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Abstract

We study the problem of properly learning large margin halfspaces in the agnostic
PAC model. In more detail, we study the complexity of properly learning d-
dimensional halfspaces on the unit ball within misclassification error ot - OPT, + ¢,
where OPT,, is the optimal y-margin error rate and o > 1 is the approximation
ratio. We give learning algorithms and computational hardness results for this
problem, for all values of the approximation ratio o > 1, that are nearly-matching
for a range of parameters. Specifically, for the natural setting that « is any constant
bigger than one, we provide an essentially tight complexity characterization. On
the positive side, we give an o = 1.01-approximate proper learner that uses
O(1/(€24%)) samples (which is optimal) and runs in time poly(d/e) - 2001/7").
On the negative side, we show that any constant factor approximate proper learner
has runtime poly(d/e) - 2(1/ 7)o assuming the Exponential Time Hypothesis.

1 Introduction

1.1 Background and Problem Definition

Halfspaces are boolean functions hy, : R? — {41} of the form hy,(x) = sign ((w,x)), where
w € R% s the associated weight vector. (The function sign : R — {£1} is defined as sign(u) = 1 if
u > 0 and sign(u) = —1 otherwise.) The problem of learning an unknown halfspace with a margin
condition (in the sense that no example is allowed to lie too close to the separating hyperplane) is
as old as the field of machine learning — starting with Rosenblatt’s Perceptron algorithm [Ros5§]]
— and has arguably been one of the most influential problems in the development of the field, with
techniques such as SVMs [Vap98|] and AdaBoost [ES97] coming out of its study.

We study the problem of learning ~-margin halfspaces in the agnostic PAC model [Hau92l [KSS94]].
Specifically, there is an unknown distribution D on B, x {£1}, where By is the unit ball on R, and
the learning algorithm A is given as input a training set S = {(x(V, ()} | of i.i.d. samples drawn
from D. The goal of A is to output a hypothesis whose error rate is competitive with the v-margin error
rate of the optimal halfspace. In more detail, the error rate (misclassification error) of a hypothesis

h : R4 — {41} (with respect to D) is err? ; (h) def Pr ,~p[h(x) # y]. Fory € (0,1), the

~-margin error rate of a halfspace hy (x) with [|w]|z < 1is err? (w) e Prx y~p [y{w,z) < 7).

*The full version of this paper is available at [DKM19].
"Now at Google Research, Mountain View.
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We denote by OPTZY) def Min |y, <1 err?(w) the minimum ~-margin error rate achievable by any
halfspace. We say that A is an a-agnostic learner, o > 1, if it outputs a hypothesis h that with
probability at least 1 — 7 satisfies err? ;(h) < - OPT? + €. (For o = 1, we obtain the standard
notion of agnostic learning.) If the hypothesis  is itself a halfspace, we say that the learning algorithm
is proper. This work focuses on proper learning algorithms.

1.2 Related and Prior Work

In this section, we summarize the related work that is directly relavant to the results of this paper. First,
we note that the sample complexity of our learning problem (ignoring computational considerations)
is well-understood. In particular, the ERM that minimizes the number of y-margin errors over the
training set (subject to a norm constraint) is known to be an agnostic learner (o« = 1), assuming
the sample size is Q(log(1/7)/(e7?)). Specifically, ©(log(1/7)/(e27?)) samples’| are known to
be sufficient and necessary for this learning problem (see, e.g., [BM02, IMcAQ3]). In the realizable
case (OPT? = 0), i.e., if the data is linearly separable with margin -, the ERM rule above can
be implemented in poly(d,1/e,1/v) time using the Perceptron algorithm. The agnostic setting
(OPT 3 > () is much more challenging computationally.

The agnostic version of our problem (o = 1) was first considered in [BS00], who gave a proper

learning algorithm with runtime poly(d) - (1/ e)é(l/ 7*)_ It was also shown in [BS00] that agnostic
proper learning with runtime poly(d, 1 /¢, 1/7) is NP-hard. A question left open by their work was
characterizing the computational complexity of proper learning as a function of 1/+.

Subsequent works focused on improper learning. The av = 1 case was studied in [SSS09,SSS10]
who gave a learning algorithm with sample complexity poly(1/e) - 20(1/7) _ie., exponential in 1/~

— and computational complexity poly(d/e) - 20(1/7)  The increased sample complexity is inherent in
their approach, as their algorithm works by solving a convex program over an expanded feature space.

