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Abstract

Modeling real-world multidimensional time series can be particularly challeng-
ing when these are sporadically observed (i.e., sampling is irregular both in time
and across dimensions)—such as in the case of clinical patient data. To address
these challenges, we propose (1) a continuous-time version of the Gated Recurrent
Unit, building upon the recent Neural Ordinary Differential Equations (Chen et al.,
2018)), and (2) a Bayesian update network that processes the sporadic observations.
We bring these two ideas together in our GRU-ODE-Bayes method. We then
demonstrate that the proposed method encodes a continuity prior for the latent
process and that it can exactly represent the Fokker-Planck dynamics of complex
processes driven by a multidimensional stochastic differential equation. Addition-
ally, empirical evaluation shows that our method outperforms the state of the art on
both synthetic data and real-world data with applications in healthcare and climate
forecast. What is more, the continuity prior is shown to be well suited for low
number of samples settings.

1 Introduction

Multivariate time series are ubiquitous in various domains of science, such as healthcare (Jensen et al.,
2014)), astronomy (Scargle,|1982), or climate science (Schneider, 2001)). Much of the methodology for
time-series analysis assumes that signals are measured systematically at fixed time intervals. However,
much real-world data can be sporadic (i.e., the signals are sampled irregularly and not all signals are
measured each time). A typical example is patient measurements, which are taken when the patient
comes for a visit (e.g., sometimes skipping an appointment) and where not every measurement is
taken at every visit. Modeling then becomes challenging as such data violates the main assumptions
underlying traditional machine learning methods (such as recurrent neural networks).

Recently, the Neural Ordinary Differential Equation (ODE) model (Chen et al.| 2018) opened the
way for a novel, continuous representation of neural networks. As time is intrinsically continuous,
this framework is particularly attractive for time-series analysis. It opens the perspective of tackling
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the issue of irregular sampling in a natural fashion, by integrating the dynamics over whatever time
interval needed. Up to now however, such ODE dynamics have been limited to the continuous
generation of observations (e.g., decoders in variational auto-encoders (VAEs) (Kingma & Welling,
2013)) or normalizing flows (Rezende et al., 2014)).

Instead of the encoder-decoder architecture where the ODE part is decoupled from the input pro-
cessing, we introduce a tight integration by interleaving the ODE and the input processing steps.
Conceptually, this allows us to drive the dynamics of the ODE directly by the incoming sporadic
inputs. To this end, we propose (1) a continuous time version of the Gated Recurrent Unit and (2) a
Bayesian update network that processes the sporadic observations. We combine these two ideas to
form the GRU-ODE-Bayes method.
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Figure 1: Comparison of GRU-ODE-Bayes and NeuralODE-VAE on a 2D Ornstein-Uhlenbeck
process with highly correlated Wiener processes (p = 0.99). Dots are the values of the actual
underlying process (dotted lines) from which the sporadic observations are obtained. Solid lines and
shaded areas are the inferred means and 95% confidence intervals. Note the smaller errors and smaller
variance of GRU-ODE-Bayes vs. NeuralODE-VAE. Note also that GRU-ODE-Bayes can infer that a
jump in one variable also implies a jump in the other unobserved one (red arrows). Similarly, it also
learns the reduction of variance resulting from a new incoming observation.

The tight coupling between observation processing and ODE dynamics allows the proposed method to
model fine-grained nonlinear dynamical interactions between the variables. As illustrated in Figure [T}
GRU-ODE-Bayes can (1) quickly infer the unknown parameters of the underlying stochastic process
and (2) learn the correlation between its variables (red arrows in Figure |I|) In contrast, the encoder-
decoder based method NeuralODE-VAE proposed by |Chen et al. (2018) captures the general structure
of the process without being able to recover detailed interactions between the variables (see Section 4]
for detailed comparison).

