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Abstract

Scattering transforms are non-trainable deep convolutional architectures that ex-
ploit the multi-scale resolution of a wavelet filter bank to obtain an appropriate
representation of data. More importantly, they are proven invariant to translations,
and stable to perturbations that are close to translations. This stability property
provides the scattering transform with a robustness to small changes in the metric
domain of the data. When considering network data, regular convolutions do not
hold since the data domain presents an irregular structure given by the network
topology.
In this work, we extend scattering transforms to network data by using multires-
olution graph wavelets, whose computation can be obtained by means of graph
convolutions. Furthermore, we prove that the resulting graph scattering transforms
are stable to metric perturbations of the underlying network. This renders graph
scattering transforms robust to changes on the network topology, making it partic-
ularly useful for cases of transfer learning, topology estimation or time-varying
graphs.

1 Introduction

Linear information processing architectures have been the preferred tool for extracting useful infor-
mation from data due to their robustness and provable performance [1–6]. With the desire to model
increasingly more complex mappings between data and useful information, linear approaches started
to fall short in terms of performance, giving rise to a myriad of other nonlinear alternatives [2, Chap.
8], [6, Part 4]. Of these, arguably the most successful have been convolutional neural networks
(CNNs) [7]. CNNs consist of a cascade of layers, each of which computes a convolution with a bank
of filters followed by a pointwise nonlinearity, and act as a parameterization of the nonlinear mapping
between the input data and the desired useful information [8].

The inclusion of nonlinearities coupled with the use of trained coefficients has effectively increased
the performance, but it also has obscured the limits and guarantees of CNNs [9]. In the theoretical
realm, [10, 11] opted for controlling for one of the sources of uncertainty, by fixing the bank of
filters to be a set of pre-defined, multiresolution wavelets. Then, [10] proved that under admissible
conditions on the wavelets, the resulting non-trainable CNN (called scattering transform) satisfies
energy conservation, as well as stability to domain deformations that are close to translations. In
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essence, the stability properties of non-trainable scattering transforms constitutes one of the main
theoretical results explaining the success of CNNs.

Data stemming from networks, however, does not exhibit a regular inherent structure that can
be effectively exploited by convolutions. Data elements are, instead, related by arbitrary pairwise
relationships described by an underlying graph support. Graph neural networks (GNNs) have emerged
as successful architectures that exploit this graph structure [12–15]. GNNs, mimicking the overall
architecture of CNNs, also consist of a cascade of layers, but constrain the linear transform in each
layer to be a graph convolution with a bank of graph filters [16–20]. Graph convolutions are, in
analogy with traditional (regular) convolutions, a weighted sum of shifted versions of the input
signal. The filter taps (weights) of the bank of graph filters are also obtained by minimizing a cost
function over the training set. The mathematical challenges arising from the use of trainable filters
and pointwise nonlinearities have prevented a rapid development of the theory of GNNs as well.
Moreover, the particularities of the underlying irregular structure supporting network data raises
challenges of its own.

Following the roadmap of the Euclidean, regular case, in this paper we pursue the investigation of the
benefits of GNN architectures through the lens of their non-trainable counterparts, where filters are
designed from multiresolution wavelet families. Several papers [21–23] have made initial progress in
defining scattering graph representation and studying their stability properties with respect to metric
deformations of the domain. However, most of these results offer bounds that depend on the graph
topology and do not hold for certain graphs or when graphs are very large. Additionally, these works
do not recover the Euclidean scattering stability result on Euclidean grids. The main theoretical
contribution of this work is to establish stability to relative metric deformations for a wide class of
graph wavelet families, yielding a bound that is independent on the graph topology (it only depends
on the size of the deformation and the representation architecture).

The rest of the paper is structured as follows. In section 2 we discuss related works. In section 3
we define the scattering transform architecture, use the graph signal processing framework to de-
scribe network data (Sec. 3.1), and define graph scattering transforms (GSTs) using graph wavelets
(Sec. 3.2). Then, we proceed to prove our main theoretical claims in section 4. Namely, that GSTs
are permutation invariant (Prop. 1), and that they are stable (Theorem 1) under a relative perturbation
model (Sec. 4.1). Finally, we show through numerical experiments in section 5, that the GST rep-
resentation is not only stable, but also captures rich enough information. Conclusions are drawn in
section 6.

