cases [37], respectively. Very recently, it was shown that the last SGD iterate can attain at most a rate
O(T−1 log T ) with high probabilities [13]. These facts motivate us to ask a natural question: can we
develop an algorithm which can inherit the optimal convergence rate from the averaging strategies as
well as the sparsity-preservation and fast practical training speed from the last SGD iterate?

In this paper, we aim to give an affirmative answer to the above question by proposing a novel strategy
to select an individual iterate able to achieve theoretically optimal rates and fast training speed in
practice. We first consider the case with the number of iterations known to us, which allows us to
divide the implementation into two stages. The first stage produces an output with some averaging
scheme, which is then used in the second stage to select an individual iterate according to the one-step
progress evolution of SCMD. We then extend this algorithm to the online learning setting where
training examples arrive in a sequential way. We show that our algorithm can achieve the optimal
rates O(T−

1
2 ) and O(T−1) in the convex and strongly convex case, respectively. Rooted on a careful

one-step progress analysis, our selection of iterates is based on the difference of two successive
iterates, which shares some spirits with the common heuristic trick of terminating an algorithm if
the distance of two successive iterates is lower than a threshold. Our analysis also removes bounded
subgradient assumptions in the existing discussions of optimal learning rates [14, 20, 31, 37]. We
report experimental results to confirm the effectiveness of the proposed algorithm in both attaining a
fast training speed and producing a sparse solution.

We present algorithms with motivation in Section 2. Theoretical results and discussions are given in
Sections 3 and 4. Experimental results and conclusions are presented in Sections 5 and 6.

2 Algorithms with Motivations

2.1 Background

In supervised learning, we aim to infer an unknown relationship between input and output variables
from a sequence of training examples {zt = (xt, yt)}t∈N drawn from a probability measure defined
in a sample space Z = X × Y with an input space X ⊂ Rd and an output space Y ⊂ R, where
d ∈ N is the dimension. A very elementary and powerful approximation of this relationship is a linear
model of the form x 7→ 〈w, x〉 with w ∈ Rd, whose behavior at a single training example (x, y) can

2When mentioning averaging, individual iterates or last iterate, our attention is with respect to the iterate sequence
produced by (2.2) below.
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be quantified by a function f(w, z) = `(〈w, x〉, y), where the loss function ` : R2 7→ R+ is convex
with respect to (w.r.t.) the first argument and 〈w, x〉 denotes the inner product between w and x. The
learning process can be often formulated as an optimization problem of a composite structure

min
w∈Rd

φ(w) = Ez[f(w, z)] + r(w), (2.1)

where Ez[·] denotes the expectation w.r.t. z and r : Rd 7→ R+ is a regularizer possibly inducing
sparsity. With specific instantiations of ` and r, Eq. (2.1) covers many famous learning problems in a
unifying framework, including least squares, SVMs, logistic regression, lasso and elastic-net [8, 39].

SCMD provides an efficient first-order method to exploit the composite and geometry structure of the
problem (2.1) [8, 24]. It extends SGD by using a strongly convex and differentiable mirror map Ψ to
generate an appropriate Bregman distance [3, 25] DΨ(w, w̃) = Ψ(w)−Ψ(w̃)−〈w− w̃,∇Ψ(w̃)〉,
where ∇Ψ(w̃) denotes the gradient of Ψ at w̃. Let w1 ∈ Rd be an initial point and {ηt}t∈N
be a step size sequence. Up on the arrival of zt at the t-th iteration, we calculate a subgradient
f ′(wt, zt) ∈ ∂wf(wt, zt) as an unbiased estimate of F ′(wt) ∈ ∂F (wt), where ∂wf(wt, zt) denotes
the subdifferential of f(·, zt) at wt and F (w) = Ez[f(w, z)]. SCMD updates the model by

wt+1 = arg min
w∈Rd

DΨ(w,wt) + ηt
(
〈w −wt, f

′(wt, zt)〉+ r(w)
)
. (2.2)

Intuitively, SCMD uses f ′(wt, zt) to form a first-order approximation of f(·, zt) at wt and uses the
Bregman distanceDΨ(w,wt) to keep wt+1 not far away from the current iterate. The regularizer r is
kept intact here to preserve a regularization effect. Typical choices of mirror maps include the p-norm
divergence Ψp(w) = 1