Our model enjoys important theoretical properties. We frame our analysis in a general way by
considering that observations follow the dynamics driven by a stochastic differential equation (SDE).
In Section[d]and Appendix [[, we show that GRU-ODE-Bayes can exactly represent the correspond-
ing Fokker-Planck dynamics in the special case of the Ornstein-Uhlenbeck process, as well as in
generalized versions of it. We further perform an empirical evaluation and show that our method
outperforms the state of the art on healthcare and climate data (Section [5).

1.1 Problem statement

We consider the general problem of forecasting on N sporadically observed D-dimensional time
series. For example, data from N patients where D clinical longitudinal variables can potentially
be measured. Each time series ¢ € {1,..., N} is measured at K; time points specified by a vector



of observation times t; € R¥i. The values of these observations are specified by a matrix of
observations y; € R¥:XP and an observation mask m; € {0, 1}%:*? (to indicate which of the
variables are measured at each time point).

We assume that observations y; are sampled from the realizations of a D-dimensional stochastic
process Y (t) whose dynamics is driven by an unknown SDE:

dY (1) = p(Y (t))dt + o (Y (£))dW (t), (D

where dW (t) is a Wiener process. The distribution of Y (¢) then evolves according to the celebrated
Fokker-Planck equation (Risken, [1996). We refer to the mean and covariance parameters of its
probability density function (PDF) as pvy (t) and Xy (¢).

Our goal will be to model the unknown temporal functions py (t) and Xy (¢) from the sporadic
measurements y;. These are obtained by sampling the random vectors Y (¢) at times t; with some
observation noise €. Not all dimensions are sampled each time, resulting in missing values in y;. In
contrast to classical SDE inference (Sdrkki & Solin, 2019), we consider the functions py (t) and
Yy (t) are parametrized by neural networks.

This SDE formulation is general. It embodies the natural assumption that seemingly identical
processes can evolve differently because of unobserved information. In the case of intensive care, as
developed in Section[3} it reflects the evolving uncertainty regarding the patient’s future condition.

2 Proposed method

At a high level, we propose a dual mode system consisting of (1) a GRU-inspired continuous-time state
evolution (GRU-ODE) that propagates in time the hidden state h of the system between observations
and (2) a network that updates the current hidden state to incorporate the incoming observations
(GRU-Bayes). The system switches from propagation to update and back whenever a new observation
becomes available.

We also introduce an observation model fo,s(h(¢)) mapping h to the estimated parameters of the
observations distribution /1y (t) and Sy (¢) (details in Appendix [E). GRU-ODE then explicitly learns
the Fokker-Planck dynamics of Eq.[I. This procedure allows end-to-end training of the system to
minimize the loss with respect to the sporadically sampled observations y.

2.1 GRU-ODE derivation

To derive the GRU-based ODE, we first show that the GRU proposed by (Cho et al.|(2014) can be
written as a difference equation. First, let ry, z;, and g; be the reset gate, update gate, and update
vector of the GRU:

r; = o(W,x; +Uyhy 1 +b,)
7zt =oc(W,x; +U,h;_1 +b,) 2)
g = tanh(Wy,x;, + Up(r; © hy—1) + by,),
where © is the elementwise product. Then the standard update for the hidden state h of the GRU is
hy=2z,0h 1+ (1—2z)0g:.

We can also write this as hy = GRU (h;_1, x;). By subtracting h;_; from this state update equation
and factoring out (1 — z,), we obtain a difference equation

Ah;=h;—h; 1 =2z, 0h; 1 +(1-2)©Og —hy g
=(1-2z)0O (g —hi1).
This difference equation naturally leads to the following ODE for h(#):
dh(t
B _ (1 a(e)) © (8(6) ~ (1), ®
where z, g, r and x are the continuous counterpart of Eq.[2] See Appendix[A for the explicit form.

We name the resulting system GRU-ODE. Similarly, we derive the minimal GRU-ODE, a variant
based on the minimal GRU (Zhou et al., 2016), described in appendix |§



In case continuous observations or control signals are available, they can be naturally fed to the
GRU-ODE input x(t). For example, in the case of clinical trials, the administered daily doses of the
drug under study can be used to define a continuous input signal. If no continuous input is available,
then nothing is fed as x(¢) and the resulting ODE in Eq. [3 is autonomous, with g(t) and z(¢) only
depending on h(¢).

