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Abstract

We study revenue optimization pricing algorithms for repeated posted-price auc-
tions where a seller interacts with a single strategic buyer that holds a fixed private
valuation. When the participants non-equally discount their cumulative utilities,
we show that the optimal constant pricing (which offers the Myerson price) is no
longer optimal. In the case of more patient seller, we propose a novel multidimen-
sional optimization functional — a generalization of the one used to determine
Myerson’s price. This functional allows to find the optimal algorithm and to boost
revenue of the optimal static pricing by an efficient low-dimensional approximation.
Numerical experiments are provided to support our results.

1 Introduction

Auctions have been studied for decades [82] and remain the main instrument for extracting revenue
in Internet advertising for many years [36]. Revenue optimization problem in static (i.e., one-period)
auctions is well studied and has proved its great worth to the Internet industry [64, 2], while the same
problem in dynamic auctions is still understudied [57], although the major part of web advertisement
sales has repeated nature [7, 32]. Consider the following example: an RTB platform (a seller) tracks
a user and repeatedly sells impressions on the user’s screen to advertisers (buyers) until the user is
out of the RTB’s sight. This example is naturally modeled by a sequence of repeated auctions, in
which buyers have fixed valuation for a good all the way through.

For more than eleven years generalized second-price (GSP) auctions remain the leading instrument for
selling ads [79] and, as argued by [7, 8, 61, 30, 32, 33], a significant part of auctions in AdExchanges
involve only a single buyer. Single-buyer GSP auctions are known in the literature as posted-price
auctions [51]. Repeated setting of them is referred to as repeated posted-price auctions in studies on
worst-case regret minimization [8, 32] and as a fishmonger’s problem in studies on expected revenue
maximization [29]. The setting of the fishmonger’s problem relies on the assumption that the seller
knows the distribution of the buyer valuation of a good. This assumption is realistic for advertising
auctions, since most Internet companies possess rich historical bidding data [58, 67].

We study the fishmonger’s problem in which the seller repeatedly sells goods through a posted-price
mechanism to the same buyer that holds a fixed private valuation for a good. The buyer seeks to
maximize his cumulative surplus, which is a discounted sum of his instant utilities over all rounds.
The seller knows the valuation distribution and the buyer’s discount sequence; so, she applies a pricing
algorithm that sets prices in each round in order to learn the valuation and extract more revenue. The
algorithm is announced to the buyer in advance [61], thus, the buyer picks an optimal strategy w.r.t.
the announced algorithm, the valuation, and his discount sequence. The seller optimizes her expected
cumulative revenue — a discounted sum of her instant expected utilities over all rounds — w.r.t. her
discount sequence, the valuation distribution, and the buyer’s discount sequence.
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When both the seller and the buyer equally discount their utilities, an optimal pricing is known
from a “folklore wisdom" [29]: it is the constant pricing algorithm that proposes the Myerson
optimal price [64] each round. Thus, the seller cannot advantageously apply any dynamic learning
of prices (based on previous decisions of the buyer) to improve her revenue with respect to a much
simpler approach that offers the optimal static constant price over all rounds. However, in many real
applications, the equal discount assumption may not hold due to an imbalance between the sides in
the patience to wait for utility [7, 8, 61] or their ability to estimate the probability that the game do
not terminates in a round [75, 61]. The case of our setting where the time discounts of the seller and
the buyer are different was never studied before1. In this work, we attempt to fill this gap.

In the case of less patient seller (i.e., the seller discount is less than the buyer one), we show that the
“folklore wisdom" technique can be easily adapted to prove that “Big deal" algorithm2 is optimal. The
expected revenue of this pricing is shown to be strictly greater than the one of the optimal constant
algorithm, if the seller is strictly less patient. In the inverse case (the buyer is less patient), we show
that the problem is much more challenging and cannot be resolved by the “folklore wisdom" or
Myerson techniques. The problem in the initial form has structure similar to a saddle-point problem:
the revenue depends on an algorithm via argmax over buyer strategies and the derivatives of such
dependence have exponential number of jump discontinuities (Sec. 4). Hence, the initial revenue
optimization problem can be numerically solved only via a brute-force search.

In our work, first, for the game with a finite horizon T , we reduce the problem to the optimization of
a novel multivariate functional (Th. 3) that constitutes a generalization of the one used to determine
Myerson’s price. This functional has a simple bilinear-like structure and is continuously differentiable
as many times as the CDF of the valuation distribution. This allows to find the optimal pricing
algorithm by means of a variety of efficient gradient-based methods. Second, for any game, we make
a low-dimensional approximation of the optimal revenue problem by an optimal τ -step algorithm3,
which can be found using our reduction approach as well (Sec. 5). In this way, our multivariate
functional constitutes a powerful and simple technique that allows the seller to significantly increase
her revenue (w.r.t. the optimal static pricing) even in the games with large T . So, we provide the
rule of thumb: choose τ to fit your computational capabilities (e.g., τ=2,3), find the optimal τ -step
pricing by the functional, and apply the prices learned in this way to get a boost in revenue.

Finally, we support our findings by an extensive numerical experimentation for a variety of discount
rates. We demonstrate that optimal algorithms are non-trivial, may be non-consistent [30, 32], have
prices noticeably dependent on the discounts, and generate revenue larger than the constant algorithm
with Myerson’s price (Sec. 5). Overall, our main contribution is our reduction approach that allows
both to find the optimal algorithm (even with possible structural constraints) and to boost revenue by
the efficient low-dimensional approximation in the case of less patient buyer.