[BS12] gave an a-agnostic learning algorithm for all > 1 with sample complexity 20(1/(am)) and

computational complexity poly(d/e) - 20(1/(am)), (We note that the Perceptron algorithm is known to
achieve v = 1/~ [SerO1]). Prior to [BS12], [LS11] gave a poly(d, 1/¢,1/~) time algorithm achieving

a = 0((1/y)/+/log(1/7)).) [BS1Z] posed as an open question whether their upper bounds for
improper learning can be also derived for a proper learner.

A related line of work [KLS09,[ABL17, DKK* 16| CRV16, IDKK' 17, DKK™ 18| [DKS18| [KKMT18]
DKS19, DKK™19] has given polynomial time robust estimators for a range of learning tasks. Specifi-
cally, [KLS09,[ABL17, DKS18|IDKK™19] obtained efficient PAC learning algorithms for halfspaces
with malicious noise [Val85| [KL93|], under the assumption that the uncorrupted data comes from
a “tame” distribution, e.g., Gaussian or isotropic log-concave. It should be noted that the class of
~-margin distributions considered in this work is significantly broader and can be far from satisfying
the structural properties required in the aforementioned works.

A growing body of theoretical work has focused on adversarially robust learning (e.g., [BLPRI19,
MHS 19, DNV 19| [Nak19])). In adversarially robust learning, the learner seeks to output a hypothesis
with small y-robust misclassification error, which for a hypothesis i and a norm || - || is typically
defined as Pr(y ,)..p[3x’ with ||x’ — x|| < ys.t. h(x’) # y]. Notice that when £ is a halfspace
and || - || is the Euclidean norm, the ~y-robust misclassification error coincides with the vy-margin
error in our context. (It should be noted that most of the literature on adversarially robust learning
focuses on the /,-norm.) However, the objectives of the two learning settings are slightly different:
in adversarially robust learning, the learner would like to output a hypothesis with small ~-robust
misclassification error, whereas in our context the learner only has to output a hypothesis with small
zero-one misclassification error. Nonetheless, as we point out in Remark[T.3] our algorithms can be
adapted to provide guarantees in line with the adversarially robust setting as well.

Finally, in the distribution-independent agnostic setting without margin assumptions, there is com-
pelling complexity-theoretic evidence that even weak learning of halfspaces is computationally
intractable [GRO6, [FGKP06, DOSW11| Danl16, BGS18]].

3To avoid clutter in the expressions, we will henceforth assume that the failure probability 7 = 1/10. Recall
that one can always boost the confidence probability with an O(log(1/7)) multiplicative overhead.



1.3 Our Contributions

We study the complexity of proper a-agnostic learning of y-margin halfspaces on the unit ball. Our
main result nearly characterizes the complexity of constant factor approximation to this problem:

Theorem 1.1. There is an algorithm that uses O(1/(e2~?)) samples, runs in time poly(d /) 200/
and is an o« = 1.01-agnostic proper learner for v-margin halfspaces with confidence probability 9/10.

Moreover, assuming the randomized Exponential Time Hypothesis, any proper learning algorithm
270(1))

The reader is referred to Theorem [2.1] for the upper bound and Theorem [3.1] for the lower bound.
First, we note that the approximation ratio of 1.01 in the theorem statement is not inherent. Our
algorithm achieves o = 1 + 4, for any & > 0, with runtime poly(d/e) - 20(4/(57")) The runtime of
our algorithm significantly improves the runtime of the best known agnostic proper learner [BSO0],
achieving fixed polynomial dependence on 1/¢, independent of . This gain in runtime comes at the
expense of losing a small constant factor in the error guarantee. It is natural to ask whether there
exists an 1-agnostic proper learner matching the runtime of our Theorem[I.1] In Theorem[3.2] we
establish a computational hardness result implying that such an improvement is unlikely.

that achieves any constant factor approximation has runtime poly(d/e) - Q(2'/7

The runtime dependence of our algorithm scales as 20(1/7%) (which is nearly best possible for

proper learners), as opposed to 2°(1/7) for improper learning [SSS09, BS12]. In addition to the
interpretability of proper learning, the sample complexity of our algorithm is quadratic in 1/~ (which
is optimal), as opposed to exponential for known improper learners. Moreover, for moderate values
of ~, our algorithm may be faster than known improper learners, as it only uses spectral methods and
ERM, as opposed to convex programming. Finally, we note that the lower bound part of Theorem[I.T]
implies a computational separation between proper and improper learning for this problem.

