
We thank all the reviewers and the AC for their time, effort and constructive feedback. [W1], [W2] and [W3] are1

references included in this response.2

R1, R2, R3: Suitability of numerical experiments. We appreciate the concern of all reviewers with respect to the3

numerical simulations. We would like to note that (i) this is mainly a theoretical paper that proves properties of the4

GST (as R3 remarked) and that (ii) the Diffusion GST is very similar to the method in [W1] which has been compared5

extensively with other methods (as R1 observed), and therefore we expect similar numerical results as those in [W1]. In6

any case, we understand, and share, the concerns of the reviewers, so we propose the following changes to the numerical7

section. First, we will include an explicit comparison with the GST of [W1]. This method will replace the diffusion8

scattering, since both are very similar (the only differences being the use of the lazy random walk matrix instead of the9

lazy adjacency matrix, and the use of moments beyond the mean for the low-pass operator φ). Second, we will include10

comparison with a trainable GIN in [W2], in terms of stability of the resulting architectures. We note that comparing11

performance with trainable GNNs is tricky since it is highly dependent on the size of the available training set and12

the details of the training stage (number of epochs, learning rate, etc.), which do not occur in GSTs (which are not13

trainable). Third, we will add clarification and proper links to the Facebook graph [35] and the authorship attribution14

dataset [36, W3], to emphasize that these are publicly available, while explaining that we are concerned with datasets15

involving graph signals, since we want to show how changes in the underlying topology affect the processing of the16

same signals (i.e. datasets involving graph classification, as those in [W1], where changing the underlying graph changes17

the graph signal are not useful to illustrate Theorem 1 –even though, in practice, they work–). Fourth, as suggested18

by R1, we will add a clarification and give due credit to the very good work of [W1] to refer to a more exhaustive19

comparison between GSTs and other state-of-the-art methods. We hope that these changes will address the concerns of20

the reviewers. R1: Structural constraint and recovery of Mallat’s scattering result. The structural constraint allows for21

edge weights dilations or contractions (i.e. all edge weights increase or all edge weights decrease, albeit with different22

relative changes). This is required to control the impact that topology changes have on the eigenvectors. Changes23

such as adding or dropping edges incur in a constant value ε = O(1), and as such fix a nonzero minimum for the24

upper bound. In the very limited number of cases when a topology change can be exactly pinpointed to a change in the25

eigenvectors, the results in this paper can be improved. One such case is that of the line graph, where it is known how26

the eigenvectors change when dilating and contracting the edge weights (the effect of a diffeomorphism in [10]), and27

thus recovering the result in [10]. As space allows, the first observations will be added before Remark 2, while the28

latter observation will be moved from Remark 1 to a new paragraph and expanded. If necessary, further clarifications29

on these relationships will be discussed in the supplementary material. R1: Graph similarity measures. We would30

like to clarify that the task is not to compare graph structures in terms of their extracted features, but to analyze how31

features extracted from graph signals change when the underlying support changes (either because it changes with32

time, or because it is unknown and has to be estimated, among other examples). The measure of similarity we use in33

this work is reminiscent of the Gromov-Hausdorff distance, albeit using the spectral norm of the GSO, instead of a34

max-norm. The comparison with Weisfeller-Lehmann test will hopefully be taken into account by the inclusion of the35

GIN [W2] in the numerical experiments. R3: Relation to other GNNs. Most existing GNNs (with the notable exception36

of GATs) regularize the linear transform of traditional neural networks by using a graph convolution (5). In this respect,37

the main computational core of doing a graph convolution followed by pointwise nonlinearities, is the same in GSTs38

than in GNNs. The main exception, though, is that while GNNs learn the filter coefficients hk (through different39

parameterizations), GSTs design them using graph wavelets. Likewise, since Prop. 2 shows stability of the graph40

filters, which are the same as for GNNs, our stability results may be extended to GNNs with appropriate regularization41

(since trainable parameters will appear in the bound constants) which is the subject of ongoing work. R3: Prop. 3.42

The formal assumption in Prop. 3 indicates that all involved graph filters in the multirresolution wavelet bank have to43

satisfy the integral Lipschitz continuity. However, this can be inherited directly from the mother wavelet satisfying44

the requirement. The hypothesis in Prop. 3 will be changed to reflect this. R3: Theorem 1. The bound in Theorem 145

depends on difference between the graphs as defined in (16). This difference will certainly depend on the particularities46

of the graph topologies considered. Theorem 1 states that it does not depend on the spectral norm of the graph. This47

will be clarified after (19). R3: Different number of nodes. As the theorem is stated now, it requires that both graphs48

have the same number of nodes. The case when they do not, can be addressed by using correspondences in the same49

manner as Gromov-Hausdorff distance. This case is beyond the scope of this paper and is currently ongoing work. R2:50

Computation of bound in Fig. 2. The bound in Fig. 2 is computed as in (19). The values of all the constants involved51

are explained in the supplementary material due to lack of space. In any case, we will add a specific clarification52

pointing out to this fact in the revised version. R3: Update of literature review. We thank the reviewer for bringing to53

our attention this recently published papers. They will be added to the introduction, and discussed.54
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