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Abstract

We study methods for simultaneous analysis of many noisy experiments in the
presence of rich covariate information. The goal of the analyst is to optimally
estimate the true effect underlying each experiment. Both the noisy experimental
results and the auxiliary covariates are useful for this purpose, but neither data
source on its own captures all the information available to the analyst. In this
paper, we propose a flexible plug-in empirical Bayes estimator that synthesizes
both sources of information and may leverage any black-box predictive model.
We show that our approach is within a constant factor of minimax for a simple
data-generating model. Furthermore, we establish robust convergence guarantees
for our method that hold under considerable generality, and exhibit promising
empirical performance on both real and simulated data.

1 Introduction

It is nowadays common for a geneticist to simultaneously study the association of thousands of
different genes with a disease [Efron et al., 2001, Lonnstedt and Speed, 2002, Love et al., 2014],
for a technology firm to have records from thousands of randomized experiments [McMahan et al.,
2013], or for a social scientist to examine data from hundreds of different regions at once [Abadie
and Kasy, 2018]. In all of these settings, we are fundamentally interested in learning something about
each sample (i.e., gene, experimental intervention, etc.) on its own; however, the abundance of data
on other samples can give us useful context with which to interpret our measurements about each
individual sample [Efron, 2010, Robbins, 1964]. In this paper, we propose a method for simultaneous
analysis of many noisy experiments, and show that it is able to exploit rich covariate information for
improved power by leveraging existing machine learning tools geared towards a basic prediction task.

As a motivation for our statistical setting, suppose we have access to a dataset of movie reviews
where each movie ¢ = 1, ..., n has an average rating Z; over a limited number of viewers; we also
have access to a number of covariates X; about the movie (e.g., genre, length, cast, etc.). The task is
to estimate the “true” rating u; of the movie, i.e., the average rating had the movie been reviewed
by a large number of reviewers similar to the ones who already reviewed it. A first simple approach
to estimating p; is to use its observed average rating as a point estimate, i.e., to set fi; = Z;. This
approach is clearly valid for movies where we have enough data for sampling noise to dissipate, e.g.,
with over 50,000 reviews in the MovieLens 20M data [Harper and Konstan, 2016], we expect the
4.2/5 rating of Pulp Fiction to be quite stable. Conversely, for movies with fewer reviews, this strategy
may be unstable: the rating 1.6/5 of Urban Justice is based on less than 20 reviews, and appears liable
to change as we collect more data. A second alternative would be to just rely on covariates: We could
learn to predict average ratings from covariates, m(x) = E [Zi | X, = x} , and then set fi; = m(X;).
This may be more appropriate than using the observed mean rating for movies with very few reviews,
but is limited in its accuracy if the covariates aren’t expressive enough to perfectly capture ;.
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Figure 1: Optimal empirical Bayes shrinkage. All three plots show p; and Z; drawn from (1) for
various values of A/c?, with the covariate values X; fixed and the regression curve m(-) shown in
blue. The arrows depict how the oracle Bayes denoiser from (2) moves the point estimate fi; away
from the raw observation Z; and towards m(X;). a) When A/c? = 0, the oracle estimator shrinks
Z; all the way back to m(X;). b) For A/o? = 1, optimal shrinkage uses (Z; +m(X;))/2 to estimate
;. €) When A/o? is very large, it is preferable to discard m(X;) and just use the information in Z;.

We develop an approach that reconciles (and optimally interpolates between) the two estimation
strategies discussed above. The starting point for our discussion is the following generative model,

Xi~PY i | Xo ~ N (m(Xa), A)s Zi | g ~ N (s, 07) (1)

according to which the true rating u; of each movie is partially explained by its covariates X, but
also has an idiosyncratic and unpredictable component with a Gaussian distribution A/ (0, A). Recall
that we observe X; and Z; for each i = 1, ..., n, and want to estimate the vector of ;. Given this
setting, if we knew both the idiosyncratic noise level A and m(x), the conditional mean of y; given
X; = z, then the mean-square-error-optimal estimate of x; could directly be read off of Bayes’ rule,
fi; = ty, A(Xs, Z;), with

A n o2 ()
02+Az J2+Amx.

tma(@,2) =Emalp | Xi=x, Z;=2] = 2
As shown in Figure 1, the behavior of this shrinker depends largely on the ratio A/0?: As this ratio
gets large, the Bayes rule gets close to just setting i; = Z;, whereas when the ratio is small, it shrinks
everything to predictions made using covariates.