2 Problem statement and preliminaries

Setup. A single seller and a single buyer interact repeatedly over a sequence of T rounds, where
the horizon T is either finite, or infinite. The seller possess a fresh copy of a good each round
and the buyer values each copy of this good by a fixed private valuation v ∈ R+. At each round
t ∈ [T ] :={1, ..., T} the seller sets a price pt for a new copy of the good and the buyer answers with
a decision at ∈ {0, 1}: an accept 1 or a reject 0. Sequences of the buyer’s answers are denoted by
bold Latin letters, e.g., a = {at}Tt=1, and are referred to as buyer strategies. The price pt depends on
the previous answers of the buyer a1, .., at−1, i.e. the seller uses a deterministic pricing algorithm A
to set prices [30].

Given an algorithm A and a strategy a, the price sequence {pt}Tt=1 is uniquely determined. The
instant utilities of the buyer and the seller are at(v − pt) and atpt, respectively, in round t. The
instant utilities contribute to the buyer’s (the seller’s) total utility w.r.t. a discount γBt (γSt , resp.).
Total utilities of the buyer and the seller are referred to as the buyer surplus and the seller revenue:
SurγB(A,a, v) :=

∑T
t=1 γ

B
t at(v−pt) and RevγS(A,a) :=

∑T
t=1 γ

S
t atpt, resp. Both the buyer and the

seller are rational and risk-neutral agents [52]. Discount sequences γB={γBt }Tt=1 and γS={γSt }Tt=1

1There were works (e.g., [7, 8, 30, 32, 33]), where only buyer utilities were discounted ,while the seller’s
ones did not. But, those studies considered worst-case regret optimization, which is different from our setting.

2This pricing offers an up-front payment for all copies of a good for Myerson’s price in the first round.
3A τ -step algorithm plays all the T rounds, but its prices do not change after the round τ < T .
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are positive, γBt , γ
S
t > 0 ∀t, and have finite sums: ΓB:=

∑T
t=1 γ

B
t ,Γ

S:=
∑T
t=1 γ

S
t <∞. For simplicity

of presentation, from here on in our paper we assume that the discounts decrease geometrically:
γBt = γt−1

B and γSt = γt−1
S for some γB, γS > 0. However, our results hold for a larger variety of

discounts (see Remarks 1 and 2).

Our setting is based on two standard assumptions: (1) the buyer knows the pricing algorithm A in
advance (i.e., the seller commits to it at the beginning of the first round); and (2) the seller knows the
distribution D from which the private buyer valuation v (unknown to her) is drawn. Assumption (1)
matches the practice in Internet advertising [61] since RTB platforms run hundreds of millions
auctions a day [7, 30] (see App. F for mode details). Assumption (2) is realistic since most Internet
companies have access to rich historical data [67]. We also assume that the seller knows the exact
buyer discount sequence.4 The CDF and the density of D is denoted by FD and fD, resp. The
random valuation is denoted by V , V ∼ D.

Our rational buyer with the private valuation v that knows the algorithmA in advance is referred to as a
strategic buyer [7] and exploits an optimal strategy aOpt(A, v,γB) := argmaxa∈ST SurγB(A,a, v),
where ST :={0, 1}T is the set of all possible strategies. This leads us to the definition of the strategic
revenue of the pricing A, which faces the strategic buyer with a valuation v:

SRevγS,γB(A, v) := RevγS(A,aOpt(A, v,γB)). (1)

We consider the problem of pricing optimization from the seller’s point of view. This problem is stated
as follows: find such algorithmA∗ that its expected strategic revenue (ESR) EV∼D[SRevγS,γB(A∗,V )]
is not less than the ESR of any other algorithm (i.e. the ESR of the algorithm A∗ is the maximum).

Notations and auxiliary definitions. Following [51, 61, 30, 32], we associate a deterministic pricing
algorithm with a perfect (T−1)-depth binary tree with labeled nodes. Let NT be the set of nodes of
the tree andA(n) be a label of a node n ∈ NT . In the first round, the current node is the root e ∈ NT .
Let n be the current node in a round t (the depth |n| of n is t− 1); then the algorithm offers the price
A(n). If this price is rejected, the current node moves to the n’s left child denoted by n0, otherwise
the current node moves to the n’s right child denoted by n1. We denote nodes by finite strings over
the alphabet {0, 1}: the root is the empty string e, its left child is 0, the right one is 1, the right child
of 0 is 01, etc. (e.g. 0k is the string of k zeros). Thus, NT :={n∈{0, 1}∗ | |n|<T}, where |n| is the
length of the string n, and the set of algorithms AT is the set of maps from NT to R+: AT = RNT

+ .

Research questions. One of standard interpretations5 of a discount factor γt−1
B (or γt−1

S ) is the
participant’s estimate of the probability that the repeated auctions will last at least t rounds [29, 32].
While the constant Myerson algorithm (see Sec. 3) is a well-known folklore solution for the case
of equal discounts [29], the case of different discounts, in our setup, was never considered earlier,
although it is more realistic. In Internet advertising, the seller and the buyer are usually companies of
different sizes, with different opportunities and capabilities (e.g., an RTB platform vs. a web site with
an advertisement, see App. F for an example as well). In this way, they may have different data (or
access to them) that are used to make an estimation of the game-continuation probability (i.e., the
discount factor). For instance, most likely that the RTB platform has more data and may know which
data are not available to the advertiser. As a result, the auction participants have different discounts.