In addition, we explore the complexity of c-agnostic learning for large av > 1. The following theorem
summarizes our results in this setting:

Theorem 1.2. There is an algorithm that uses O(1/(€2~?)) samples, runs in time poly(d) -
(1/6)0(1/(0‘7)2) and is a a-agnostic proper learner for ~y-margin halfspaces with confidence proba-
bility 9/10. Moreover, assuming NP # RP and the Sliding Scale Conjecture [BGLR94)], no (1/+)¢-
agnostic proper learner runs in poly(d, 1/e, 1/~) time for some (absolute) constant ¢ > 0.

The reader is referred to Theorem [3.3| for a more precise statement of the lower bound; the upper
bound is deferred to the full version [DKM19]. In summary, we give an a-agnostic algorithm with
runtime exponential in 1/(a-y)?, as opposed to 1/42, and we show that achieving v = (1/7)%1) is
computationally hard. (Assuming only NP # RP, we can rule out polynomial time a-agnostic proper

learning for o = (1/7) FbTERE (177 )

Remark 1.3. While not stated explicitly in the subsequent analysis, our algorithms (with a slight
modification to the associated constant factors) not only give a halfspace w* with zero-one loss at
most o - OPT? + €, but this guarantee holds for the 0.99y-margin erro of w* as well. Thus, our
learning algorithms also work in the adversarially robust setting (under the Euclidean norm) with a
small loss in the “robustness parameter” (margin) from the one used to compute the optimum (i.e., v)
to the one used to measure the error of the output hypothesis (i.e., 0.997).

1.4 Our Techniques

Overview of Algorithms. For the sake of this intuitive explanation, we provide an overview of our
algorithms when the underlying distribution D is explicitly known. The finite sample analysis of our
algorithms follows from standard generalization bounds (see Section [2).

Our constant factor approximation algorithm relies on the following observation: Let w* be the
optimal weight vector. The assumption that |(w*, x)| is large for almost all x (by the margin property),
implies a relatively strong condition on w*, which will allow us to find a relatively small search space
for a near-optimal solution. A first idea is to consider the matrix M = E(xyy)ND[xxT], and note that

“Here the constant 0.99 can be replaced by any constant less than one, with an appropriate increase to the
algorithm’s running time.



w*TMw* = (~?). This in turn implies that w* has a large component on the subspace spanned by
the largest O(1/(ey?)) eigenvalues of M. This idea suggests a basic algorithm that computes a net
over unit-norm weight vectors on this subspace and outputs the best answer. Unfortunately, this basic

algorithm has runtime poly(d)26(1/ (), (Details are deferred to the full version [DKM19].)

To obtain our poly(d/e)2°(/ 7*) time constant factor approximation algorithm (Theorem , we
use a refinement of the above idea. Instead of trying to guess the projection of w* onto the space of
large eigenvectors all at once, we will do so in stages. In particular, it is not hard to see that w* has a
non-trivial projection onto the subspace spanned by the top O(1/~?) eigenvalues of M. If we guess
this projection, we will have some approximation to w*, but unfortunately not a sufficiently good
one. However, we note that the difference between w* and our current hypothesis w will have a large
average squared inner product with the misclassified points. This suggests an iterative algorithm that
in the i-th iteration considers the second moment matrix M(*) of the points not correctly classified
by the current hypothesis sign((w(?), x)), guesses a vector u in the space spanned by the top few
eigenvalues of M), and sets w(**1) = u+w(?), This procedure produces a candidate set of weights

with cardinality 20(1/7*) one of which has the desired misclassification error. This algorithm and its
analysis are given in Section 2]

Our general a-factor algorithm (Theorem [I.2) relies on approximating the Chow parameters of the
target halfspace f, i.e., the d numbers E[f(x)x;], i € [d]. A classical result [Cho61]] shows that
the exact values of the Chow parameters of a halfspace (over any distribution) uniquely define the
halfspace. Although this uniqueness is not very useful in general, the margin assumption implies a
relatively strong approximate identifiability result. Combining this with an algorithm of [DDFES14],
we can efficiently compute an approximation to the halfspace f given an approximation to its Chow
parameters. In particular, if we can approximate the Chow parameters to ¢s-error v - 7y, we can
approximate fy,~ within error OPT? +v.