2 Related Work

The particular property of stability has been investigated, in analogy to scattering transforms, for
the case of non-trainable graph wavelet filter banks [21, 22]. More specifically, [21] studies the
stability of graph scattering transforms to permutations, as well as to perturbations on the eigenvalues
and eigenvectors of the underlying graph support. Furthermore, [21] derives results on energy
conservation. The bounds obtained on approximate permutation invariance grow with the size of
the graph, while the bounds on the stability to graph perturbations are applicable only for changes
in edge weights that are smaller with increasing graph size (i.e. larger graphs admit smaller edge
weight changes). Alternatively, in [22], graph scattering transforms using diffusion wavelets [24]
are considered. Perturbations are defined in terms of changes in the underlying graph support, and
measured using diffusion distances [25,26]. The bound obtained on the output for different underlying
graph supports, depends on the spectral gap of the filter, making this bound quite loose in some
cases [22]. We note that [27] isolates the bound on the powers of the graph shift operator [22, eq. (23)]
and generalizes it for arbitrary graph filters. As such, the resulting bound also depends on the spectral
gap. Finally, we draw attention to the work in [28]. This work defines geometric scattering transforms,
which are an extension of diffusion scattering [22], by using a lazy random walk adjacency as the
matrix representation and considering higher-order moments for the low-pass operator. Furthermore,
they do an exhaustive experimental comparison between geometric scattering transforms and a myriad
of graph-based machine learning techniques.
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3 Graph scattering transforms

A scattering transform network [10, 11] is a deep convolutional architecture comprised of three basic
elements: (i) a bank of multiresolution wavelets {hj}Jj=1, (ii) a pointwise nonlinearity ρ (absolute
value), and (iii) a low-pass average operator U . These elements are combined sequentially to produce
a representation Φ(x) of the data x. More specifically, as illustrated in Fig. 1, each of the J wavelets
is applied to each of the nodes of the previous layer, generating J new nodes to which the nonlinearity
is applied. The output is harvested at each node by computing a low-pass average through the operator
U . For a scattering transform with L layers, the number of coefficients of the representation Φ(x) is∑L−1
`=0 J

` = (JL − 1)/(J − 1), independent of the size of the input data.

Each coefficient of the scattering transform is determined by the sequence of wavelet indices (res-
olution scales) traversed to compute it. We call this sequence a path. Let J (`) = {1, . . . , J}`
be a shorthand for the space of all possible `-tuples with J elements, defined for all ` > 0 and
where we set J (0) = {0}. Then, we can define the path pj(`) : N → J (`) as the mapping
between j ∈ N and the specific sequence pj(`) = (j1, . . . , j`) of length ` comprised of a com-
bination of indices from 1 to J (tuples), with p1(0) = 0. Sequences pj(`) and pi(`) are distinct
for j 6= i so that {pj(`)}j=1,...,J` ≡ J (`) is the space of all possible tuples. We denote by
J (L) = {pj(`) ∈ J (`),∀ j ∈ {1, . . . , J`},∀ ` ∈ {0, . . . , L − 1}} the set of all sequences for all
values of `, see Fig. 1.

With this notation in place, the scattering transform Φ(x) of the data x is the collection of scattering
coefficients φpj(`)(x)

Φ(x) =
{
φpj(`)(x)

}
J (L) :=

{
φpj(`)(x)

}
pj(`)∈J (`),`=0,...,L−1 . (1)

For a given sequence pj(`) = (j1, . . . , j`) ∈ J (`), the scattering coefficient φpj(`) is computed as

φpj(`)(x) = U
[
(ρhj)pj(`) ∗ x

]
= Uxpj(`) (2)

where the notation [(ρhj)pj(`) ∗ x] := [(ρhj)j∈pj(`) ∗ x] = ρhj` ∗ · · · ∗ ρhj1 ∗ x is a shorthand
for the repeated application of pointwise nonlinearities ρ and wavelets hj following the scale
indices determined by the path pj(`). The operator U outputs as a scalar, computed by means of a
summarizing low-pass linear operator, typically an average or a sum. Note that we set φp1(0) = φ0 =
Ux. The energy of the scattering transform is given by the energy in its coefficients

‖Φ(x)‖2 =
∑
J (L)

|φpj(`)(x)|2 =

L−1∑
`=0

J`∑
j=1

|φpj(`)(x)|2. (3)

3.1 Network data

The scattering transform relies heavily on the use of the convolution to filter the data through the
wavelet multiresolution bank. The convolution operation, in turn, depends on the data exhibiting
a regular structure, such that contiguous data elements represent elements that are spatially or
temporally related. This is not the case for network data, whereby data elements are related by
arbitrary pairwise relationships determined by the underlying network topology.