Now in practice, m(-) and A are unlikely to be known a-priori and, furthermore, we may not believe
that the hierarchical structure (1) is a perfect description of the underlying data-generating process.
The main contribution of this paper is an estimation strategy that addresses these challenges. First, we
derive the minimax risk for estimating x; in model (1) in a setting where m(-) is unknown but we are
willing to make various regularity assumptions (e.g., that m/(-) is Lipschitz). Second, we show that a
feasible plug-in version of (2) with estimated 72(-) and A attains this lower bound up to constants
that do not depend on o2 or A.

Finally, we consider robustness of our approach to misspecification of the model (1), and establish an
extension to the classic result of James and Stein [1961], whereby without any assumptions on the
distribution of y; conditionally on X;, we can show that our approach still improves over both simple
baselines [i; = Z; and fi; = m(X;) in considerable generality (see Section 4 for precise statements).
We also consider behavior of our estimator in situations where the distribution of Z; conditionally on
i, X; may not be Gaussian, and the conditional variance o7 of Z; given y;, X; may be different for
different samples.

Our approach builds on a long tradition of empirical Bayes estimation that seeks to establish fre-
quentist guarantees for plug-in Bayesian estimators and related procedures in data-rich environments
[Efron, 2010, Robbins, 1964]. Empirical Bayes estimation in the setting without covariates X; is by
now well understood [Brown and Greenshtein, 2009, Efron, 2011, Efron and Morris, 1973, Ignatiadis
et al., 2019, Ignatiadis and Wager, 2019, James and Stein, 1961, Jiang and Zhang, 2009, Johnstone
and Silverman, 2004, Muralidharan, 2010, Stephens, 2016, Weinstein et al., 2018].



In contrast, empirical Bayes analysis with covariates has been less comprehensively explored, and
existing formal results are confined to special cases. Fay and Herriot [1979] introduced a model
of the form (1) with a linear specification, m(z) = = " 3, motivated by the problem of “small area
estimation” that arises when studying small groups of people based on census data. Further properties
of empirical Bayes estimators in the linear specification (including robustness to misspecification)
were established by Green and Strawderman [1991] in the case where X; € R and m(z) = «,
and by Cohen et al. [2013], Tan [2016] and Kou and Yang [2017] when m(x) = x ' B. There has
also been some work on empirical Bayes estimation with nonparametric specifications for m, e.g.,
Mukhopadhyay and Maiti [2004] and Opsomer et al. [2008]. In a genetics application, Stephan
et al. [2015] parametrized m(x) as a random forest. Banerjee et al. [2018] utilize univariate side
information to estimate sequences of p; that consist mostly of zeros. We also note recent work by
Coey and Cunningham [2019] who considered experiment splitting as an alternative to empirical
Bayes estimation. Our paper adds to this body of knowledge by providing the first characterization of
minimax-optimal error in the general model (1), by proposing a flexible estimator that attains this
bound up to constants, and by studying robustness of non-parametric empirical Bayes methods to
model misspecification.

2 Minimax rates for empirical Bayes estimation with covariates

We first develop minimax optimality theory for model (1), when m is known to lie in a class C of
functions. To this end, we formalize the notion of regret in empirical Bayes estimation, following Rob-
bins [1964]. Concretely, as before, we assume that we have access to n i.i.d. copies (X;, Z;) from
model (1); u; is not observed. Our task at hand then is to construct a denoiser tn : X x R — R that
we will use to estimate (i, 1 by fn(XnJrh Z 1) for a future sample (X, 41, Z,41). We benchmark
this estimator against the unknown Bayes estimator ¢} A(Xn+1, Zpg1) from (2) in terms of its
regret (excess risk) L(t,; m, A), where: '

L(t;m, A) :=Em,a [(t(XnH, Znt1) — Hn+1)2} —Ena [(tjrz,A(Xn+17 Znt1) — Nn+1)2} 3)

We characterize the difficulty of this task by exhibiting the minimax rates for the empirical Bayes
excess risk incurred by not knowing m € C (but knowing A), where C is a pre-specified class of
functions:'