2‖w‖
2
p (1 < p ≤ 2), which works favorably when the solution of (2.1) is

sparse by setting p close to 1 [8, 39]. Here ‖·‖p is the p-norm defined by ‖w‖p =
(∑d

i=1 |w(i)|p
)1/p

for w = (w(1), . . . , w(d))> ∈ Rd. SCMD recovers the stochastic proximal gradient descent by
taking Ψ = Ψ2 [7] and stochastic mirror descent by taking r(w) = 0 [14]. It should be mentioned
that ρ is not necessarily to be an empirical distribution over training examples, and therefore the
setting we consider here is more general than stochastic learning to minimize an empirical risk.

Algorithm 1: SCMDI

Input: {ηt}t, σφ,w1 and T .
Output: an approximate solution of (2.1)

1 if σφ == 0 then
2 sw ← w1, s← 1
3 else
4 sw ← 6η1w1, s← 6η1

5 for t = 1, 2 to T − 1 do
6 calculate wt+1 by (2.2)
7 if σφ == 0 then
8 sw ← sw + wt+1, s← s+ 1
9 else

10 sw ← sw + (t+ 2)(t+ 3)ηt+1wt+1

11 s← s+ (t+ 2)(t+ 3)ηt+1

12 w̄T ← sw/s
13 for t = T, T + 1 to 2T − 1 do
14 calculate wt+1 by (2.2)
15 4← DΨ(w̄T ,wt)−DΨ(w̄T ,wt+1)
16 if4 ≤ T−1DΨ(w̄T ,wT ) then
17 T ∗ ← t, wT∗ ← wt

18 return wT∗

Algorithm 2: OCMDI

Input: {ηt}t, σφ and w1.
Output: an approximate solution of (2.1)

1 if σφ == 0 then
2 sw ← w1, s← 1
3 else
4 sw ← 6η1w1, s← 6η1

5 w̄← w1, ŵ← w1, k ← 1

6 for t = 1, 2, · · · do
7 calculate wt+1 by (2.2)
8 4← DΨ(w̄,wt)−DΨ(w̄,wt+1)

9 if4 ≤ 21−kDΨ(w̄, ŵ) then
10 w̃← wt

11 if σφ == 0 then
12 sw ← sw + wt+1, s← s+ 1
13 else
14 sw ← sw + (t+ 2)(t+ 3)ηt+1wt+1

15 s← s+ (t+ 2)(t+ 3)ηt+1

16 if t == 2k − 1 then
17 k ← k + 1, w̄← sw/s, ŵ← wt

18 return w̃

2.2 Algorithms

We now present our first algorithm (Algorithm 1) which performs SCMD in two stages. In the first
stage, we simply perform updates according to (2.2). An output w̄T is then produced by taking some
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averages of the previous iterates. It is clear that w̄T is a simple average with uniform weights in the
convex case, while the construction of w̄T in the strongly convex case is motivated by theoretical
analysis (see Theorem 4) [20]. In the second stage, other than updating {wt} with (2.2), we also
search a time index (line 17 of Algorithm 1) at which the difference between two consecutive Bregman
distance is less than a small number. We refer to Algorithm 1 as Stochastic Composite Mirror Descent
with Individual iterates (SCMDI) since it outputs an individual iterate of the vanilla SCMD.

Remark 1. For any t, denote At := DΨ(w̄T ,wt)−DΨ(w̄T ,wt+1). It should be mentioned that
the function t 7→ At is not monotonically w.r.t. t. Therefore, not all t ≥ T ∗ can necessarily satisfy
the condition in line 16 of Algorithm 1, which is a requirement to achieve optimal convergence rates
in our analysis.

In Algorithm 1, we update T ∗ once we find a new t satisfying At ≤ T−1DΨ(w̄T ,wT ). Another
feasible strategy is to set T ∗ = arg mint∈{T,T+1,...,2T−1}At. However, experiments show that this
strategy does not work as well as Algorithm 1.