To describe network data, we denote by G = (V, E ,W) the underlying graph support, with V the
set of N nodes, E ⊆ V × V the set of edges, and W : E → R the edge weighing function. The
data x ∈ RN is modeled as a graph signal where each element [x]i = xi is the value of the data at
node i ∈ V1 [15]. To operationally relate data x with the underlying graph support G, we define a
graph shift operator (GSO) S ∈ RN×N which is a matrix representation of the graph that respects
its sparsity, i.e. [S]ij = sij can be nonzero, only if (j, i) ∈ E or if i = j [15]. Examples of GSOs
commonly used in the literature include the adjacency matrix [12, 13], the Laplacian matrix [14], and
their normalized counterparts [18, 22].

The operation Sx is, due to the sparsity constraint of S, a local, linear operation, by which each node
i in the network updates its value by means of a weighted linear combination of the signal values at

1For notational simplicity, we consider that each node in the graph holds scalar data, but the extension to
vector data is straightforward, see [18, 20] for details.
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Figure 1. Graph scattering transform. Illustration for J = 4 scales and L = 3 layers. At layer ` = 0 we
have a single coefficient φ(0)(x) since J (0) = {0}, which is obtained by applying the low-pass operator U
to the input data x directly. In the next layer ` = 1 we have J1 = 4 coefficients. We generate 4 nodes by
applying each of the 4 wavelets hj to the input data followed by a pointwise nonlinearity, yielding xpj(1) where
J (1) = {1, 2, 3, 4}. Then, we obtain the output coefficients φpj(`)(x) by means of the low-pass operator U .
For the following layer ` = 2 we have J2 = 16 coefficients. For each of the J previous nodes, we apply each of
the wavelets yielding J new nodes for each one of them, followed by the nonlinearity ρ. Then, we obtain the
new 16 coefficients by applying the low-pass operator U .

neighboring nodes j ∈ Ni
[Sx]i =

∑
j∈Ni

sijxj . (4)

Note that, while Sx computes a summary of the information in the one-hop neighborhood of each
node, repeated application of S computes summaries from farther away neighborhoods, i.e. Skx =
S(Sk−1x) computes a summary from the k-hop neighborhood. This allows for the definition of
graph convolutions, in analogy with regular convolutions. More precisely, since regular convolutions
are linear combinations of data that is spatially or temporally nearby, graph convolutions are defined
as a linear combination of data located at consecutive neighborhoods

h ∗S x =

K−1∑
k=0

hkS
kx = H(S)x (5)

where h = {h0, . . . , hK−1} is the set of K filter coefficients, and where we use ∗S to denote a graph
convolution over GSO S [29]. We note that the output of the graph convolution is another graph
signal defined over the same graph G as the input x.

The graph convolution (5) also satisfies the convolution theorem [30, Sec. 2.9.6], which states that
convolution implies multiplication in frequency domain. We define the graph frequency domain in
terms of the eigendecomposition of the GSO, which we assume to be normal S = VΛVH, where V
is the matrix of eigenvectors which determines the frequency basis signals, and Λ is the diagonal
matrix of eigenvalues that determines the frequency coefficients [13]. The graph Fourier transform
(GFT) of a graph signal is defined as the projection of the graph signal onto the space of frequency
basis signals x̃ = VHx. So, if we compute the GFT of the output of the graph convolution, we get

ỹ = VHy = VH (h ∗S x) = VH
K−1∑
k=0

hkS
kx =

K−1∑
k=0

hkΛ
kx̃ = diag(h̃)x̃ = h̃ ◦ x̃ (6)

where ◦ denotes the elementwise (Hadamard) product, yielding an multiplication of the GFT of the
filter taps with the GFT of the signal. We note that the GFT h̃ of the filter coefficients h is given by a
polynomial on the eigenvalues of the graph

[h̃]i = h̃i = h(λi) with h(λ) =

K−1∑
k=0

hkλ
k. (7)
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It is very interesting to remark that the GFT of the filter is characterized by the same function h(λ),
which depends on the filter coefficients, irrespective of the graph. The specific value of the frequency
coefficients of the filter (and its impact on the output), however, is obtained by instantiating h(λ)
on the eigenvalues of the given graph. But h(λ) still characterizes the GFT of the filter taps for all
graphs.