2.2 General properties of GRU-ODE

GRU-ODE enjoys several useful properties:

Boundedness. First, the hidden state h(¢) stays within the [—1, 1] rang This restriction is crucial
for the compatibility with the GRU-Bayes model and comes from the negative feedback term in
Eq.[3} which stabilizes the resulting system. In detail, if the j-th dimension of the starting state h(0)
is within [—1, 1], then h(¢),; will always stay within [—1, 1] because

dh(t), dh(t), -

dt at lin,=—1

<0 and
t:h(t),;=1

This can be derived from the ranges of z and g in Eq. g Moreover, would h(0) start outside of the
[—1, 1] region, the negative feedback would quickly push h(¢) into this region, making the system
also robust to numerical errors.

Continuity. Second, GRU-ODE is Lipschitz continuous with constant X = 2. Importantly, this
means that GRU-ODE encodes a continuity prior for the latent process h(t). This is in line with
the assumption of a continuous hidden process generating observations (Eq.[I). In Section[5.5] we
demonstrate empirically the importance of this prior in the small-sample regime.

General numerical integration. As a parametrized ODE, GRU-ODE can be integrated with any
numerical solver. In particular, adaptive step size solvers can be used. Our model can then afford large
time steps when the internal dynamics is slow, taking advantage of the continuous time formulation
of Eq.[3. It can also be made faster with sophisticated ODE integration methods. We implemented
the following methods: Euler, explicit midpoint, and Dormand-Prince (an adaptive step size method).
Appendix [C]illustrates that the Dormand-Prince method requires fewer time steps.

2.3 GRU-Bayes

GRU-Bayes is the module that processes the sporadically incoming observations to update the hidden
vectors, and hence the estimated PDF of Y (¢). This module is based on a standard GRU and thus
operates in the region [—1, 1] that is required by GRU-ODE. In particular, GRU-Bayes is able to
update h(t) to any point in this region. Any adaptation is then within reach with a single observation.

To feed the GRU unit inside GRU-Bayes with a non-fully-observed vector, we first preprocess it with
an observation mask using fp.cp, as described in Appendix @ For a given time series, the resulting
update for its k-th observation y[k] at time ¢t = t[k] with mask m[k] and hidden vector h(¢_) is

h(t+) = GRU(h(t*)a fprep(Y[kL m[k}v h(t*)))’ “4)

where h(t_) and h(¢;) denote the hidden representation before and after the jump from GRU-
Bayes update. We also investigate an alternative option where the h(¢) is updated by each observed
dimension sequentially. We call this variant GRU-ODE-Bayes-seq (see Appendix [F|for more details).
In Appendix [H, we run an ablation study of the proposed GRU-Bayes architecture by replacing it
with a MLP and show that the aforementioned properties are crucial for good performance.

2.4 GRU-ODE-Bayes

The proposed GRU-ODE-Bayes combines GRU-ODE and GRU-Bayes. The GRU-ODE is used to
evolve the hidden state h(¢) in continuous time between the observations and GRU-Bayes transforms
the hidden state, based on the observation y, from h(¢_) to h(t,). As best illustrated in Figure|2]
the alternation between GRU-ODE and GRU-Bayes results in an ODE with jumps, where the jumps
are at the locations of the observations.

3We use the notation [—1, 1] to also mean multi-dimensional range (i.e., all elements are within [—1, 1]).



GRU-ODE-Bayes is best understood as a filtering approach. Based on previous observations (until
time ty), it can estimate the probability of future observations. Like the celebrated Kalman filter, it
alternates between a prediction (GRU-ODE) and a filtering (GRU-Bayes) phase. Future values of
the time series are predicted by integrating the hidden process h(t) in time, as shown on the green
solid line in Figure[2] The update step discretely updates the hidden state when a new measurement
becomes available (dotted blue line). Let’s note that unlike the Kalman filter, our approach is able to
learn complex dynamics for the hidden process.

h(t)

EGRU-Ba es :
GRU-ODE ; v o—"

Loss
pre
time

1kl Hk+1]

Figure 2: GRU-ODE-Bayes uses GRU-ODE to evolve the hidden state between two observation
times ¢[k] and ¢[k + 1]. GRU-Bayes processes the observations and updates the hidden vector h in a
discrete fashion, reflecting the additional information brought in by the observed data.