The natural way to approximate the Chow parameters would be by computing the empirical Chow
parameters, namely E(y ,y.p[yx]. In the realizable case, this quantity corresponds exactly to the
vector of Chow parameters. Unfortunately, this does not work in the agnostic case and it can introduce
an error of w(OPT?). To overcome this obstacle, we note that in order for a small fraction of errors
to introduce a large error in the empirical Chow parameters, it must be the case that there is some
direction w in which many of these erroneous points introduce a large error. If we can guess some
error that correlates well with w and also guess the correct projection of our Chow parameters
onto this vector, we can correct a decent fraction of the error between the empirical and true Chow
parameters. We show that making the correct guesses O(1/(ya)?) times, we can reduce the empirical
error sufficiently so that it can be used to find an accurate hypothesis. Once again, we can compute
a hypothesis for each sequence of guesses and return the best one. The formal description of the
algorithm and its analysis can be found in the full version of this paper [DKM19].

Overview of Computational Lower Bounds. Our hardness results are shown via two reductions.
These reductions take in an instance of a “hard problem” and produce a distribution D on B, x {£1}.
If the starting instance is a YES instance of the original problem, then OPT? is small for an
appropriate . On the other hand, if the starting instance is a NO instance of the original problem,
then OPTOD_ 118 larg As aresult, if there is a “too fast” (a-)agnostic learner for y-margin halfspaces,
then we would also get a “too fast” algorithm for the starting problem as well, which would violate
the corresponding complexity assumption.

To understand the margin parameter v we can achieve, we need to first understand the problems we
start with. For our reductions, the starting problems can be viewed in the following form: select &
items from vy, . .., vy that satisfy certain “local constraints”. For instance, in our first reduction, the
reduction is from the k-Clique problem where we are given a graph G and an integer &, and the goal
is to determine whether it contains a k-clique as a subgraph. For this problem, vy, ..., vy are the
vertices of G and the “local” constraints are that every pair of selected vertices induces an edge.

Roughly speaking, our reduction produces D with dimension d = N, with the ¢-th dimension

corresponding to v;. The “ideal” solution in the YES case is to set w; = ﬁ iff v, is selected and set

w,; = 0 otherwise. In our reductions, the local constraints are expressed using “sparse” sample vectors

def

SWe use OPTY_; = ming, crd erry_; (w) to denote the minimum error rate achievable by any halfspace.



(with only a constant number of non-zero coordinates all having the same magnitude). For example,
in the case of k-Clique, the constraints can be expressed as: for every non-edge (i, j), we must have

D SR AT S I _1 i J = i_ i i
( 73© + 73€ ) w < NeTL where €' and e’ denote the i-th and j-th vectors in the standard basis.

A main step in both of our proofs is to show that the reduction still works even when we “shift” the
right hand side by a small multiple of ﬁ For instance, in the case of k-Clique, it is possible to show

. 1 . 0.99 . .
that, even if we replace e with say Vet the correctness of the construction remains and we also

get the added benefit that now the constraints are satisfied by a margin of v = @(ﬁ) for our ideal
solution in the YES case.

In the case of k-Clique, the above idea yields a reduction to 1-agnostic learning y-margin halfspaces

with margin v = ©( \/IE)’ where the dimension d is N (and ¢ = m). As a result, if there

is an f (%)poly(d, 1)-time algorithm for the latter for some function f, then there also exists an
g(k)poly(N)-time algorithm for k-Clique for some function g, which is considered unlikely as it
would break a widely-belived hypothesis in the area of parameterized complexity.