3.2 Graph wavelets and graph scattering transforms

Graph wavelets are typically defined in the graph frequency domain, by specifying a specific form on
the function h(λ) [31, 32]. For instance, [31] proposes to choose a mother wavelet (wave generating
kernel) h(λ) from the regular Wavelet literature and then construct all the rest of the wavelet scales
by rescaling the continuous parameter λ before sampling it with the eigenvalues corresponding to the
specific graph, see [31, eq. (65)] for a concrete example of a graph wavelet. This same construction
method is further developed in [32] to obtain graph wavelets that are adapted to the spectrum (i.e.
that localize the wavelets around the actual eigenvalues of the given graph, instead of just sampling
rescaled versions of the wavelets). Concrete examples of graph wavelets are given in [32, Sec. IV-A].

Once the multiresolution wavelet filter bank is defined {hj(λ)}Jj=1 we proceed to compute the output
by filtering each graph signal with the corresponding wavelet on the given graph. More precisely,
consider S = VΛVH and define h̃j = [hj(λ1), . . . , hj(λN )]T by evaluating hj(λ) on each of the
N eigenvalues of S. Then, we obtain [cf. (6)]

yj = Vỹj = Vdiag(h̃j)x̃ = Vdiag(h̃j)V
Hx = Hj(S)x (8)

where the output yj for each scale is computed as a linear operation Hj(S) on the input data x.

An important property of wavelets in general, and graph wavelets in particular, is that they conform
a frame [32]. This controls the spread of energy when computing the multiresolution output. For
0 < A ≤ B <∞ and a multiresolution wavelet bank {hj}Jj=1, it conforms a frame if

A2‖x‖2 ≤
J∑
j=1

‖Hj(S)x‖2 ≤ B2‖x‖2. (9)

For wavelets constructed following the above method, it is proven that they always conform a
frame [31, Theorem 5.6]. In particular, the work in [32] designs graph wavelets that are tight, which
means that A = B in (9).

We note that every analytic function h(λ) can be computed in terms of a graph convolution (5). More
precisely, an analytic function can be written in terms of a power series, but since graphs are finite, in
virtue of the Cayley-Hamilton theorem [33, Theorem 2.4.2], this power series can be written as a
polynomial of degree at most N − 1, i.e. by setting K = N in (5). Moreover, [31, Sec. 6] provides a
method for fast computation of the output of graph wavelets, by approximation with a polynomial of
order K � N .

Finally, we define a graph scattering transform (GST), as an architecture of the form (1)-(2), but
where we replace regular convolutions by graph convolutions (5) with a bank of analytic graph
wavelets {hj}Jj=1 that conform a frame (9).

4 Stability to perturbations

Regular scattering transforms have been proven invariant to translations and stable to perturbations
(or deformations) that are close to translations. That is, the difference on the scattering transform of
the original data and that of the perturbed data, is proportional to the size of the perturbation. In the
case of network data, we consider perturbations to the underlying graph support. More specifically,
we consider a N -node graph G with a GSO S and a perturbed N -node graph Ĝ with a GSO Ŝ. The
objective, then, is to prove that the GST is a stable operation under such perturbations, namely that∥∥∥Φ(S,x)−Φ(Ŝ,x)

∥∥∥ . d(S, Ŝ) (10)

for some distance d(S, Ŝ) measuring the size of the perturbation. Perturbations on the underlying
graph support are particularly useful in cases when the graph is unknown and needs to be estimated
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[34], or when the graph changes with time [35]. Note that, since the wavelet functions hj(λ) are
fixed by design, then the analysis centers around how changes in the underlying graph support affect
the eigenvalues which instantiate the GFT of the wavelets, and how does the function hj(λ) change
its output when instantiated in different eigenvalues.

First, we consider perturbations that arise from permutations, that amount to node reorderings. Define
the set of permutation matrices as

P =
{
P ∈ {0, 1}N×N : P1 = 1 , PT1 = 1

}
. (11)

Next, we show that the GST is invariant to permutations

Proposition 1 (Permutation invariance). Let G be a graph with a GSO S, and let Ĝ be a permuted
graph with GSO Ŝ = PTSP. Let x be the input data and x̂ = PTx the correspondingly permuted
data. Then, it holds that

Φ(S,x) = Φ(Ŝ, x̂) (12)

Prop. 1 essentially states that the GST is independent of the chosen node ordering. Furthermore, it
states that the GST exploits the topological symmetries present in the graph, i.e., that nodes with the
same topological neighborhood yield the same output (if the value of the signal in the neighborhood
is the same). In other words, different parts of the graph are distinct inasmuch as their neighborhood
topologies are distinct.

