
Our paper presents an geometric interpretation for inverse reinforcement learning (IRL) with finite states and actions,1

as well as a corresponding L1-regularized Support Vector Machine formulation with formal guarantees in sample2

complexity and with regard to Bellman optimality. We thank the reviewers for their feedback and for bringing several3

issues and improvements to our attention. Our main contribution and focus in this paper is theoretical, which the4

reviewers seem to agree with, and the experiments serve primarily to validate our theory.5

Following comments from the reviewers, we will move The proof of Theorem 5.1 to the appendix and add content6

discussing the background of IRL. In addition to the linear programming method [5] and the Bayesian IRL method [6]7

presented in the original submission, several other approaches to the IRL problem exist. These include Hybrid IRL8

[4], Maximum Margin Planning [7], Maximum Entropy IRL (MaxEnt) [9], and Gaussian Process IRL (GPIRL) [3]. A9

survey of other approaches to the inverse reinforcement learning problem can be found in [1]. While the problem in our10

paper is formulated in the form of a standard Markov Decision Process (MDP), several approaches instead consider11

the linearly-solvable MDP (LMDP) formulation presented in [2]. As mentioned in [2] (in particular Section 2.6), the12

problem formulation of the standard MDP and LMDP is different. Given the true transition probabilities, methods such13

as Multiplicative Weights for Apprenticeship Learning (MWAL) [8] and [5] are guaranteed to recover the true optimal14

policy where as methods that use LMDP to solve the same problem are not. To confirm this, we have used GPIRL [3]15

code available at https://graphics.stanford.edu/projects/gpirl/ to solve the same synthetic experiments16

presented in Figure 3 of Section 8 of our paper and found the rewards from GPIRL were not Bellman optimal as per the17

definition in section 3 line 75 of our paper. Further comparisons with GPIRL, Bayesian IRL and MWAL are shown18

the Figure 1. We note that about 30% of the rewards returned by MWAL were the trivial solution R = 0 which were19

not counted as successes. The result presented in our paper immediately impacts algorithms that use standard MDP20

models more it impacts than algorithms that use LMDP models such as MaxEnt and GPIRL, as the objective of the21

LMDP-based algorithms is different. In the case of standard MDP problems it readily provides a sample complexity22

and a formal guarantee with respect to Bellman optimality, which is not provided by any of the other methods.23

The formulation provided in our paper is a nonparametric approach as compared to approaches that use features derived24

from states. It also makes no assumptions on the sparseness of the transitions. Our experiments reflect this as well,25

as the transition probabilities are drawn from a uniform distribution with no sparseness assumptions and would be26

more difficult to than sparse cases. In contrast, tasks like gridworld tend to have have sparse transitions probabilities27

or feature transformations that reduce dimensions. We provide a method and a guarantee on optimality that does not28

require sparseness and does not depend on feature selection, which is a problem with other methods.29

Definition 4.1 leads to our paper considering only Regime 3 cases. From a practical perspective this is not30

a loss. All problems within Regime 1 have only one feasible solution, R ≡ 0 which does not provide31

any information with respect to Bellman optimality as no policy is preferred over the other with this reward.32

Figure 1:

Problems in Regime 2 require an infinite number of samples to both ascertain that33

the problem is indeed in Regime 2 and to solve the problem as perturbations can34

lead to the estimated problem falling under Regime 1 or Regime 3 as mentioned in35

line 134 of our paper. As stated in line 130, this type of assumption has been made36

in other areas as well.37

While our paper does state the parameters and objective of the finite state MDP IRL38

problem from lines 39-76 as well as an initial formulation, our paper does not aim39

to derive the results and formulation of [5] from scratch. As suggested, we will40

present this problem as a standalone problem and explain the origin of the F matrix41

from Bellman Optimality.42
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