Algorithm 2 is an extension of Algorithm 1 by removing the information on T . It differs from the
vanilla SCMD in two aspects. Firstly, it computes some average w̄T of previous iterates at the (2k−1)-
th iteration, k ∈ N. Secondly, it searches an index t such that DΨ(w̄T ,wt) − DΨ(w̄T ,wt+1) ≤
21−kDΨ(w̄T ,wT ) and outputs this individual iterate. Algorithm 2 with 2k ≤ t < 2k+1 recovers
Algorithm 1 with T = 2k or T = 2k−1, depending on whether an index t ≥ 2k satisfying At ≤
21−kDΨ(w̄T ,wT ) is found or not. Therefore, Algorithm 2 can achieve the same convergence rates
as Algorithm 1 in both convex and strongly convex cases. It does not need the information on T and
therefore applies to the online learning setting. We refer to Algorithm 2 as Online Composite Mirror
Descent with Individual iterates (OCMDI).

2.3 Motivation

Before giving theoretical results, we sketch the key idea underlying the design of Algorithm 1 which
also forms a key foundation of our theoretical analysis. Let w∗ = argminw∈Rdφ(w). Typically we
can get the following one-step error bounds for {wt}t∈N produced by (2.2) (Lemma A.1 in Appendix)

ηtE[φ(wt)−φ(w)] ≤ E[DΨ(w,wt)−DΨ(w,wt+1)]+η2
t C̃ (2.3)

for any w ∈ Rd independent of zt. Here C̃ is a constant independent of t. If we choose w = w∗

and can show E[DΨ(w∗,wt) − DΨ(w∗,wt+1)] = O(η2
t ), then we would immediately obtain

E[φ(wt)]− φ(w∗) = O(ηt). This would immediately imply the rate O(1/
√
t) in the convex case

and the rate O(1/t) in the strongly convex case since in these two cases the typical step size choices
are ηt = 1/

√
t and ηt = 1/t (ignoring constant factors), respectively [8]. Since w∗ is unknown, any

algorithm requiring an access to w∗ is not implementable. A good surrogate w̄T of w∗ should satisfy
E[φ(w̄T )]−φ(w∗) = O(ηT ) to enjoy a tight rate, for which a natural choice should be some average
of {wt}t≤T . Then, we take w = w̄T in (2.3) and need to find an index T ∗ ∈ {T, T +1, . . . , 2T −1}
such that E[DΨ(w̄T ,wT∗) − DΨ(w̄T ,wT∗+1)] = O(η2

T ). By the non-negativity of Bregman
distance, there always exists a T ∗ ∈ {T, T +1, . . . , 2T −1} satisfying (see Lemma A.2 in Appendix)

DΨ(w̄T ,wT∗)−DΨ(w̄T ,wT∗+1) ≤ T−1DΨ(w̄T ,wT ).

This motivates us to search the time index T ∗ by Algorithm 1 (line 17). It is clear from (2.3) that

E[φ(wT∗)− φ(w̄T )] ≤ (TηT∗)−1E[DΨ(w̄T ,wT )] + ηT∗C̃. (2.4)
The term E[φ(wT∗)]− φ(w∗) then can be estimated by the following error decomposition

E[φ(wT∗)]− φ(w∗) = E[φ(wT∗)− φ(w̄T )] + E[φ(w̄T )− φ(w∗)] (2.5)

≤ (TηT∗)−1E[DΨ(w̄T ,wT )]+ηT∗C̃+E[φ(w̄T )−φ(w∗)].

To derive the desired bound E[φ(wT∗)]− φ(w∗) = O(ηT ), it suffices to show

(TηT∗)−1E[DΨ(w̄T ,wT )] = O(ηT ) and E[φ(w̄T )− φ(w∗)] = O(ηT ).