4.1 Perturbation model

When considering arbitrary perturbations Ŝ of S, and in light of Prop. 1, we need to define a distance
d(S, Ŝ) such that, when Ŝ is a permutation of S, then d(S, Ŝ) = 0. This would imply that, in the
same way regular scattering transforms are invariant to translations and stable to perturbations that
are close to translations, GSTs are invariant to permutations and stable to perturbations that are close
to permutations. Define the set of permutations that make S and Ŝ the closest as

P0 = argmin
P∈P

∥∥∥PTŜP− S
∥∥∥ . (13)

Then, we consider the set of error matrices to be

E(S, Ŝ) =
{

PTŜP− S = EHS + SE , P ∈ P0

}
. (14)

And, since matrices E ∈ E(S, Ŝ) measure the (relative) difference between S and Ŝ accounting for
all possible permutations, then we can define the distance that we use to measure perturbations as

d(S, Ŝ) = min
E∈E(S,Ŝ)

‖E‖. (15)

Note that, indeed, if Ŝ = PTSP is simply a permutation of S, then d(S, Ŝ) = 0.
Remark 1. The perturbation model in (14) and the consequent distance in (15) is a relative pertur-
bation model. Relative perturbations successfully take into account structural characteristics of the
underlying graph such as sparsity, average degree, or mean edge weights. This is not the case when
considering absolute perturbations, which is the model adopted in [21, 22, 27].

4.2 Stability of graph wavelets

Changes in the underlying graph support directly affect the output of filtering the signal with a
wavelet. That is, by changing the eigenvalues λi on which the wavelet h(λ) is instantiated, the filter
taps h̃i are changed, and so does the output ỹi in virtue of (6). Thus, the first necessary result is to
quantify the change in the output of a wavelet filter. Given a wavelet function h(λ) and corresponding
instantiations H(S) and H(Ŝ), define the wavelet output difference as

‖H(S)−H(Ŝ)‖ = inf

{
c ≥ 0 : min

P∈P

∥∥∥H(S)x−PH(PTŜP)PTx
∥∥∥ ≤ c‖x‖} . (16)

We can then bound the wavelet output difference as shown next.
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Proposition 2 (Graph wavelet stability). Let G be a graph with GSO S and Ĝ be the perturbed
graph with GSO Ŝ, such that d(S, Ŝ) ≤ ε/2. Let E ∈ E(S, Ŝ), consider its eigendecomposition
E = UMUH where the eigenvalues in M = diag(m1, . . . ,mN ) are ordered such that |m1| ≤
· · · ≤ |mN |, and assume that the structural constraint ‖E/mN − I‖ ≤ ε holds. Let h(λ) be a graph
wavelet that satisfies the integral Lipschitz constraint |λh′(λ)| ≤ C. Then, it holds that

‖H(S)−H(Ŝ)‖ ≤ εC +O(ε2) (17)

The bound in Prop. 2 shows that the wavelet output difference is proportional to the size ε of the
perturbation. The structural constraint ‖E/mN − I‖ limits the changes in the structure of the graph,
such as changes in sparsity or average degree and determines a cost for different perturbations.
For instance, changing all the edge weights by the same amount does not affect the topology
structure and thus ‖E/mN − I‖ = 0. Also, while changing some edge weights by ε/2 satisfies the
constraint, contracting some edges by ε/2 and dilating others in the same amount actually requires
‖E/mN − I‖ = O(1). Finally, we note that graph perturbations such as adding and/or dropping
edges altogether leads to ‖E/mN −I‖ = O(1) as well. In a way, d(S, Ŝ) ≤ ε/2 limits the maximum
edge weight change, while ‖E/mN − I‖ ≤ ε limits how the edge weight changes affect the overall
graph topology.
Remark 2. In what follows, we consider the low-pass average operator U to be independent of the
graph shift operator structure S. In particular, we choose U to be a straightforward average of the
representation obtained at all nodes, i.e. U = N−11T. In the appendix, we offer a proof of stability
for cases in which U depends on S as well.