In the case when the buyer overestimates the discount factor γB > γS, we show that the seller
can obtain (1− γS)/(1− γB) times larger expected revenue than the one of the constant Myerson
algorithm: she should apply the "Big deal" pricing algorithm (Sec.3). The inverse case appears to
be non-trivial, and, in our study, we primarily address the following research questions in the case
of γS > γB (Sec. 4 and 5): (1) What is the optimal algorithm and its expected strategic revenue?
(2) How much more is the maximal ESR than the constant Myerson’s one? (3) Can the seller extract
expected revenue more than in the static Myerson pricing having limits on computational resources?

Related work. There are two series of works that are most relevant to ours. The first one studied
repeated posted-price auctions in the worst-case scenario [51, 7, 8, 61, 30, 31, 32], where our setting
of the strategic buyer with a fixed private valuation is considered. Amin et al. [7] proposed to seek for
algorithms that have the lowest possible asymptotic upper bound on the strategic regret for the worst
case valuation of the buyer. Recently, Drutsa [30, 32, 33] has found pricings with optimal regret

4Our results still can be applied in the case when the seller possesses only incomplete information about the
buyer’s discount sequence. See 6 for more details.

5Alternatively, a discount factor can model the patience level of a participant to wait for instant revenue [7, 30].
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bound. In contrast to these studies, first, we search for a pricing algorithm that maximizes the strategic
revenue expected over buyer valuations, which matches the practice of ad exchanges and optimization
goals in classical auction theory [52]. Second, our revenue optimization problem is solved exactly
(not via optimization of lower/upper bounds). Third, our study considers a more general setup in
which not only the buyer’s surplus is discounted over rounds, but also the seller’s revenue does.
The second series studied repeated posted-price auctions with an incomplete information and in the
absence of the ability to commit [43, 75, 29, 47]. The authors of [43, 75] showed that, in the case of
non-commitment, the seller is forced to sell a good for a minimal possible price until last few rounds.
Devanur et al. [29] showed that the seller can obtain non-trivial revenue, if she is able to partially
commit, e.g. to commit not to raise prices. Enhancing the competition was shown to allow the
seller to extract non-trivial revenue as well [47]. However, all these works treated the "commitment"
revenue as a unachievable benchmark. Hence, in our case of repeated auctions that is motivated
by Internet advertisement sales, where the seller is able to commit6, it is unreasonable to consider
the non-commitment case. Our setting (but in the case of equal discounts) can be considered as a
more general dynamic mechanism design problem studied, e.g. in [49, 71, 70, 13]. To the best of our
knowledge this line of work never considered scenarios with different discounts. It would be a great
future study to generalize our results for different discounts to more general dynamic mechanisms.

3 Less patient seller: the case of γS ≤ γB

Our study begins with the analysis of the case γS ≤ γB in two steps. First, the subcase of equal
discounts γS = γB can be resolved by means of the classical auction theory [64]. Second, we reduce
the whole case γS ≤ γB to the subcase γS = γB by showing that, for γS ≤ γB, the seller can obtain the
same strategic revenue as if her discount was γB instead. Two simple optimal algorithms are provided.

Equal discounts: a constant algorithm. Let γS=γB=γ, then one can apply the almost folklore
technique of reducing this subcase to a single-round feasible mechanism [29]. Key steps of this
technique are provided in App. A.1.1 for completeness of our study on different discounts. The
expected revenue of the obtained feasible mechanism is known [64] to be no greater than p∗D(1−
FD(p∗D)), where FD is the CDF of our valuation variable V ∼ D and p∗D is the Myerson price, i.e.,
the price that maximizes the functional HD(p) := pP[V ≥ p] = p(1−FD(p))7. Thus, the following
upper bound holds: E [SRevγ,γ(A, V )] ≤ Γp∗D(1− F (p∗D)) ∀A ∈ AT . This bound is achieved, in
particular, by the algorithm A∗1 which constantly offers the price p∗D, i.e., ∀n A∗1(n) = p∗D, and is
referred to as the optimal constant algorithm. Overall, the following theorem holds:

Theorem 1 ([29]). Let the discount rates be equal: γS=γB=γ. Then the optimal constant algorithm
A∗1 is optimal among all pricing algorithms AT and the optimal revenue is Γp∗D(1− F (p∗D)).

“Big deal" for less patient seller. Let us consider the whole case of less patient seller: γS≤γB. It
is easy to see that Revγ1

(A,a)≤Revγ2
(A,a) for any A and a, when γ1 ≤ γ2. Hence, for any A,

v, and γ1≤γ2, the inequality SRevγ1,γ
B(A, v)≤SRevγ2,γ

B(A, v) holds as well, since the optimal
strategy aOpt does not depend on the seller’s discount γS. So, taking γ1 =γS and γ2 =γB, one gets:

max
A∈AT

E [SRevγS,γB(A, V )] ≤ max
A∈AT

E [SRevγB,γB(A, V )] = ΓBp∗D(1− FD(p∗D)). (2)