Objective function

To train the model using sporadically-observed samples, we introduce two losses. The first loss,
Losspre, is computed before the observation update and is the negative log-likelihood (NegLL) of
the observations. For the observation of a single sample, we have (for readability we drop the time
indexing):
D
LOSSpre = - Z m; Ing(yj ‘9 = fobs(hf)j%

j=1

where m; is the observation mask and fohs(h_); are the parameters of the distribution before the
update, for dimension j. Thus, the error is only computed on the observed values of y.

For the second loss, let py,r. denote the predicted distributions (from h_) before GRU-Bayes.

With pobs, the PDF of Y (¢) given the noisy ob-
servation (with noise vector €), we first compute
the analogue of the Bayesian update:

Algorithm 1 GRU-ODE-Bayes

DBayes,j X Ppre,j * Pobs,j- Input: Initial state h,
observations y, mask m,
observation times t, final time 7.
Initialize time = 0,loss = 0, h = hy.
for k =1to K do
{ODE evolution to t[k]}
h = GRU-ODE(h, time, t[k])

Let ppost denote the predicted distribution (from
h.) after applying GRU-Bayes. We then de-
fine the post-jump loss as the KL-divergence
between pRayes and ppost:

D time = t[k]
L et = D aves.i|[Doost 1 )- {Pre-jump loss}
O5Spost ij K1 (PBayes.l[Ppost.;) loss += Losspre(y[k], m[k], h)
Jj=1
{Update}

In this way, we force our model to learn to mimic h = GRU-Bayes (y[k], m[k],h)
a Bayesian update. {Post-jump loss}

o ‘ ) loss += A. Losspost (Y [K], m[k], h)
Similarly to the pre-jump loss, Losspest, 1S com- end for

puted only for the observed dimensions. The {ODE evolution to 7'}
total loss is then obtained by adding both losses h = GRU-ODE(h, t[Ng],T)
with a weighting parameter \. return (h, loss)




For binomial and Gaussian distributions, computing Loss.s can be done analytically. In the case of
Gaussian distribution we can compute the Bayesian updated mean ppayes and variance a%ayes as

2 2
(o3 oz
_ obs pre
HBayes = —5 5 Hpre + D) 5 Hobs
Opre + Oobs Opre + Oobs
2 2
2 _ apre'aobs
UBayes -

2 2
Jpre + Oobs

where for readability we dropped the dimension sub-index. In many real-world cases, the observation
noise 02, < 07, in which case ppayes is just the observation distribution: fiayes = fobs and
2

2 _
UBayes = Ogbs:
2.5 Implementation

The pseudocode of GRU-ODE-Bayes is depicted in Algorithm[I} where a forward pass is shown for a
single time seriesEl For mini-batching several time series we sort the observation times across all time
series and for each unique time point t[k], we create a list of the time series that have observations.
The main loop of the algorithm iterates over this set of unique time points. In the GRU-ODE step, we
propagate all hidden states jointly. The GRU-Bayes update and the loss calculation are only executed
on the time series that have observation at that particular time point. The complexity of our approach
then scales linearly with the number of observations and quadratically with the dimension of the
observations. When memory cost is a bottleneck, the gradient can be computed using the adjoint
method, without backpropagating through the solver operations (Chen et al., [2018).

3 Related research

Machine learning has a long history in time series modelling (Mitchell, |1999; |Gers et al., [2000;
Wang et al., 2006; Chung et al.|[2014). However, recent massive real-world data collection, such as
electronic health records (EHR), increase the need for models capable of handling such complex data
(Lee et al., 2017). As stated in the introduction, their sporadic nature is the main difficulty.