4.3 Stability of graph scattering transform

The integral Lipschitz condition |λh′(λ)| ≤ C requires the wavelet to be constant in high-eigenvalue
frequencies (i.e. for λ → ∞, the derivative h′(λ) has to go to 0). This implies that information
located in high-eigenvalue frequencies cannot be adequately discriminated (i.e. the output of the
wavelet is the same for a broad band of the high-eigenvalue frequencies). Therefore, integral Lipschitz
wavelets are stable, but not discriminative enough.

GSTs address this issue by incorporating pointwise nonlinearities. The effect of the pointwise
nonlinearities is to cause a spillage of information throughout the frequency spectrum, in particular,
into low-eigenvalue frequencies, which can then be discriminated in a stable fashion. Thus, GSTs are
stable and discriminative information processing architectures.

To give a bound on the stability of the GST, we first derive a bound on the difference of a single GST
coefficient, when computed on different graphs.

Proposition 3 (GST coefficient stability). Let G be a graph with GSO S and Ĝ be the perturbed
graph with GSO Ŝ, such that d(S, Ŝ) ≤ ε/2. Let E ∈ E(S, Ŝ), consider its eigendecomposition
E = UMUH where the eigenvalues in M = diag(m1, . . . ,mN ) are ordered such that |m1| ≤
· · · ≤ |mN |, and assume that the structural constraint ‖E/mN − I‖ ≤ ε holds. Consider a GST
with L layers and J wavelet scales hj(λ), each of which satisfies the integral Lipschitz constraint
|λh′j(λ)| ≤ C and conform a frame with bounds 0 < A ≤ B [cf. (9)]. Then, for the coefficient φpj(`)
associated to path pj(`) = (j1, . . . , j`) it holds that

|φpj(`)(S,x)− φpj(`)(Ŝ,x)| ≤ εC`B`−1‖x‖. (18)

We note that for wavelets hj built as a rescaling of a mother wavelet h [31], then it suffices for h to
satisfy the integral Lipschitz constraint |λh′(λ)| ≤ C for all wavelets hj to satisfy the constraint as
well. The bound in Prop. 3 can be used to prove stability for the entire GST representation.
Theorem 1 (GST stability). Under the conditions of Proposition 3 it holds that

∥∥∥Φ(S,x)−Φ(Ŝ,x)
∥∥∥ ≤ εC

B

(
L−1∑
`=0

`2(B2J)`

)1/2

‖x‖. (19)

First of all, we observe that the bound (19) is linear in the perturbation size ε, thus proving stability
of the GST transform. Also, the proportionality constant depends on the characteristics of the GST
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architecture, but not on the spectral gap nor any other characteristic of the underlying graph. It is
linear also in the integral Lipschitz constant C, and depends exponentially on the upper bound of the
filters B and on the number of scales J , with the exponential factor given by the number of layers L.

Theorem 1 provides a bound that is independent of graph properties. This in contrast to results
in [21, 22, 27] that depend on spectral signatures of the graph. An interesting consequence of this fact
is that it makes it ready to take limits as we grow the number of nodes in the graph. There is, in fact,
no limit to be taken as the bound holds for all graphs.

Of particular importance is the limit of a line graph in which case we partially recover the seminal
stability results for scattering transforms using regular convolutions in [10]. The difference between
Theorem 1 and the results in [10] is our restriction that the perturbation matrix be close to an identity.
This means we can perturb the line graph by dilating all edges or by contracting all edges. Dilations
and contractions can be different for different nodes but we cannot have a mix of dilation and
contraction in different parts of the line. This is allowed in [10] where perturbations are arbitrary
diffeomorphisms. Yet, we note that even in the context of diffeomorphisms, perturbations such as
dropping an edge, still have a large gradient since it implies folding two points into one.

The reason for the relative weakness of the result is that [10] leverages extrinsic geometric information
that is not available in an analysis that applies to arbitrary graphs. More precisely, [10] uses the
knowledge of the underlying geometry of the Euclidean space to compute the bounds (i.e. they are
derived for continuous space Rd). In the context of this work, this amounts to using this extrinsic
knowledge to bound the difference between the eigenvector basis of S and that of Ŝ. When we want
a general result applicable to any graph, as is the case of Theorem 1, we need some (external) means
of bounding how different the eigenvector basis are, and this is achieved by means of the structural
constraint. All in all, this implies that if we have specific knowledge of the domain where the graph
and the possible perturbations leave, then we can improve on (19) by leveraging this information to
bound the difference in the eigenvector basis.