The latter identity in Eq. (2) is from Th. 1. The bound in Eq. (2) is achievable as well. Namely, let us
consider the following algorithm A∗bd (referred to as the “big deal") given γB and V ∼ D: the first
price is Abd(e) = ΓBp∗D; if the buyer accepts it, prices in further rounds will be Abd(1 ◦ n) = 0 ∀n;
otherwise Abd(0 ◦ n) = p∗D ∀n. An attentive reader may note that the strategic buyer accepts the first
price A∗bd(e)⇔ v > p∗D. Hence, similarly to the algorithm A∗1, it is easy to show that the ESR of
A∗bd is ΓBp∗D(1−F (p∗D)). The key idea behind the algorithm A∗bd is quite simple. Roughly speaking,
the seller “accumulates" all her revenue at the first round by proposing the buyer a “big deal" that
incentivises him to pay a large price at the first round and get all goods in the subsequent rounds for
free, or, otherwise, get nothing8. Overall, the following theorem holds:

Theorem 2. Let the discount rates be s.t. γS ≤ γB. Then the “big-deal" algorithm A∗bd is optimal
among all pricing algorithms AT and the optimal revenue is ΓBp∗(1− FD(p∗)).

6RTB platforms run 108 auctions a day: commitment violation will be easily seen by advertisers, see App.F.
7This price can be find by the equation p=(1−FD(p))/fD(p), when D has continuous probability density fD .
8A similar pricing was in [49] for mechanism environments with multiplicative separability.
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Th. 2 implies that, first, the optimal constant algorithm A∗1 is not the unique optimal one in the
subcase of equal discounts γS=γB. Second, in the other subcase of γS < γB, the constant algorithm
A∗1 is no longer optimal: the relative ESR of the optimal algorithmA∗bd w.r.t. the optimal constant one
A∗1 is ΓB/ΓS, which is >1, when γS<γB9; i.e. the optimal revenue is larger than the one obtained by
offering the Myerson price constantly. This result is quite inspiring for the seller, since the dominance
of the buyer’s discount γB over the seller’s one γS suggests a hypothesis that the seller should earn
lower than with γB (e.g., see the revenue of A∗1). But the ability of the seller to apply the trick of
“accumulation" of all her revenue at the first round allows her to get the payments for all goods
discounted by the buyer’s γB at the first round and to boost thus her revenue over the constant pricing.
Remark 1. All results of the section hold even for non-geometric discounts s.t. γS≤γB (see App.A.1).

4 Less patient buyer (γS ≥ γB): reduction to an optimization functional

This section provides the central fundamental results of our study. They are obtained for finite games,
but, further, we show how to use them to get approximately optimal algorithms even for infinite
games. In contrast to the case γS≤γB, finding an optimal pricing for γS≥γB is much more difficult
problem since the technique used in Sec. 3 to upper bound the expected strategic revenue is no longer
applicable (because it relies on the condition γS≤γB) and a generalization of the functional HD(·)
to a multivariate analogue is required. Note that the optimization problem of the ESR has structure
similar to a saddle-point problem: the ESR depends on A via aOpt which is an argmax over the
set of strategies ST . Moreover, the derivative of such dependences are piecewise continuous with
jump discontinuities on the boundaries of pieces (there are 22T−3 pieces with derivatives of different
forms). Hence, the problem in the initial form can be numerically solved only via brute-force search.

In order to make numerical solution of the problem more feasible, we will reduce it into the form of
a multidimensional maximization of a simple bilinear-like function (namely, L(v) in Eq.(4)) that is
continuously differentiable as many times as the CDF FD and its derivatives have simple form and
can be easily computed. The key steps are: (1) find a class of algorithms whose prices (2) can be
linearly parametrized by points in the support of D s.t. (3) the strategic revenue is constant between
these points. For the sake of presentation, we consider regular discounts.
Definition 1. A discount sequence γ is regular, if γ·a1 6=γ·a2 for any strategies a1,a2∈ST , i.e., any
buyer strategy a ∈ ST results in a unique discounted quantity of purchased goods (a · b :=

∑
t atbt).

Definition 2. Let γ be a discount, then an algorithm A ∈ AT is said to be completely active (CA)
for γ, if for any strategy a ∈ ST there exists a valuation v ∈ R+ s.t. Sa(v) = S(v), where
Sa(v) := Surγ(A,a, v) and S(v) := SaOpt(A,v,γ)(v), i.e., the surplus function Sa (as a line) is
tangent to the optimal surplus function S. We denote the set of all CA algorithms for γ by ÃT (γ).

A CA algorithm is such that any node in its labeled tree can be reached by the strategic buyer for at
least one valuation v, i.e., be active. Surprisingly, any algorithm can be transformed to a completely
active one for γB with no loss in the expected strategic revenue. Indeed, let A be a non-CA algorithm
for γB, then there exists an inactive strategy a ∈ ST (i.e. ∀v ≥ 0 Sa(v) < S(v)). We tune A
in such a way that Sa becomes tangent to S without affecting the other surplus functions Sb for
b 6= a (it is visualized in Fig. A.1 in App. A.2.1). Namely, let τ be the index of the last 1 in a
and n := a1:τ−1 be the (τ−1)-round substrategy of a. We decrease p :=A(n) until Sa becomes
tangent to S. This operation will move also all Sb s.t. b1:τ = a1:τ to the left. In order to make them
unaffected, we simultaneously increase ps :=A(n ◦ 10s) for 0≤s≤T − τ − 1 in such a way that
p+γs+1

B ps=const. Hence, aOpt(A, v,γB) is unaffected for all v except the point of tangency. Since
γS>γB, the revenues RevγS(A, v,b) only increase after our tuning, when b1:τ = a1:τ , otherwise
they are not changed for b 6=a what infers that SRevγS,γB(A, · ) increases in all points except one.
Tuning of the algorithm by “activating" all inactive strategies one by one in descending order of τ
(this ensures that decreasing of p will not result in negative prices) gives us a CA (for γB) algorithm
without loss in the ESR. Formally, the following proposition holds (the proof is in App. A.2.1).