INEB (C;A,O'Q) := inf sup {Em,A [L(fn; m,A)]} (€))

tn meC

Our key result, informally stated, is that the minimax excess risk EITIEB can be characterized in terms
of the minimax risk for estimating m(-) with respect to L?(IPX) in the regression problem in which
we observe (X;, Zi)1<i<n With Z; | X; ~ N (m(X;), A+ 0?),ie.,

M (C; A+ 02) = inf sup Epy 4 [/ (i () — m(x))? dP¥ ()] (5)
Mn meC
such that, for many commonly used function classes C, we have >
4
IMEB (C; A, 02 xaism'}fg C;A+o?%). (6)
(€:A.0%) = T €A+ o)

In other words, when A/o? is very large, we find that it is easy to match the performance of Bayes
rule (2), since it collapses to Z;. On the other hand, when A /0?2 is small, matching the Bayes rule
requires estimating m(-) well, and (6) precisely describes how the difficulty of estimating m(-) affects
our problem of interest.

Previous work on minimax rates for the excess risk (3) has been sparse; some exceptions include
Benhaddou and Pensky [2013], Li et al. [2005] and Penskaya [1995], who develop minimax bounds
on(3)whenu ~G,Z | u~N (O, 02), i.e., in the setting without covariates but with potentially
more general priors. Beyond the modulation through covariates, a crucial difference of our approach
is that we pay attention to the behavior in terms of A and o, instead of absorbing them into constants.

"We will propose procedures adaptive to unknown A in Section 3.

>Throughout, we use the following notation for the asymptotic rates: For two sequences an, b, > 0, we
say an S by if limsup,,_, . an/bn < cfor a constant c that does not depend on A, o, n. Similarly, we say
an 2 by if by, < ap and finally a,, < by, if both a,, 2 b, and a,, < by,.

~ ~



Lower bound Here we provide a lemma for deriving lower bounds for worst case expected excess
risk (4) through reduction to hypothesis testing. The result is applicable to any class C for which we
can prove a lower bound on the minimax regression error using Le Cam’s two point method or Fano’s
method [Duchi, 2019, Gyorfi et al., 2006, Ibragimov and Hasminskii, 1981, Tsybakov, 2008]; we
will provide concrete examples below.

Lemma 1. For each n, let V,, be a finite set and C,, = {my ., | v € V,,} C C be a collection of
functions indexed by V,, such that for a sequence 6,, > 0:

/ (M () = Mg () dPX () > 62 forall v # v' € V,, forall n

If furthermore, sup,, /ey, SUP, (M o () — My o (2))> = 0asn — oo, then:

0.4

MEB (C; A, 0?) 2 ——— - 62 -inf P[V,, # V},
Here, infy, P[V,, # V3] is to be interpreted as follows: V,, is drawn uniformly from V,, and condition-
ally on'V,, = v, we draw the pairs (X;, Z;)1<i<n from model (1) with regression function my, ,(-).

The infimum is taken over all estimators Vn that are measurable with respect to (X;, Z;)1<i<n-

The Lemma may be interpreted as follows: If information theoretically we cannot determine which
My € Cp generated (X, Z;)1<i<n, yet the m,, ,, are well separated in L?(PX) norm, then the
minimax empirical Bayes regret (4) must be large. Proving lower bounds involves contructing C,, .

Upper bound Previously, we described the relationship of model (1) to nonparametric regression.
However, there is a further connection: Under (1), it also holds that Z; | X; ~ N (m(X;), 0% + A).
Thus m(-) may estimated from the data by directly running a regression Z; ~ X;. Then, for known A,
the natural impetus to approximate (2) in a data-driven way is to use a plug-in estimator. Concretely,
given a m,, that achieves the minimax risk (5), we just plug that into the Bayes rule (2):

. A o?

tn(x,2) == t5, alr,2) = T +3 +Amn(m) (7)
This plug-in estimator, establishes the following upper bound on (4):

Theorem 2. Under model (1), it holds that:

4
MEP (C; A, 02) < —— W (C; A + )
(02 + A)
In deriving the lower bound Lemma (1), the estimators considered may use the unknown A. For this
reason, for the upper bound we also benchmark against estimators that know A; however in Section 3
we demonstrate that in fact knowledge of A is not required to attain optimal rates. Next we provide
two concrete examples of classes, where the lower and upper bounds match up to constants.