Ruling out a-agnostic learners is slightly more complicated, since we need to produce the “gap” of
between OPT? in the YES case and OPTOD_1 in the NO case. To create such a gap, we appeal to the
PCP Theorem [[AS98, IALM 98] which can be thought of as an NP-hardness proof of the following
“gap version” of 3SAT: given a 3CNF formula as input, distinguish between the case where the
formula is satisfiable and the case where the formula is not even 0.9-satisfiabld’] Moreover, further
strengthened versions of the PCP Theorem [Din07, IMR10] actually implies that this Gap-3SAT
problem cannot even be solved in time 0(2”0'999 ), where n denotes the number of variables in the
formula, assuming the exponential time hypothesis (ETHﬂ Once again, (Gap-)3SAT can be viewed
in the form of “item selection with local constraint”. However, the number of selected items £ is now
equal to n, the number of variables of the formula. With a similar line of reasoning as above, the

margin we get is now y = @(ﬁ) = @(ﬁ) As a result, if there is a say 21/ % poly(d, 1)-time

a-agnostic learner for y-margin halfspaces (for an appropriate «), then there is an 0(2"0'995 )-time
algorithm for Gap-3SAT, which would violate ETH.

Unfortunately, the above described idea only gives the “gap” « that is only slightly larger than 1,
because the gap that we start with in the Gap-3SAT problem is already pretty small. To achieve larger
gaps, our actual reduction starts from a generalization of 3SAT called constraint satisfaction problems
(CSPs), whose gap problems are hard even for very large gap. This concludes the outline of the main
intuitions in our reductions.

1.5 Preliminaries

For n € Z4, we denote [n] e {1,...,n}. We will use small boldface characters for vectors
and capital boldface characters for matrices. For a vector x € R%, and i € [d], x; denotes the
i-th coordinate of x, and ||x]|2 def (Z?:l x2)1/2 denotes the fo-norm of x. We will use (x,y)
for the inner product between x,y € R?. For a matrix M € R4, we will denote by ||M]||2
its spectral norm and by tr(M) its trace. Let By = {x € R? : ||x||2 < 1} be the unit ball and
Sa—1 = {x € R%: ||x||2 = 1} be the unit sphere in R?. An origin-centered halfspace is a Boolean-
valued function hy, : R? — {£1} of the form hy (x) = sign ((w, x)), where w € R?. (Note that
we may assume w.l.o.g. that ||wl|s = 1.) Let Hq = {hw(x) = sign ((w,x)),w € R?} denote the

class of all origin-centered halfspaces on R¢. Finally, we use e’ to denote the i-th standard basis
vector, i.e., the vector whose i-th coordinate is one and the remaining coordinates are zeros.

2 Algorithm for Proper Agnostic Learning of Halfspaces with a Margin

In this section, we show the following theorem, which gives the upper bound part of Theorem [I.1}

8In other words, for any assignment to the variables, at least 0.1 fraction of the clauses are unsatisfied.
"ETH states that the exact version of 3SAT cannot be solved in 2°(™ time.



Theorem 2.1. Fix 0 < § < 1. There is an algorithm that uses O(1/(¢>~?)) samples, runs in

time poly(d/e) - 20(1/6v*) and is a (1 + 0)-agnostic proper learner for ~y-margin halfspaces with
confidence probability 9/10.

Our algorithm in this section produces a finite set of candidate weight vectors and outputs the one with
the smallest empirical «/2-margin error. For the sake of this intuitive description, we will assume
that the algorithm knows the distribution D in question supported on B; x {#1}. By assumption,

there is a unit vector w* so that err? (w*) < OPT,?.

We note that if a hypothesis h., defined by vector w has «y/2-margin error at least a (1 + §)OPT 3,
then there must be a large number of points correctly classified with y-margin by A+, but not correctly
classified with /2-margin by hy,. For all of these points, we must have that [(w* — w,x)| > /2.
This implies that the ~/2-margin-misclassified points of h., have a large covariance in the w* — w
direction. In particular, we have:

Claim 2.2. Let w € RY be such that errWD/2 (w) > (1+ 5)OPT$. Let D' be D conditioned on
y(w,x) < ~/2. Let MP" = E(x,y)~p [xxT]. Then (w* — w)ITMP' (w* — w) > 6+2/8.