Proposition 1. Let T ∈ N and γS, γB be discount rates s.t. γS ≥ γB and the sequence γB={γt−1
B }Tt=1

is regular. Then, for any pricing algorithm A ∈ AT , there exists a CA algorithm Ã ∈ ÃT (γB) s.t.

E
[
SRevγS,γB(A, V )

]
≤ E

[
SRevγS,γB(Ã, V )

]
. (3)

9Moreover, for T =∞, this revenue improvement is ΓB/ΓS=1−γS
1−γB and goes to +∞ as γB→1− for a fixed γS.
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The fundamental property of a CA algorithm: it bijectively corresponds to the break (discontinuity)
points of the derivative of its surplus function S(·), which is piecewise linear10. Namely, the class
ÃT can be linearly mapped onto ∆k :={v={vj}kj=1∈Rk|0≤v1≤...≤vk}, where k:=k(T ):=2T−1.
The key intuition is as follows. Number the buyer strategies ST = {a0, ...,ak} in ascending order
of the slope γB · ai of the corresponding γB-discounted surplus function Sai (the γB-dependent
natural order). Let (vi, si) be the coordinates of the intersection of the straight lines Sai(·) and
Sai−1(·). An algorithm is CA iff these intersections are on the envelop S(·) and vi−1 ≤ vi ∀i ≤ k.
The linear parametrization holds since the break point vi is linearly expressed in terms of the slopes
and intercepts of the lines Sai(·) and Sai−1(·), while the intercepts are linear in the algorithm prices.
Formally, this dependence is the product ZT (γB)JTKT (γB,γB) of k × k matrices, where JT is
a two-diagonal one with 1 on the diagonal and −1 under the diagonal; ZT (γ) = diag(z1, .., zk),
zj = (γ · aj − γ · aj−1)−1 for j = 1, .., k; and KT (γB,γ′) = ((κij))i,j=1,..,k, where κij = γ′ta

i
t if

the path ai ∈ ST passes through the node nj ∈ NT whose round is t=|nj |+1, and κij=0, otherwise,
for some fixed numbering of the nodes NT = {nj}kj=1

11. All technical details are in App. A.2.2.

Finally, the parametrization via the break points {vi}ki=1 allows to easily calculate the ESR of the
algorithm. Indeed, the revenue SRevγS,γB(A, v) is constant on the intervals (vi, vi+1), because γB

is regular and the strategic buyer chooses only the strategy ai, when his valuation v is in (vi, vi+1).
Hence, the ESR is the sum of constant revenues on the intervals weighted by their probabilities:
E [SRevγS,γB(A, V )] =

∑k
i=1(FD(vi+1)− FD(vi))RevγS(A,ai), where RevγS(A,ai) can be lin-

early expressed in terms of the algorithm prices and, thus, in terms of the break points {vi}ki=1 (by
means of our matrices introduced above). Integration by parts makes the ESR be a bilinear form of
{1−FD(vi)}ki=1 and {vi}ki=1. We formalize it in the following proposition (the proof is in App. A.2.3),
which implies Th. 3 since the class of CA algorithms ÃT contains an optimal pricing (by Prop. 1).
Proposition 2. Let T ∈ N,γS be a discount, γB be a regular discount, the strategies ST be naturally
ordered by γB and the matrix notations be introduced as above. Then there exists an invertible linear
transformation wγB : ÃT (γB) → ∆k, k = k(T ), s.t., for any completely active pricing algorithm
A ∈ ÃT (γB), its ESR has the form EV∼D [SRevγS,γB(A, V )] = LD,γS,γB(wγB(A)), where

LD,γS,γB(v) := (1− FD(v))ᵀΞT (γS,γB)v, v ∈ ∆k; (4)

ΞT (γS,γB) := JT · KT (γB,γS)KT (γB,γB)−1J−1
T ZT (γB)−1 is the invertible k × k matrix that

depends only on the discounts; and the vector (1− FD(v)) := {1−FD(vi)}ki=1 ∈ Rk.

Theorem 3. Let T ∈ N and γS, γB be discount rates s.t. γS ≥ γB and the sequence γB={γt−1
B }Tt=1

is regular. The optimization problem of finding an optimal algorithm is equivalent to maximization of
the multivariate functional LD,γS,γB(·) over the set ∆k={v ∈ Rk| 0≤v1≤ ...≤vk}, k=2T−1, i.e.,

max
A∈AT

EV∼D[SRevγB,γS(A, V )]= max
v∈∆k

LD,γS,γB(v), (5)

where LD,γS,γB is defined in Eq. (4) and depends only on the discounts and the distribution D.