5 Numerical results

For the numerical experiments, we consider three scenarios2: representation error over a synthetic
small world graph, authorship attribution and source localization over a Facebook subgraph, namely
the same problems considered in [22]. We note that we are concerned with studying how changes in
the underlying graph support S affect the output of the graph scattering transforms, when applied to
the same input data x. As such, we are interested in datasets where we can keep x constant while
changing S, i.e. scenarios involving data modeled as graph signals. In all cases, we study the GST
carried out by three different wavelets: a monic cubic polynomial as suggested in [31], a tight Hann
wavelet as in [32], and the geometric scattering introduced in [28]. For comparison, we consider
the GFT as a linear, graph-based representation of the data and a trainable GIN [36]. We note that
an exhaustive comparison between scattering transforms and other more traditional graph-based
methods can be found in [28]. Complete details of all simulations are provided in the appendix. We
consider GSTs with 6 scales and 3 layers, yielding representations with 43 coefficients when using
the monic cubic polynomial [31] and a tight Hann wavelet [32]. For the geometric scattering we
consider the low pass operator to compute 4 moments, as used in [28], leading to 172 coefficients. For
scenarios two and three we consider a GFT with 43 coefficients and a GIN that produce 43 features
in the hidden layer.

The first experiment is used to corroborate numerically the stability of the GST, and consists of comput-
ing the representation error obtained by transforming a white noise signal defined over a small world
graph of 100 nodes. We compute the relative representation error ‖Φ(S,x)−Φ(Ŝ,x)‖/‖Φ(S,x)‖
and show the results in Fig. 2a. We observe that the GST incurs in up to 4 orders of magnitude less
relative representation error than the GFT, resulting in markedly more stable representations. Within
the different choices of wavelets, the geometric scattering is the more stable. Also, we show the
theoretical bound of Theorem 1, computed as in (19) for the monic cubic polynomial wavelets, and
where the values of B and C where obtained numerically (see the appendix for details). We see that
the bound is not tight, but it is still lower than the GFT.

2Datasets and source code: http://github.com/alelab-upenn/graph-scattering-transforms
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Figure 2. (a) Difference in representation between the signal defined using the original GSO S and using the GSO
Ŝ corresponding to the deformed graph as a function of the perturbation size ε [cf. (15)]. (b)-(c) Classification
accuracy as a function of perturbation for the authorship attribution and the Facebook graph, respectively.

For the second and third experiments, we consider two problems involving real-world data. The
objective is twofold: (i) to show that the GST representations are, at least, as rich as the widely
used GFT representation, and (ii) to consider stability to real-world perturbations (as opposed to
controlled perturbations like in the first experiment). In Fig. 2b we show the classification accuracy
in a problem involving authorship attribution of texts written by Jane Austen [37, 38], in the same
scenario considered in [22]. The perturbation comes from considering different number of training
excerpts and amounts to uncertainty in estimating the underlying graph topology. It is immediate to
note that the performance obtained by a linear SVM classifier operating on the GST representation is
comparable to that obtained when using the GFT, but worse than the GIN –which is understandable
since the GIN has been trained for 40 epochs to fit the dataset–. We also observe that the oscillation of
the mean classification accuracy of the GFT (as well as the large error bars) show that is is much less
stable than the GST. In Fig. 2c we show the classification accuracy for a source localization problem
over the 234-node Facebook subnetwork [39], as discussed in [22]. In this case, the perturbation
comes from randomly dropping edges with probability given in the x-axis of the figure (from 0.01
to 0.3). We observe that the GST using tight Hann wavelets and the geometric scattering transform
achieve better performance than the GFT and similar to that of the trained GIN, while the GST
using monic cubic polynomials yields similar performance to the GFT. Finally, we note that the
variability in the GFT is significantly larger than the geometric scattering and the tight Hann GST,
but comparable to the Monic Cubic GST.

6 Conclusions

We have studied the stability properties of graph scattering transforms (GSTs) built with integral
Lipschitz wavelets. We have introduced a relative perturbation model that takes into account the
structure of the graph as well as its edge weights. We proved stability of the GST, by which changes
in the output of the GST are bounded proportionally to size of the perturbation of the underlying
graph. The proportionality constant depends on the model characteristics (number of scales, number
of layers, chosen wavelets) but does not depend on characteristics of the graph. Finally, we used
numerical experiments to show that the GST representation is also rich enough to achieve comparable
performance as the popular GFT, which is a linear, graph-based representation.
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