Proof. We claim that with probability at least /2 over (x,y) ~ D’ we have that y(w,x) < /2 and
y(w*,x) > . To see this, we first note that Pr, ,y.p/[y(w,x) > /2] = 0 holds by definition of
D’. Hence, we have that

Pr(xy)~p[y(W",x) <] oPT? 1
Pr oo [y(w",x) <7] < (%) B )

Pr(x)~ply(w,x) <v/2] (1+5)0PT5 (1+6)°

By a union bound, we obtain Pr, ,y.p/ [(y(W,x) > 7/2) U (y(w*,x) < v)] < +5)

Therefore, with probability at least 6/(1 + &) > 6/2 (since § < 1) over (x,y) ~ D’ we have that
y(w* —w,x) > ~/2, which implies that (w* —w,x)2 > 42/4. Thus, (w* —w)TMP' (w* —w) =
E(x,y)~p [((W* —w,x))?] > 072 /8, completing the proof.

Claim says that w* — w has a large component on the large eigenvalues of M?' Building on
this claim, we obtain the following result:

Lemma 2.3. Let w*, w, MP?’ be as in Claim There exists k € Z so that if Vy, is the span of
the top k eigenvectors of MP', we have that [Projy, (w* —w)||3 > kév?/8.

Proof. Note that the matrix MP" is PSD and let 0 > Amax = A1 > Ao > ... > Ag > 0 be its set of
eigenvalues. We will denote by V-, the space spanned by the eigenvectors of M?’ corresponding to
eigenvalues of magnitude at least ¢. Let d; = dim(VZt) be the dimension of V>, i.e., the number
of i € [d] with \; > ¢. Since x is supported on the unit ball, for (x,y) ~ D’, we have that
tr(M?') = E(x,y)~p[tr(xxT)] < 1. Since MP" is PSD, we have that tr(M?") = Z?Zl A; and
we can write

’ d d AL d nlax AII)&X
1>tr(MP) =3\ Z Jldt =3 [ 1yx>dt= [ didt, (h
i=1 i=10 i=1 0 0

where the last equality follows by changing the order of the summation and the integration. If the
projection of (w* — w) onto the i-th eigenvector of MP" has £5-norm a;, we have that

, d d
672/8 < (w*—w)TMP (w*—w) = 3 Nia? = 3
i=1

i=1

Amax Amax
J ailysdt= [ |[Projy., (w"—w)|3dt,
0 0 -

2)
where the first inequality uses Claim [2.2] the first equality follows by the Pythagorean theorem, and
the last equality follows by changing the order of the summation and the integration. Combining (T)

and (@), we obtain f(')\'“‘“‘ |Projy., (w* —w)|[3dt > (6v°/8) f(')\‘“‘“‘ dydt. By an averaging argument,
there exists 0 < ¢ < Amax such that ||[Projy. (w* —w)||3 > (6+?/8)d;. Letting k = d; and noting
that V>, = V}, completes the proof. - O



Lemma 2.3 suggests a method for producing an approximation to w*, or more precisely a vector
that produces empirical /2-margin error at most (1 + 5)OPT7$. We start by describing a non-
deterministic procedure, which we will then turn into an actual algorithm.

The method proceeds in a sequence of stages. At stage i, we have a hypothesis weight vector w(®).
(At stage i = 0, we start with w(®) = 0.) At any stage 7, if errﬁ/Q(W(z)) <1+ J)OPT,?, then W(l)
is a sufficient estimator. Otherwise, we consider the matrix M () = E(x7y)ND(i) [XXT], where DO is
D conditioned on y(w(?), x) < v/2. By Lemma[2.3| we know that for some positive integer value
k(™) we have that the projection of w* — w(?) onto V}.(; has squared norm at least 0k("~2/8.

Let p( be this projection. We set w(it1) = w(® 4+ p()_ Since the projection of w* — w(?) and its
complement are orthogonal, we have

CHVE = [w = wOIE — [p@I3 < lw* — w3 — 6k05%/8 | 3)

where the inequality uses the fact that |p(?||3 > k(") §72/8 (as follows from Lemma[2.3). Let s be
the total number of stages. We can write

|lw* —w

S ) X s—1 .
12w w3 w O = 5 (e = w3~ = wO3) > 007 /8) T O

1=0 i=
where the first inequality uses that ||w* — w(®)||2 = 1 and ||w* — w(*)||3 > 0, the second notes the
telescoping sum, and the third uses (). Therefore, s < Zf:_ol k() < 8/(5+?). Therefore, the above
procedure terminates after at most 8/(5?) stages at some w®) with errf/Z(w(s)) 1+ (S)OPTD