To address the nonconstant sampling, a popular approach is to recast observations into fixed duration
time bins. However, this representation results in missing observation both in time and across features
dimensions. This makes the direct usage of neural network architectures tricky. To overcome this
issue, the main approach consists in some form of data imputation and jointly feeding the observation
mask and times of observations to the recurrent network (Che et al., 2018;|Choi et al.||2016a; Lipton
et al.,|2016; Du et al., 2016} (Choi et al., 2016b; |Cao et al.,[2018). This approach strongly relies on the
assumption that the network will learn to process true and imputed samples differently. Despite some
promising experimental results, there is no guarantee that it will do so. Some researchers have tried to
alleviate this limitation by introducing more meaningful data representation for sporadic time series
(Rajkomar et al., 2018; Razavian & Sontag, 2015;|Ghassemi et al.,2015), like tensors (De Brouwer
et al.,2018; |Simm et al.,[2017).

Others have addressed the missing data problem with generative probabilistic models. Among those,
(multitask) Gaussian processes (GP) are the most popular by far (Bonilla et al.| 2008). They have been
used for smart imputation before a RNN or CNN architecture (Futoma et al.,[2017; Moor et al., 2019),
for modelling a hidden process in joint models (Soleimani et al., [2018), or to derive informative
representations of time series (Ghassemi et al.,|2015). GPs have also been used for direct forecasting
(Cheng et al.,|2017). However, they usually suffer from high uncertainty outside the observation
support, are computationally intensive (Quifilonero-Candela & Rasmussen, 2005), and learning the
optimal kernel is tricky. Neural Processes, a neural version of GPs, have also been introduced by
Garnelo et al. (2018). In contrast with our work that focuses on continuous-time real-valued time
series, continuous time modelling of time-to-events has been addressed with point processes (Mei &
Eisner,|2017) and continuous time Bayesian networks (Nodelman et al.,2002). Yet, our continuous
modelling of the latent process allows us to straightforwardly model a continuous intensity function
and thus handle both real-valued and event type of data. This extension was left for future work.

4Code is available in the following anonymous repository : https://github.com/edebrouver/gru_
ode_bayes
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Most recently, the seminal work of |Chen et al. (2018) suggested a continuous version of neural
networks that overcomes the limits imposed by discrete-time recurrent neural networks. Coupled
with a variational auto-encoder architecture (Kingma & Welling, 2013), it proposed a natural way
of generating irregularly sampled data. However, it transferred the difficult task of processing
sporadic data to the encoder, which is a discrete-time RNN. In a work submitted concomitantly to
ours (Rubanova et al.,|2019), the authors proposed a convincing new VAE architecture that uses a
Neural-ODE architecture for both encoding and decoding the data.

Related auto-encoder approaches with sequential latents operating in discrete time have also been
proposed (Krishnan et al.||[2015,[2017). These models rely on classical RNN architectures in their
inference networks, hence not addressing the sporadic nature of the data. What is more, if they have
been shown useful for smoothing and counterfactual inference, their formulation is less suited for
forecasting. Our method also has connections to the Extended Kalman Filter (EKF) that models the
dynamics of the distribution of processes in continuous time. However, the practical applicability
of the EKF is limited because of the linearization of the state update and the difficulties involved in
identifying its parameters. Importantly, the ability of the GRU to learn long-term dependencies is a
significant advantage.

Finally, other works have investigated the relationship between deep neural networks and partial
differential equations. An interesting line of research has focused on deriving better deep architectures
motivated by the stability of the corresponding patial differential equations (PDE) (Haber & Ruthotto,
2017;Chang et al., 2019). Despite their PDE motivation, those approaches eventually designed new
discrete architectures and didn’t explore the application on continuous inputs and time.