More specifically, we need to show E[DΨ(w̄T ,wT )] = O(1),E[φ(w̄T )−φ(w∗)] = O(T−
1
2 ) in the

convex case with ηt = 1/
√
t, and E[DΨ(w̄T ,wT )] = O(T−1),E[φ(w̄T )− φ(w∗)] = O(T−1) in

the strongly convex case with ηt = 1/t. We will show this is possible by choosing T ∗ in Algorithm 1.
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3 Optimal Convergence Rates

We present here optimal convergence rates for SCMDI for both convex and strongly convex objectives.
To this aim, we need to impose some standard assumptions. We assume that the mirror map Ψ is
σΨ-strongly convex w.r.t. a norm ‖ ·‖ in the sense DΨ(w, w̃) ≥ 2−1σΨ‖w− w̃‖2 for all w, w̃ ∈ Rd
(σΨ > 0). We always assume the existence of A and B > 0 such that (‖ · ‖∗ is the dual norm of ‖ · ‖)

‖f ′(w, z)‖2∗ ≤ Af(w, z) +B and ‖r′(w)‖2∗ ≤ Ar(w) +B (3.1)

for any w ∈ Rd, z ∈ Z and any f ′(w, z) ∈ ∂f(w, z), r′(w) ∈ ∂r(w). Many popular learning
methods use loss functions and regularizers satisfying (3.1) [7, 44]. For example, if |`′(a, y)|2 ≤
Ã`(a, y) + B̃ for some Ã, B̃ > 0 and all a, y, then f(w, z) = `(〈w, x〉, y) would satisfy the first
inequality of (3.1) if X is bounded. Here `′(a, y) denotes a subgradient of ` w.r.t. the first argument.
Examples of such ` include all smooth functions and all Lipschitz continuous functions widely used
in machine learning [42, 44]. Examples of r satisfying (3.1) include r(w) = λ‖w‖pp with p ∈ [1, 2].
We say Ψ is LΨ-smooth w.r.t. ‖ · ‖ if DΨ(w, w̃) ≤ LΨ

2 ‖w − w̃‖2 for all w, w̃ ∈ Rd.

We always assume the existence of σF , σr ≥ 0 such that for all w, w̃ ∈ Rd

F (w)−F (w̃)−〈w−w̃, F ′(w̃)〉 ≥ σFDΨ(w, w̃), r(w)−r(w̃)−〈w−w̃, r′(w̃)〉 ≥ σrDΨ(w, w̃)
(3.2)

For σφ := σF + σr, the cases σφ = 0 and σφ > 0 correspond to convex and strongly convex
objectives, respectively.

3.1 Convex objectives

Our first result is an optimal rate O(T−
1
2 ) for convex objectives under a boundedness assumption of

iterates. The boundedness assumptions E[DΨ(w∗,wt)] ≤ D,∀t ∈ N, imposed also in the literature
[7, 8, 37], always hold for the regularizer of the form r(w) = IW0

(w)+ r̃(w), whereW0 is a convex
and compact domain, IW0

is an indicator function with IW0
(w) = 0 if w ∈ W0 and∞ otherwise,

and r̃ : Rd → R+ is convex. Proofs of theoretical results in this subsection are given in Appendix B.
Theorem 1. Let D > 0. Assume E[DΨ(w∗,wt)] ≤ D for all t ∈ N and E[DΨ(w̄T ,wT )] ≤ D.
Let wT∗ be defined by Algorithm 1 with ηt = µ/

√
t satisfying µ ≤ σΨ(2A)−1. Then, E

[
φ(wT∗)−

φ(w∗)
]
≤ C̃1√

T
, where C̃1 = (4 + 2

√
2)µ−1D + 10µσ−1

Ψ (Aφ(w∗) + 2B).

Theorem 1 requires to impose a boundedness assumption on iterates, which is removed in the
following theorem on convergence rates. The assumption DΨ(w, w̃) ≤ LΨ‖w− w̃‖α is milder than
assuming a smoothness of Ψ, the latter of which is satisfied if Ψ = Ψ2.
Theorem 2. Let wT∗ be produced by Algorithm 1 with a non-increasing step size sequence and η1 ≤
σΨ(2A)−1. Assume that there exists α ∈ [0, 2] and LΨ > 0 such that DΨ(w, w̃) ≤ LΨ‖w − w̃‖α
for all w, w̃ ∈ Rd. Let DT = DΨ(w∗,w1) + σ−1

Ψ (Aφ(w∗) + 2B)
∑T
t=1 η

2
t . Then,

E[φ(wT∗)]− φ(w∗) ≤
2LΨ

[
4σ−1

Ψ αDT + 1
]

+ 4DT

Tη2T
+

2Aφ(w∗) + 4B

σΨ

[
ηT +

2

T

T∑
t=1

ηt

]
. (3.3)

Corollary 3. Suppose the assumptions in Theorem 2 hold. (a) If lim
t→∞

∑t
t̃=1

η2
t̃

tηt
= 0, then

lim
T→∞

E[φ(wT∗)] = φ(w∗). (b) If ηt = µ√
T

for t = 1, . . . , 2T , then E[φ(wT∗)]−φ(w∗) = O(T−
1
2 ).

