
We thank all reviewers for their comments and acknowledgement of our contribution. All comments are very useful and1

will be addressed in greater details in the revision. For the theory part, we will add discussions on key results such as2

Theorem 3 and Corollary 4, as Reviewer 3 suggested. For the experiments, we will add (i) more detailed illustrations3

and analysis to the experimental settings and results, (ii) insights on the trade-offs of using different types of kernels, as4

well as (iii) more comprehensive comparisons between pseudo mirror descent and the existing benchmarks. Below we5

address each reviewer’s comments separately.6

7

Response to Reviewer 1:8

How to choose the proper Bregman divergence? The choice of Bregman divergence is rather flexible and9

problem-specific depending on the underlying geometry. In our context of learning positive functions, any distance-10

generating function Φ such that ∇Φ∗ ensures positivity would be sufficient. This includes the entropy func-11

tion Φ(x) =
∫
x(t) log x(t)dt −

∫
x(t)dt (resp. the generalized I-divergence), the negative logarithmic function12

Φ(x) = −
∫

log x(t)dt, (resp. the Itakura-Saito divergence), and simple functions such as Φ(x) =
∫

2
5x

5/2(t)dt, just13

to name a few. It is yet unclear whether there exist ways to systematically design the “best Bregman divergence in a14

theoretical way. Instead, we will provide further numerical comparisons under different Bregman divergences to further15

illustrate this point in the revision.16

The role of the first term in (4). While adding this term or not does not affect the update rule, it is presented here only17

to emphasize the fact that x(k) is obtained by minimizing a 2nd-order Taylor approximation of f(x) at x(k−1), with the18

quadratic term replaced by the Bregman divergence. This is also commonly adopted in the literature.19

20

Response to Reviewer 2:21

Is continuity of the intensity function restrictive? We think that the continuity of the intensity function is indeed a22

minimal assumption here for nonparametric estimation. Note that many existing literature assumes even more restrictive23

smoothness conditions (learning in Sobolev spaces, smoothing spline expansion, etc). Moreover, many real-world data24

are well captured by continuous intensity functions, as also demonstrated in our experiments. In the case where the true25

underlying intensity function is discontinuous, our algorithm would return a close continuous approximation. We will26

further illustrate this point in our revision.27

Elaborate potential limitations? The only potential limitation of our results we can think of is that the current28

analysis is not fully generalizable to incorporate additional constraints on the intensity function on top of positivity. In29

general, the pseudo mirror descent algorithm can be applied to solve constrained problems, but our current analysis is30

only applicable to enforcing positivity. A potential remedy is that one could convert additional constraints to penalty31

terms. Closing this gap is an interesting direction we are working on that is not present in the current version of the paper.32

33

Response to Reviewer 3:34

Implications of Theorem 3 and Corollary 4. Thanks for the suggestion. We will work on better explaining these35

results in the revision to help understanding. In plain words, Theorem 3 says asymptotically, the inner product between36

pseudo-gradient and the gradient in “dual space” goes to 0. This result becomes particularly useful if we set the37

pseudo-gradient as in Corollary 4, which then implies asymptotic vanishing of the gradient norm. Depending on specific38

forms of the objective function, this may further imply that pseudo mirror descent converges to a stationary point.39

Clarification on the oscillation behavior in experiments. We suppose the reviewer is referring to the right plot40

of Figure 1. There could be several reasons causing the oscillation: (i) first and foremost, unlike gradient descent,41

mirror descent is not necessarily a “descent” method (despite its name), i.e., the objective is not necessarily decreasing42

monotonically, (ii) the estimate is already close to the ground truth, so small noise could also cause oscillation.43

Clarification on the kernel choices in experiments. We apologize for the confusion. Our original intention is to44

demonstrate that the algorithm works well under different choices of kernels. There is also an interesting intuition45

behind which kernel to use that is not shown in the current version of the paper. Using finite-dimensional kernel, such46

as polynomial kernels, would guarantee (7) and hence the rates in Theorem 6, while using infinite-dimensional kernels,47

such as the Sobolev kernel, generally has faster convergence at early stage. We will add more discussions on the kernel48

choices in the revision.49