4 Application to synthetic SDEs

Figure|[T]illustrates the capabilities of our approach compared to NeuralODE-VAE on data generated
from a process driven by a multivariate Ornstein-Uhlenbeck (OU) SDE with random parameters.
Compared to NeuralODE-VAE, which retrieves the average dynamics of the samples, our approach
detects the correlation between both features and updates its predictions more finely as new obser-
vations arrive. In particular, note that GRU-ODE-Bayes updates its prediction and confidence on
a feature even when only the other one is observed, taking advantage from the fact that they are
correlated. This can be seen on the left pane of Figure[T| where at time ¢ = 3, Dimension 1 (blue) is
updated because of the observation of Dimension 2 (green).

By directly feeding sporadic inputs into the ODE, GRU-ODE-Bayes sequentially filters the hidden
state and thus estimates the PDF of the future observations. This is the core strength of the proposed
method, allowing it to perform long-term predictions.

In Appendix [[, we further show that our model can exactly represent the dynamics of multivariate OU
process with random variables. Our model can also handle nonlinear SDEs as shown in Appendix [J]
where we present an example inspired by the Brusselator (Prigoginel [1982), a chaotic ODE.

5 Empirical evaluation

We evaluated our model on two data sets from different application areas: healthcare and climate
forecasting. In both applications, we assume the data consists of noisy observations from an underly-
ing unobserved latent process as in Eq.[I. We focused on the general task of forecasting the time
series at future time points. Models are trained to minimize negative log-likelihood.

5.1 Baselines

We used a comprehensive set of state-of-the-art baselines to compare the performance of our method.
All models use the same hidden size representation and comparable number of parameters.

NeuralODE-VAE (Chen et al.,2018). We model the time derivative of the hidden representation
as a 2-layer MLP. To take missingness across features into account, we add a mechanism to feed an
observation mask.

Imputation Methods. We implemented two imputation methods as described in|Che et al. (2018):
GRU-Simple and GRU-D.



Sequential VAEs (Krishnan et al.,|2015}2017). We extended the deep Kalman filter architecture by
feeding an observation mask and updating the loss function accordingly.

T-LSTM (Baytas et al.,[2017). We reused the proposed time-aware LSTM cell to design a forecasting
RNN with observation mask.

5.2 Electronic health records

Electronic Health Records (EHR) analysis is crucial to achieve data-driven personalized medicine (Lee
et al., 2017; |Goldstein et al., 2017; [Esteva et al., 2019). However, efficient modeling of this type
of data remains challenging. Indeed, it consists of sporadically observed longitudinal data with the
extra hurdle that there is no standard way to align patients trajectories (e.g., at hospital admission,
patients might be in very different state of progression of their condition). Those difficulties make
EHR analysis well suited for GRU-ODE-Bayes.

We use the publicly available MIMIC-III clinical database (Johnson et al.,2016), which contains
EHR for more than 60,000 critical care patients. We select a subset of 21,250 patients with sufficient
observations and extract 96 different longitudinal real-valued measurements over a period of 48 hours
after patient admission. We refer the reader to Appendix [K for further details on the cohort selection.
We focus on the predictions of the next 3 measurements after a 36-hour observation window.

5.3 Climate forecast

From short-term weather forecast to long-range prediction or assessment of systemic changes, such
as global warming, climatic data has always been a popular application for time-series analysis. This
data is often considered to be regularly sampled over long periods of time, which facilitates their
statistical analysis. Yet, this assumption does not usually hold in practice. Missing data are a problem
that is repeatedly encountered in climate research because of, among others, measurement errors,
sensor failure, or faulty data acquisition. The actual data is then sporadic and researchers usually
resort to imputation before statistical analysis (Junninen et al., 20045 Schneider, 2001).

We use the publicly available United State Historical Climatology Network (USHCN) daily data
set (Menne et al.), which contains measurements of 5 climate variables (daily temperatures, precipita-
tion, and snow) over 150 years for 1,218 meteorological stations scattered over the United States. We
selected a subset of 1,114 stations and an observation window of 4 years (between 1996 and 2000).
To make the time series sporadic, we subsample the data such that each station has an average of
around 60 observations over those 4 years. Appendix [L contains additional details regarding this
procedure. The task is then to predict the next 3 measurements after the first 3 years of observation.