3.2 Strongly convex objectives

We now turn to Algorithm 1 for strongly convex objectives, towards which a first step is the following
theorem on the performance of vanilla SCMD. Theorem 4 shows that both the suboptimality of
some weighted averaged iterates and the Bregman distance between the last iterate and w∗ converge
with the rate O(T−1). Theorem 4 is an extension of the results in [20] on the projected SGD
to SCMD. Discussions in [20] require to impose a boundedness assumption on subgradients as
EZ [‖f ′(wt, Z)‖22] ≤ D̃ for some D̃ > 0 and all t ∈ N. Indeed, an independent section was included
in [20] to show that this boundedness assumption holds for an SVM-like objective. Theorem 4
shows that we can derive the same convergence rate without this boundedness assumption and
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is therefore more applicable. Theorem 5 gives a sufficient condition on step size sequences for
the convergence. Upper and lower bounds on convergence rates are established in Theorem 6 and
Theorem 7, respectively. The proofs of theoretical results in this subsection are given in Appendix C. If
σr = 0, then w̄T defined in Theorem 4 can be simplified as w̄T =

[∑T
t=1(t+1)

]−1∑T
t=1(t+1)wt.

Theorem 4. Assume (3.2) holds with σφ > 0. Let {wt}t∈N be generated by (2.2) with ηt = 2
σφt+2σF

.
Define

w̄T =
[ T∑
t=1

(t+ 1)(t+ 2)ηt

]−1 T∑
t=1

(t+ 1)(t+ 2)ηtwt.

Then, there exists a constant C̃2 > 0 independent of T and σφ (explicitly given in the proof) such that

E[φ(w̄T )− φ(w∗)] ≤ 4C̃2

σφ(T + 1)
and E[DΨ(w∗,wT+1)] ≤ C̃2

σ2
φ(T + 2)

. (3.4)

Theorem 5. Assume (3.2) holds with σφ > 0. Let {wt}t∈N be generated by (2.2). If limt→∞ ηt = 0
and

∑∞
t=1 ηt =∞, then limT→∞ E[DΨ(w∗,wT )] = 0.

With Theorem 4 at hand, we can provide optimal rates for the output produced by Algorithm 1.
Theorem 6. Assume (3.2) holds with σφ > 0. Let wT∗ be generated by Algorithm 1 with ηt =

2
σφt+2σF

. Assume that Ψ is LΨ-strongly smooth (LΨ > 0). If T ≥ 4A
σΨσφ

, then there exists a constant

C̃3 > 0 independent of T and σφ (explicitly given in the proof) such that E
[
φ(wT∗)−φ(w∗)

]
≤ C̃3

Tσφ
.

Theorem 7 presents lower bounds matching the above upper bounds up to a constant factor, which
shows that the selected iterate has achieved the best possible rate and there are no stronger results. The
matching upper and lower bounds here apply to the specific SGD and specific optimization problems,
while minimax bounds is related to the existence of a problem for any algorithm [1]. Similar results
were derived in [21] for online mirror descent. Here we give a different and simpler proof.
Theorem 7. Let {wt}t be the sequence produced by (2.2) with Ψ(w) = 1

2‖w‖
2
2 and r(w) = 0.

Suppose f is differentiable, φ is Lφ-smooth w.r.t. ‖ · ‖2 and ηt ≤ 1/(2Lφ). If for any w ∈ Rd,
E[‖∇f(w, z)−∇F (w)‖22] ≥ σ2 for some σ > 0, then

E[‖wt+1 −w∗‖22] ≥ min{‖w1 −w∗‖22, η1σ
2/(2Lφ), . . . , ηtσ

2/(2Lφ)}.