We now describe how to turn the above procedure into an actual algorithm. Our algorithm tries to
simulate the above described procedure by making appropriate guesses. In particular, we start by
guessmg a sequence of positive integers k(") whose sum is at most 8 /(6~?). This can be done in

20(1/(5v*)) ways. Next, given this sequence, our algorithm guesses the vectors w(*) over all s stages
in order. In particular, given w(*), the algorithm computes the matrix M) and the subspace Vj.q:),
and guesses the projection p(*) € Vj.:), which then gives w(*t1). Of course, we cannot expect our
algorithm to guess p(*) exactly (as there are infinitely many points in Vj)), but we can guess it
to within ¢5-error poly(7y), by taking an appropriate net. This involves an additional guess of size

(1/4)°®*) in each stage. In total, our algorithm makes 20(1/(6v*)) many different guesses.
We note that the sample version of our algorithm is essentially identical to the idealized version

described above, by replacing the distribution D by its empirical version and leveraging the following
statistical bound:

Fact 2.4 ([BM02, McAO3]). Let S = {(x,y )}, be a multiset of i.i.d. samples from D, where

m = Q(log(1/7)/(€2v?)), and D,, be the empirical distribution on S. Then with probability at least
1 — 7 over S, simultaneously for all unit vectors w and margins vy > 0, if hy (x) = sign((w, x)),

we have that errf_ (hy) < errDm(w) + .

The pseudo-code of our algorithm is given below in Algorithm

To show the correctness of the algorithm, we begin by noting that the set C' of candidate weight
vectors produced has size 20(1/(67") " This is because there are only 2°(/(57*) many possibil-
ities for the sequence of k(?), and for each such sequence the product of the sizes of the C'(*) is

(1/(67))°% k) = 20(1/(57") We note that, by the aforementioned analysis, for any choice of
E© . kU= and w(?, we either have that err” e (w®) < (14 5)OPT$ or there is a choice
of k() and p( € C®) such that

lw* —w® —pW|3 < w* — w3 — kD42 /8 + 0(5%°) |
where we used (3) and the fact that C) is a 67 -cover of V(). Following the execution path of the
algorithm, we either find some w(*) with err /m (W) < (1+ 5)OPT$"‘, or we find a w(® with

, i-1
w* — w2 <1- (Zok(j)> 572 /8 + O(671)
j=



Algorithm 1 Near-Optimal (1 + )-Agnostic Proper Learner

I: Draw a multiset S = {(x®,y)}, of iid. samples from D, where m =
Q(log(1/7)/(€*7?)).
Let D,,, be the empirical distribution on S.
for all sequences k(9 k(1) ... k(=1 of positive integers with sum at most 8/(672) + 2 do
Let w(© = 0.
fori =0,1,...,s—1do
Let D) be D,,, conditioned on y(w(®), x) < /2.
Let M) = E(x,y)~D [xxT].
Use SVD on M to find a basis for V), the span of the top k(*) eigenvectors.
9: Let C(® be a §+3-cover, in fo-norm, of Vi, N By of size (1/(57))0*™).
10: For each p(?) € C¥) repeat the next step of the for loop with w1 = w(®) 4 p(®),
11: end for
12: end for
13: Let C' denote the set of all w(?) generated in the above loop.

A R

: D
14: Let v € argming, cgerr (w).

15: return Output the hypothesis A (x) = sign((v, x)).

where the last term is an upper bound for (Z;;%) k(j)> -O(62+5). Note that this sequence terminates

in at most O(1/(0+?)) stages, when it becomes impossible that > k() > 8/(67?) + 1. Thus, the

output of our algorithm must contain some weight vector v with err?}; (v)<(1+9¢ )OPT?’”. The

proof now follows by an application of Fact[2.4] This completes the proof of Theorem [2.1]

3 Computational Hardness Results

In this section, we provide several computational lower bounds for agnostic learning of halfspaces
with a margin. To clarify the statements below, we note that we say “there is no algorithm that
runs in time 7'(d, %, 1)” to mean that no T'(d, %, 1)-time algorithm works for all combinations of
parameters d,y and €. (Note that we discuss the lower bounds with stronger quatifiers in the full
version [DKM19].) Moreover, we also ignore the dependency on 7 (the probability that the learner
can be incorrect), since we only use a fixed 7 (say 1/3) in all the bounds below.