It is quite important to emphasize that the k-dimensional functional LD,γS,γB is a bilinear form
applied to the vectors v and 1 − FD(v). This bilinear form is independent of the distribution
D and is defined by the matrix ΞT (γS,γB). In this view, there is a strong relationship between
our optimization functional LD,γS,γB and the function HD (see Sec. 3): the functional LD,γS,γB

constitutes the key basis of optimal algorithms in dynamic setting and is fundamental for them as the
function HD(p) = pPV∼D[V ≥ p] is fundamental for optimal pricing in static auctions. Moreover,
in the case of equal discounts γS = γB, the optimization of LD,γB,γB reduces to the maximization of
HD (simple algebra is in App. A.2.4). Since, in the particular case of γS = γB, the optimization of
LD,γB,γB has no closed form solution (it reduces to the optimization of HD), we thus expect that, in
the other cases, generally, our optimization problem does not admit a closed form solution as well.

In contrast to the initial form of our problem, numerical optimization of the functional LD,γB,γB

is much easier (though it still has the same number of variables as the initial problem). First, the
functional is continuously differentiable as many times as the CDF FD. Second, its derivatives
have simple form, i, j= 1, .., k: ∂viL(v) =−fD(vi)

∑
l ξilvl+

∑
l(1 − FD(vl))ξli, ∂vi∂vjL(v) =

10In a piece (an interval (vi, vi+1)) the function S(·) equals to the function Sai(·) for some strategy ai which
is a linear function of v: Sai(v) = (

∑
t γ

B
ta
i
t)v − (

∑
t γ

B
ta
i
tpt), see Def. 2.

11Note: by the definition, the i-th component of the vector KT (γB,γ′)A is equal to
∑T
t=1γ

′
ta
i
tA(ai1...a

i
t−1).
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−fD(vi)ξij−fD(vj)ξji for i 6= j, and ∂2
viL(v) =−2fD(vi)ξii−f ′D(vi)

∑
l ξilvl, where ξij is the

ij-th element of ΞT (γS,γB). The derivatives can be easily computed: see App. I for the pseudo-code
that calculates ξij . Third, the domain ∆k is convex (moreover is closed when the support of FD is
bounded) and has a simple form of simplex. Finally, the matrix ΞT (γS,γB) is positive definite on ∆k.
Hence, a variety of gradient methods can be used to find the solution (see our experiments in Sec. 5).

The step-by-step instruction to find the optimal pricing. Remind that, for static pricing, the op-
timal (Myerson) price can be found from maximization of the functional HD(p) = p(1− FD(p)).
In our dynamic case, the optimal pricing algorithm can be found similarly as follows: (I) construct
the matrix Ξ (the pseudo-code to calculate its elements is in Appendix I); (II) construct the func-
tional LD,γB,γB(·) from Eq. (4); (III) find a vector vOpt s.t. it maximizes LD,γB,γB(v), e.g., an apply
numerical method using derivatives of LD,γB,γB(·) provided in the previous paragraph; (IV) convert
the vector vOpt to the prices of the optimal algorithm by means of the linear transformation w−1

γB (·),
which is mentioned in Prop. 2 and whose matrix is KT (γB,γB)−1J−1

T ZT (γB)−1 (see App. A.2.2).

Remark 2. In Appendix A.2, we show that all results of this section hold also for non-geometric
discounts γS = {γSt }Tt=1 and γB = {γBt }Tt=1 such that γBt+1/γ

B
t ≤ γSt+1/γ

S
t .

Remark 3. The regularity of the discount γB is used to get: the uniqueness of γ-dependent natural
order of the strategies ST (for Prop. 2); zero probability of valuations for which the optimal buyer
strategy is not unique (in Prop. 1). Ways to relax this restriction are discussed in App. D. In any way,
non-regular discounts are rare, and do not affect our qualitative results in Sec. 5.

5 Efficient approximation, constrained optimization, numerical experiments

Approximation by optimal τ -step pricing (γS ≥ γB). In the case of infinite games, we have no
similar powerful instrument to find an optimal pricing (unlike to the case of finite games in Sec. 4).
Moreover, when the horizon T is finite but sufficiently large, the optimization problem even in the
simplified form of Eq. (5) suffers from dimensional complexity since the number of variables is
2T − 1. In both cases, however, we can approximate the optimal algorithm by an algorithm that
is optimal in some finite dimensional subclass of AT , T ∈N∪{∞}. Namely, for τ ∈N, let us say
that A is a τ -step pricing algorithm, if ∀a, t > τ : A(a1:t−1) = A(a1:τ−1), i.e., it is constant
from the τ -th round on. The set of all τ -step algorithms is denoted by AτT . An attentive reader
may note that the problem of finding an optimal τ -step algorithm A∈AτT for the finite or infinite
game is equivalent to finding an optimal algorithm for the τ -round finite game with "shortened"
discount sequences γS,τ :=(γS1, .., γ

S
τ−1,

∑T
t=τ γ

S
t ) and γB,τ :=(γB1, .., γ

B
τ−1,

∑T
t=τ γ

B
t ). Hence, one

can apply the optimization technique from Th. 3 (which holds for γB,τ and γS,τ due to Remark 2).
The following proposition (the proof is in App. A.3.1) formally states that the expected revenue of the
optimal τ -step algorithm A∗τ ∈ AτT converges to one of the optimal pricing A∗ ∈ AT when τ → T .