4 Discussions

We discuss related work on stochastic/online learning algorithms with different averaging schemes.

A very common scheme is to output an average of all iterates with uniform weights (UNI-AVE) [44,
46], which is able to attain the optimal rate O(1/

√
T ) and the suboptimal rate O(T−1 log T ) in the

convex and strongly convex case, respectively [8]. A counterpart is established to show that the rate
O(T−1 log T ) is the best possible one for this simple averaging scheme [31].

For strongly convex objectives, the first algorithm able to attain the optimal rate O(T−1) is the
epoch-GD algorithm proposed in [14], which performs stochastic mirror descent in each epoch with
a fixed step size. The step size decreases exponentially in each consecutive epoch and the averaged
iterate of the last epoch is outputted as the solution. Since then, several other averaging schemes
were developed to attain optimal rates, including a suffix-averaging scheme (SUFFIX) returning the
uniform average of the last half of SGD iterates [31], a weighted averaging scheme (WEI-AVE) with
a weight of t+ 1 for wt [20] and a polynomial-decay averaging scheme [37].

Motivated by the side effects of averaging in either destroying the sparsity of the solution or slowing
down the training speed [31], the property of the last iterate (LAST) has also received a lot of attention.
For smooth objective functions, SGD with the last iterate can achieve the optimal rate [31]. The
analysis of last iterate for non-smooth objective functions is much more challenging, for which an
interesting technique to relate the last iterate with suffix-average of iterates was developed [37, 44].
Based on this, rates O(T−

1
2 log T ) and O(T−1 log T ) were established in the convex and strongly-

convex cases [23, 37], respectively. These results motivate a natural question of whether the last
iterate achieves the optimal rate in the non-smooth scenario. This open question was resolved in [13]
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by constructing a problem for which SGD with the last iterate achieves at most the rate Ω(T−1 log T ).
An interesting probabilistic rate O(T−1 log T ) was also developed for SGD with the last iterate [13].

All the above mentioned methods require an averaging scheme to attain the optimal convergence
rates, which, however, may destroy the sparsity of solutions and slow down the practical training
speed. A simple scheme to preserve the sparsity of solutions while still enjoying the optimal rate is
to draw an individual iterate randomly from the iterate sequence by (2.2) [10, 16]. Indeed, one can
randomly draw the output according to a distribution over the iterate sequence with the probability
mass function determined by any optimal weighted averaging scheme [20, 31, 37]. However, this
scheme introduces new variances due to the choice of a random iterate as the output. Moreover, as we
will verify in experiments, this scheme can slow down the practical training speed since the randomly
selected iterate is not necessarily to be a favorable one in the iterate sequence. Furthermore, it requires
to either store all the iterate sequence or determine the number of iterations beforehand, which does
not apply to the online learning scenario. After the acceptance of the paper, we noticed an interesting
step-size modification scheme to get optimal convergence rates [15]. However, the step-size scheme
there requires to use the information of T , and therefore is not applicable to the online learning
scenario. Furthermore, the algorithm and optimal convergence rates there are developed for the
particular T -th iterate and not for other iterates.

In this paper, we propose a novel stochastic/online learning algorithm able to achieve optimal rates. As
compared to the averaging scheme in [14, 20, 31, 37], our scheme of outputting an individual iterate is
able to preserve the sparsity structure of solutions. As compared to the scheme of randomly choosing
an individual iterate, our method avoids the added variance as well as the drawback of slowing down
the training speed due to the random iterate index. Our idea is not to output the last iterate but to
select an individual iterate based on a careful analysis on the one-step progress bound sketched in
Section 2.3. Indeed, by (2.3), the quality of wt depends on At = DΨ(w̄T ,wt)−DΨ(w̄T ,wt+1).
The smaller the At, the better the quality. This motivates us to select a T ∗ with small AT∗ . Intuitively,
At is related to the distance between wt and wt+1. Therefore, our selection of the iterate shares some
spirit with the widely used heuristic of terminating the algorithm when the successive iterates are
close. Our analysis also refines existing studies of optimal rates of SGD by removing the boundedness
assumption on subgradients [20, 31, 37]. It should be mentioned that the boundedness assumption
was relaxed as Ez[‖f ′(wt, z)‖2∗] ≤ Ã+ B̃‖F ′(wt)‖2∗ in [4] for Ã, B̃ > 0 and removed in [27], the
latter of which, however, requires the objective function to be smooth.