First, we show that, for any constant & > 1, a-agnostic learning of y-margin halfspaces requires
20/7°7 " poly(d, 1/¢) time. Up to the lower order term v°() in the exponent, this matches with
our algorithm (in Theorem[2.1)). In fact, we show an even stronger result, that if the dependency of
the running time on the margin is say 2(1/ " then one has to pay 24" in the running time.

This result holds assuming the so-called (randomized) exponential time hypothesis (ETH) [[PO1}
IPZ01]], which postulates that there is no (randomized) algorithm that can solve 3SAT in time 2°(")
where n denotes the number of variables. ETH is a standard hypothesis used in proving (tight)
running time lower bounds. We do not discuss ETH further here, but interested readers may refer to a
survey by Lokshtanov et al. [LMS11]] for an in-depth discussion and several applications of ETH.

Our first lower bound can be stated more precisely as follows:

Theorem 3.1. Assuming the (randomized) ETH, for any universal constant o« > 1, there is no proper

a-agnostic learner for y-margin halfspaces that runs in time 0(2(1/7)270(1) gd' o )f(%) for any
Sfunction f.

Secondly, we address the question of whether we can achieve o = 1 (standard agnostic learning)
while retaining running time similar to our algorithm. We answer this in the negative (assuming a
standard parameterized complexity assumption): there is no f (%)poly(d, %)-time 1-agnostic learner
for any function f (e.g., even for f (%) = 2221/7 ). This demonstrates a stark contrast between what
we can achieve with and without approximation.



Theorem 3.2. Assuming W[1] is not contained in randomized FPT, there is no proper 1-agnostic
learner for y-margin halfspaces that runs in time f(%)poly(d, %) for any function f.

Finally, we explore the other extreme of the trade-off between the running time and approximation
ratio, by asking: what is the best approximation ratio we can achieve if we only consider proper
11

learners that run in poly(d, , ;)-time? On this front, it is known [SerOl1] that the perceptron

algorithm achieves 1/~-approximation. We show that a significant improvement over this is unlikely,
by showing that (1/7) PoRToEoR 177 -approximation is not possible unless NP = RP. If we additionally
assume the so-called Sliding Scale Conjecture [BGLR94], this ratio can be improved to (1/~)¢ for
some constant ¢ > 0.

Theorem 3.3. Assuming NP # RP, there is no proper (1/~)/Po1eglog(1/7) _qgnostic learner for -
margin halfspaces that runs in time poly(d, é, %) Furthermore, assuming NP # RP and the Sliding

Scale Conjecture [[BGLR94), there is no proper (1/7)¢-agnostic learning for ~y-margin halfspaces
1

that runs in time poly(d, =, %)for some constant ¢ > 0.
Due to the technical nature of the Sliding Scale Conjecture, we do not state it in full here; please refer
to the full version for a formal statement [DKM19].

‘We note here that the constant ¢ in Theorem@] is not explicit, i.e., it depends on the constant from
the Sliding Scale Conjecture (SSC). Moreover, even when assuming the most optimistic parameters
of SSC, the constant ¢ we can get is still very small. For instance, it is still possible that a say
\/1/~-agnostic learning algorithm that runs in polynomial time exists, and this remains an interesting
open question. We remark that Daniely et al. [DLS14] have made partial progress in this direction
by showing that, any poly(d, %, %)—time learner that belongs to a “generalized linear family” cannot
1/
polylog(1/7)
of [DLS14] is close to being tight for a natural, yet restricted, family of improper learners. On the
other hand, our proper hardness result holds against all proper learners under a widely believed
worst-case complexity assumption.

achieve approximation ratio « better than 2 ( ) . We note that the inapproximability ratio

Due to space limitations, the proofs of our hardness results are deferred to the full version of this
work [DKM19].

4 Conclusions and Open Problems

This work gives nearly tight upper and lower bounds for the problem of c-agnostic proper learning
of halfspaces with a margin, for « = O(1). Our upper and lower bounds for « = w(1) are far from
tight. Closing this gap is an interesting open problem. Charactering the fine-grained complexity of
the problem for improper learning algorithms remains a challenging open problem.

More broadly, an interesting direction for future work would be to generalize our agnostic learning
results to broader classes of geometric functions. Finally, we believe that finding further connections
between the problem of agnostic learning with a margin and adversarially robust learning is an
intriguing direction to be explored.
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