5.4 Results

We report the performance using 5-fold cross-validation. Hyperparameters (dropout and weight
decay) are chosen using an inner holdout validation set (20%) and performance are assessed on a
left-out test set (10%). Those folds are reused for each model we evaluated for sake of reproducibility
and fair comparison (More details in Appendix [O). Performance metrics for both tasks (NegLL
and MSE) are reported in Table [[. GRU-ODE-Bayes handles the sporadic data more naturally
and can more finely model the dynamics and correlations between the observed features, which
results in higher performance than other methods for both data sets. In particular, GRU-ODE-Bayes
unequivocally outperforms all other methods on both data sets.

5.5 Impact of continuity prior

To illustrate the capabilities of the derived GRU-ODE cell presented in Section we consider the
case of time series forecasting with low sample size. In the realm of EHR prediction, this could be
framed as a rare disease setup, where data is available for few patients only. In this case of scarce
number of samples, the continuity prior embedded in GRU-ODE is crucially important as it provides
important prior information about the underlying process.

To highlight the importance of the GRU-ODE cell, we compare two versions of our model : the
classical GRU-ODE-Bayes and one where the GRU-ODE cell is replaced by a discretized autonomous
GRU. We call the latter GRU-Discretized-Bayes. Table[2]shows the results for MIMIC-III with varying



Table 1: Forecasting results.

USHCN-DAILY MIMIC-III
MODEL MSE NEGLL | MSE NEGLL
NEURALODE-VAE 096 +£0.11 1.464+0.10 | 0.89 £0.01 1.35 + 0.01
NEURALODE-VAE-MASK  0.83£0.10 1.36+0.05 | 0.89+0.01 1.36+0.01
SEQUENTIAL VAE 0.83 &£ 0.07 1.37+£0.06 | 0.9240.09 1.39 £ 0.07
GRU-SIMPLE 0.75+0.12 1.23+£0.10 | 0.82+0.05 1.21 +0.04
GRU-D 0.53+0.06 0.99+0.07 | 0.79+0.06 1.16+0.05
T-LSTM 0.59£0.11 1.67+0.50 | 0.624+0.05 1.02=£0.02
GRU-ODE-BAYES 0.43 +£0.07 0.84 +0.11 \ 0.48 +0.01 0.83+£0.04

number of patients in the training set. While our discretized version matches the continuous one
on the full data set, GRU-ODE cell achieves higher accuracy when the number of samples is low,
highlighting the importance of the continuity prior. Log-likelihood results are given in Appendix [M]

Table 2: Comparison between GRU-ODE and discretized version in the small-sample regime (MSE).

MODEL 1,000 PATIENTS 2,000 PATIENTS FuLL

NEURALODE-VAE-MASK 0.94 £ 0.01 0.94 +0.01 0.89 £0.01
GRU-DISCRETIZED-BAYES 0.87 £0.02 0.77 £ 0.02 0.46 £+ 0.05
GRU-ODE-BAYES 0.77 £ 0.01 0.72 +0.01 0.4 +0.01

6 Conclusion and future work

We proposed a model combining two novel techniques, GRU-ODE and GRU-Bayes, which allows
feeding sporadic observations into a continuous ODE dynamics describing the evolution of the
probability distribution of the data. Additionally, we showed that this filtering approach enjoys
attractive representation capabilities. Finally, we demonstrated the value of GRU-ODE-Bayes on
both synthetic and real-world data. Moreover, while a discretized version of our model performed
well on the full MIMIC-III data set, the continuity prior of our ODE formulation proves particularly
important in the small-sample regime, which is particularly relevant for real-world clinical data where
many data sets remain relatively modest in size.

In this work, we focused on time-series data with Gaussian observations. However, GRU-ODE-Bayes
can also be extended to binomial and multinomial observations since the respective NegL.L. and
KL-divergence are analytically tractable. This allows the modeling of sporadic observations of both
discrete and continuous variables.
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