5 Experimental Results

In this section, we justify the effectiveness of our algorithm by presenting experimental comparisons
with the following averaging strategies: WEI-AVE [20], UNI-AVE, LAST, SUFFIX [31] and RAND
(outputting a random iterate chosen from the uniform distribution over the last half of iterates). We
consider two applications: binary classification and tomography reconstruction in image processing.

5.1 Binary classification

We first consider SVM models with linear kernels. We use 16 real-world datasets whose information
is summarized in Table C.1 in Appendix D.13. For each dataset, we use 80 percents of the data for
training and reserve the remaining 20 percents for testing. The objective function we consider for a
training dataset {(x1, y1), . . . , (xn, yn)} is

φ(w) =
λ

2
‖w‖22 +

1

n

n∑
i=1

max{0, 1− yi〈w, xi〉},

which is λ-strongly convex w.r.t. ‖·‖2. Analogous to [20], we set λ to the reciprocal of training sample
size. For datasets with multiple class labels, we group the first half of labels into the positive label, and
the second half into the negative label. We consider step sizes of the form ηt = µ/(λt) and tune the
parameter µ in the set 2{−12,−11,...,4} by 10-fold cross validation. We repeat the experiment 40 times
and report the average of experimental results. We consider two approaches to optimize the objective
function φ by whether to separate the regularizer and the data-fitting term. In the first approach,
we apply (2.2) with Ψ(w) = 1

2‖w‖
2
2, f(w, z) = λ

2 ‖w‖
2
2 + max{0, 1 − y〈w, x〉} and r(w) = 0,

3We display experimental results for 4 datasets here due to space limit. Complete results are in Appendix.
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which is just the SGD. In the second approach, we apply (2.2) with Ψ(w) = 1
2‖w‖

2
2, f(w, z) =

max{0, 1− y〈w, x〉} and r(w) = λ
2 ‖w‖

2
2, which is a stochastic proximal gradient descent (SPGD).

In Figure 1 and Figure 2, we plot the objective function values on the testing dataset against iteration
numbers for SGD and SPGD, respectively. It is clear that UNI-AVE is always the worst strategy in
our experiments. WEI-AVE assigns more weights to recent iterates and can improve the performance,
which is further outperformed by SUFFIX. RAND fluctuates a bit since the randomly selected index
at the t-th iteration may not be an increasing function of t. LAST is overwritten by OCMDI due
to their similar behavior, which behave best in our experiments especially in the beginning of the
optimization process. The similarity between OCMDI and LAST can be explained as follows. If At
(defined in Section 4) is small then it is likely that At+1 is also small. Therefore, our algorithm is
prone to select the last part of iterates. We also plot the objective function values on training datasets
against T , which show similar behavior and are deferred to Figures D.4, D.3 in Appendix.

(a) german (b) splice (c) w8a (d) letter
Figure 1: Objective function values on test datasets versus iteration numbers for SGD.

(a) german (b) splice (c) w8a (d) letter
Figure 2: Objective function values on test datasets versus iteration numbers for SPGD.

5.2 Tomography reconstruction

We now consider tomography reconstruction in image processing. We use AIR toolbox [12] to create
a CT-measurement matrix A ∈ Rn×d, an output vector y† ∈ Rn and a N ×N sparse image encoded
by a vector w† ∈ Rd with d = N2. Each row ofA together with the corresponding row in y indicates
a line integral from a fan bean projection geometry. Therefore, the true image w† satisfies Aw† = y†.
We consider a noisy case by adding Gaussian noise N(0, (0.05|y†i |)2) to y†i and get the noisy output
y. Our aim is to reconstruct the image w† from the matrix A and the noisy measurements y by
finding an approximate solution of the equation Aw = y. Since many components of the true
image w† varnish, we apply randomized sparse Kaczmarz algorithm, which is a simple and efficient
algorithm to generate sparse approximate solutions to linear systems [5, 34]. Let ε > 0, λ > 0 be two
parameters and consider the mirror map Ψ(ε,λ)(w) = λ