Proposition 3. Let T ∈ N∪ {∞} and γS, γB be discount sequences s.t. γBt+1/γ
B
t ≤ γSt+1/γ

S
t ,Γ

S
τ :=∑T

t=τ+1 γ
S
t for τ ∈ N, τ < T . Then the following bounds hold:

max
A∈AτT

E[SRevγS,γB(A,V )]≤max
A∈AT

E [SRevγS,γB(A,V )] ≤max
A∈AτT

E [SRevγS,γB(A, V )]+ΓS
τE [V ] . (6)

First, Prop. 3 provides the seller with a tool to make a trade-off between the achievable fraction of
the maximal revenue and the computational complexity of the optimization problem to be solved.
In particular, she is able to choose the parameter τ s.t. her computational capabilities on the dimen-
sion 2τ − 1 of the optimization functional L are fitted and the boost in the relative regret bound
ΓS
τE [V ] /ΓS

1E [V ] = γτ−1
S is minimal. Note that the seller can improve her revenue obtained from an

optimal constant algorithm just by applying an optimal τ -step algorithm for small τ . For instance, for
τ = 4, this algorithm can be easily found in 2τ − 1 = 15-dimensional space and provides noticeable
boost in revenue (revenue improvement is illustrated in Fig. 1). Second, from Eq. (6), we have that
the convergence bound is ΓS

τ = γτS /(1− γS) and the convergence rate is ΓS
τ+1/Γ

S
τ = γS. On the one

hand, it means that the smaller γS is, the faster the revenue of the suboptimal algorithm A∗τ converges
to the optimal revenue, and, thus, the functional L in Eq. (4) with the smaller dimension should be
optimized to reach revenue close to the optimal one within ε error, ε > 012. On the other hand, the

12Take τ >τγS,D,ε :=logγS(ε(1−γS)E[V ]) to be ε-close to the optimal revenue. Note that τγS,D,ε→γS→0 0.
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Figure 1: Infinite game T = ∞, uniform D. The prices A∗4(n), for nodes n∈N s.t. |n|≤3, of the
optimal 4-step algorithm A∗4 and the relative expected strategic revenue (w.r.t. A∗1) of the optimal
τ -step algorithm A∗τ , τ=2, ..,6, for discounts: (a) γS=0.8 and various γB; (b) γB=0.2 and various γS.

slower convergence rate is, the more revenue can be extracted from non-static pricing. Namely, the
closer γS to 1 is, the larger the improvement of the revenue of the optimal τ -step pricing is w.r.t. the
constant pricing (for fixed γB and τ ). This is both supported by our experiments (see growing relative
revenue in Fig. 1(b, bottom) & Fig.C7 as γS grows) and in line with the intuition: the larger γS is, the
more revenue could be earned in future rounds (and hence the more profitable dynamic pricing is).

Optimal algorithms with constraints. One more structural insight of our reduction in Sec. 4:
optimization over the set of break points {vi} of the surplus envelope S allows to find optimal
algorithms with constraints that can be expressed in terms of these break points. In particular, the
seller is able to control the probability of buyer usage of each strategy ai∈ST through a constraint
on F (vi+1)−F (vi) (e.g., setting it to zero). E.g., the seller is looking for an algorithm s.t. strategies
active with positive probability are monotone, i.e. of the form 0n1T−n for some n≤T . Hence, if ai
is not monotone, then vi=vi+1, i.e. the line Sai is tangent to the envelope S in only one point. To
find an optimal algorithm among those for which vi=vi+1, one needs slightly update the functional
L: replace i-th and (i+1)-th rows in the matrix Ξ by their sum, do the same with i-th and (i+1)-th
columns, and remove i-th components from the vectors 1−F (v) and v. The modified optimization
functional for the problem with constraints will have T+1 variables since it is equal to the number of
strategies that are active with positive probability. So, the dimensionality of the optimization problem
can be reduced by means of constraints on the form of the algorithm, that can thus be find efficiently.

Lower bound on the maximal revenue for γS=1. In this case, the algorithm PRRFES [30][Th.5]
with optimal upper regret bound can be used to get a lower bound on the optimal ESR. Using PRRFES,
the seller is able to increase her revenue w.r.t. the optimal constant pricing by up to E[V ]/HD(p∗D)>1
(e.g., it is +100% when D is uniform on [0, 1]) as T→+∞. See details in App. G.

Numerical experiments13. To show the practical profit and properties of optimal algorithms obtained
via our functional L from Eq. (4) for the case γS ≥ γB, we conducted numerical experiments in
several representative games. We seek for optimal τ -step algorithms A∗τ , τ = 2, .., 6, in infinite
games with the valuation V uniformly distributed in [0, 1]14, i.e., FD(v) = v. Hence, the functional
LD,γS,γB becomes thus quadratic and is optimized numerically using the Sequential Least Squares
Programming. The ESR of the algorithms are compared with the expected revenue HD(p∗(D))ΓS of
the optimal constant pricing A∗1 (see Sec. 3), which is treated as the baseline from here on. Fig. 1
contains: the obtained in this way prices A∗4(n) for all nodes n (at the top) and the relative expected
strategic revenue ofA∗τ (w.r.t.A∗1) for τ=2, .., 6 (at the bottom). The results in Fig. 1(a) are for γS=0.8
and γB∈{0.01+i·0.005}148

i=0, while the ones in Fig. 1(b) for γB=0.2 and γS∈{0.2+i·0.005}159
i=0.