∑d
i=1 gε(w(i)) + 1

2‖w‖
2
2, where gε(ξ) = ξ2

2ε
for |ξ| ≤ ε and |ξ| − ε

2 for |ξ| > ε. At each iteration t, we randomly select an index it from the
uniform distribution over {1, . . . , n} and denote xit = A>it , where A>it is the transpose of Ait . Given
w1 ∈ Rd and v1 = ∇Ψ(ε,λ)(w1), the randomized sparse Kaczmarz algorithm updates the model as

vt+1 = vt − ηt(〈wt, xit〉 − yit)xit , wt+1 = Sλ,ε(vt+1), (5.1)

where Sλ,ε : Rd 7→ Rd is defined component-wisely by the soft-thresholding function Sλ,ε : R 7→ R
given as [5]

Sλ,ε(ξ) :=

{
(ξε)/(λ+ ε), if |ξ| ≤ λ+ ε

sgn(ξ) max(|ξ| − λ, 0), otherwise.

Here sgn(a) denotes the sign of a ∈ R. Algorithm (5.1) can be equivalently formulated as [22]
wt+1 = arg min

w∈Rd
ηt〈w −wt, (〈wt, xit〉 − yit)xit〉+DΨ(ε,λ)(w,wt).
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It is clear from the above equivalent formulation that (5.1) is an instantiation of (2.2) with f(w, z) =
1
2 (〈w, x〉 − y)2, r(w) = 0 and Ψ(w) = Ψ(ε,λ)(w) to minimize F (w) = 1

n‖Aw − y‖22. It was
shown that F (w) satisfies (3.2) with σF = σmin(A>A/n), w = w∗ and w̃ = wt, t ∈ N [22], where
σmin(Ã) denotes the minimal positive eigenvalue of a matrix Ã. Therefore, our theoretical analysis
in Section 3.2 applies4. We randomly choose w1 from the uniform distribution in [0, 1]d and set
λ = 1, ε = 10−8 as suggested in [5]. We repeat the experiment 40 times and report the average of
results.

(a) True Image. (b) Reconstructed Image. (c) Error vs. T . (d) NNCs vs. T

Figure 3: Tomography reconstruction with N = 64, n = 23040 and 5% relative noise. Panel (a) and
(b) are the true image and the reconstructed image by OCMDI, respectively. Panel (c) and (d) plot
the errors and NNCs versus iteration numbers.

In Figure 3, we present results with N = 64, d = 4096 and n = 23040. Panels (a) and (b) display
the true image and the image output by OCMDI, respectively. In Panels (c) and (d), we plot the
errors and the number of non-zero components (NNCs) for the output of algorithms with different
averaging strategies. According to Figure 3, LAST is overwritten by OCMDI since they behave
analogously, both of which achieve the fastest training speed among all considered methods. RAND
is outperformed by SUFFIX in terms of training speed. Moreover, OCMDI, RAND and LAST
can produce much more sparse solutions than other methods. Indeed, the true image w† has 1686
non-zero components, while UNI-AVE, WEI-AVE, SUFFIX, RAND and OCMDI produce outputs
with 4096, 3727, 1943, 1823 and 1828 non-zero components, respectively. The advantage of OCMDI
over LAST is that OCMDI can theoretically achieve optimal convergence rate. Similar phenomenon
also appears for the case with N = 32 and n = 11520, which we plot in Figure D.5 in Appendix.

6 Conclusion

We propose a novel variant of SCMD with optimal convergence rates. An advantage of this algorithm
over existing optimal learning algorithms is that it outputs an individual iterate without a random
selection of index, which is able to preserve the sparsity structure without slowing down the training
speed. Experimental results in both the domain of binary classification and tomography reconstruction
demonstrate the ability of our algorithm in getting a fast training speed as well as in producing
sparse solutions. Some interesting work include a theoretical justification on the advantage of
sparsity of our method over other methods [11, 38] and an extension of our analysis to non-convex
problems [10, 32, 45].
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