First, at the bottom of Fig. 1, we see that the optimal τ -step algorithms A∗τ outperform the baseline
optimal constant pricing A∗1 for any observed pair of discounts. Moreover, Fig. 1 demonstrates that
the significant increase in revenue can be obtained even when the minimal possible step aside from the
constant pricing is made (τ = 2). E.g., the seller can extract up to +20% revenue by just maximizing
the functional Eq. (4) in the 3-dimensional space (since 2τ − 1 = 3 for τ = 2): e.g., the revenue
improvement is larger than 20% for γS = 0.9, γB = 0.2, larger than 16% for γS = 0.8, γB = 0.5,
and larger than 10% for γS = 0.8, γB = 0.55. Second, we see that the expected strategic revenue of
A∗τ converges quite quickly to the optimal one (which thus larger than the revenue of the baseline
A∗1 as well). This observation constitutes the empirical evidence of Prop. 3, which suggests that

13The code of all our experiments is avail. at https://github.com/theonlybars/neurips-2019-rppa.
14Experiments for other distributions and horizons are presented in App. C. The results for them are similar.
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the convergence rate is equal to γS. Third, the top part of Fig. 1 demonstrates us that an optimal
algorithm may be non-consistent: e.g., the reverse order of the prices A∗4(e) < A∗4(001) for γB >
≈ 0.57 in Fig. 1(a). Fourth, if the distance between the discount rates γS and γB converges to 0, then
the optimal algorithm A∗ converges to the optimal constant one A∗1 (what experimentally supports
that HD is a special case of LD,γS,γB ). More details and observations are in App. C.2.3. Overall, we
conclude that learning of prices even in several starting rounds allow to extract revenue significantly
larger than the one of optimal static pricing.

6 Incomplete information about buyer discount sequence

Our results can also be applied in the case of a weak assumption on the seller’s information about
the buyer’s discount sequence. The weak assumption: the seller does not know the exact discount
sequence of the buyer, but rather knows a set of intervals {[γ0

t ; γ1
t ]}Tt=1 s.t. the discount coefficient γBt

is located in [γ0
t , γ

1
t ]. We provide the interpretation of the model, which explains the foundation of

the weak assumption. We also show the performance of our results adapted to the weak assumption
setting. For the sake of exposition, all discount sequences are geometrical from here on in the section.

The discount in our model can be interpreted as the continuation probability, i.e., γ is the probability
that the game will continue for one more round. E.g., in the example from Sec. 1 (see App. F for an
extended version as well), γ is the probability that the user does not click on the ad and follows a
link that is in the sight of the RTB platform. In this interpretation, the discount γ is common. The
difference in discounts appears, because the seller and the buyer do not know γ exactly, but rather
estimate it based on available information about the user. Let γ = γ(ξ1, ξ2), where ξ1, ξ2 are user
features. Assume that the seller observes both ξ1 and ξ2, while the buyer observes only ξ1. Then the
seller is able to estimate γ accurately as well as to recover the buyer’s estimate γB(ξ1). To sum up: it
is likely that the seller in our model can at least recover the buyer discount γB with high accuracy.

Let us consider two cases. Case (1): if the seller knows only a lower bound γ̂B for γB s.t. γS <
γ̂B, then she can apply “Big deal", which prices are calculated using γ̂B: Abd(e) =

∑
t γ̂

t−1
B p∗D;

Abd(1 ◦ n) = 0 ∀n; Abd(0 ◦ n) = Tp∗D ∀n. Buyer (whose discount γB ≥ γ̂B) with valuation v > p∗D
still accepts the first proposed price, hence, the seller gets at least

∑
t γ̂

t−1
B p∗D(1− F (p∗D)). This is

less than the optimal revenue (when γB is known exactly), but strictly larger than the one of static
pricing. Similarly, modifications of “Big deal" can be applied when seller knows only distribution
of γB, γB ≥ γS. Case (2): The seller uses the functional L to find an optimal algorithm, assumes
buyer’s discount is γ′B = γB + ε, but faces a buyer with true
discount γB. We evaluate the loss in revenue by the following
numerical experimentation: T = 5, V ∼ U [0; 1] (uniform
on [0; 1]) and γS = 0.5 (different sets of parameters give
qualitatively the same results). In figure above, the expected
strategic revenue (ESR) of this seller is divided by the ESR
of a well-informed seller (i.e. s.t. ε = 0). We see: (a) if ε is
small enough (for ε = 0.02, or ≥ 4% of γB), then S still able
to extract over 99% of the optimal ESR; (b) even if ε is very
large (for ε = 0.1, or ≥ 20% of γB) S still able to extract
over 97% of the optimal ESR for most cases (γB ≤ 0.4); and
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(c) if S is able to just separate γB of γS with a decent margin, then she is able to gain extra revenue.

7 Conclusions

We studied online learning algorithms that maximize expected cumulative revenue of repeated posted-
price auctions with a strategic buyer that holds a fixed private valuation. First, when the participants
non-equally discount their cumulative utilities, we showed that the constant pricing, surprisingly, is no
longer optimal. Second, for the case of more patient seller, we introduced a novel multidimensional
optimization functional which is a multivariate analogue of the one used to determine Myerson’s price.
This functional can be used (1) to find an optimal dynamic pricing, i.e., by efficient gradient-based
methods; and (2) to construct an optimal τ -step algorithm (low-dimensional approximation) that
allows the seller to improve her revenue even in the game with a large horizon T . Finally, we
conducted extensive numerical analysis to show that optimal algorithms are non-trivial, may be
non-consistent, and generate larger expected revenue than the constant pricing with Myerson’s price.
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