The linear class (Fay-Herriot shrinkage) As a first, simple example, we consider the model
of Fay and Herriot [1979], in which: X = R¢, and C = Lin (Rd) = {m |m(z) =273, B € Rd}.
Theorem 3. Assume the X; are KN (0, X) for an unknown covariance matrix ¥ = 0,% € R?<4,
Then there exists a constant Cy;, (which does not depend on the problem parameters) such that:

log (zmgB (Lin (RY) ; A, 0%) / o .("2+A>d>

<C in
(0_2+A)2 n >~ UL

lim
n—oo

The Lipschitz class Next we let X = [0, 1]¢ and for L > 0 we consider the Lipschitz class:
C =Lip([0,1]%,L) := {m :[0,1]* = R | |m(z) — m(z')| < L ||z — 2'[|, V¥ =,2" € [0,1]*}.

Theorem 4. Assume the X; are M px , where F'X is a measure on [0, 1]% with Lebesgue density

[ that satisfies n < f*(u) < 1/n for all u € [0,1]¢ for some n > 0. Then there exists a constant
Clip(d,n) which depends only on d,n such that:

2
4 Ld (02+A) 2+d
. EB (7. d 7. 2 g . )
lim Jlog | 900" (Lip([0,1)%, L); A, 0 )/(U2+A)2 ( - < Crip(d,m)



3 Feasible estimation via split-sample empirical Bayes

The minimax estimator in (7) that implements (2) in a data-driven way is not feasible, because A
is unknown in practice. In principle, A + o2 (with o known) is just Var [Z; | X;], hence deriving
a plug-in estimator for A just takes us to the realm of variance estimation in regression problems.
But variance estimation for the general setting we consider here is a notoriously difficult problem,
with only partial solutions available for very specific settings [e.g., Janson et al., 2017, Reid et al.,
2016]. Furthermore, even for 1-dimensional smooth nonparametric regression the minimax rates for
variance estimation may be slower than parametric [Brown and Levine, 2007, Shen et al., 2019].

Fortunately, it turns out that we do not need to accurately estimate A in (1) in order for our approach
to perform well. Rather, as shown below, if we naively read off an estimate of A derived via sample
splitting as in (8), we still obtain strong guarantees. Concretely, we study the following algorithm:

1. Form a partition of {1,...,n} into two folds I; and I5.
2. Use observations in Iy, to estimate the regression m(x) = E [Z; | X; = x| by iy, ().

3. Use observations in I5, to estimate A, through the formula:

A 1 . 2
Ap = | /=D (X3) = Z)" = 0 ®)
|1I2] -
i€l +
: cor 7EBCF _
4. The estimated denoiser is then ¢;;°“"(+, ) = t:iml A, ().
We prove the following guarantee for this estimator. In particular, the following implies that if the
minimax rate for regression (5) is slower than the parametric rate 1/n and if |I1| /n converges to a
non-trivial limit, then our algorithm attains the minimax rate even when A is unknown.

Theorem 5. Consider a split of the data into two folds I, I, where ny = |I1| ,no = |I2|. Further-
more assume that My, satisfies Ep, a[nr, (X)* | my,] < M almost surely for some M < oo, where

X is a fresh draw from PX. Then the estimator fﬁBCF satisfies the following guarantee:
. 1
Epna [L (5 m, A)] <Epnoa [L (t; LAY M, A)} + —0 (1)
s g

We emphasize that this result does not depend on A from (8) being a particularly accurate estimate
of A. Rather, what’s driving our result is the following fact: If (1) holds, but we use (2) with
m(-) # m(-), then the choice of A that minimizes the Bayes risk among all estimators of the form
[ A(" -), A > 0is not A, but rather (cf. derivation in Proposition 15 of the Appendix)

AﬁL = IEm,,A [(m(Xn-l-l) - Zn+1)2 - 0'2 =A + Em,A (m(Xn+1) - m(Xn+1))2

In other words, we’re better off inflating the prior variance to account for the additional estimation
error of m(-); and this inflated prior variance is exactly what’s captured in (8).

4 Robustness to misspecification

So far, our results and estimator apply to Robbins’ model [Robbins, 1964] in which (1) holds and we
are interested in a estimating a future p,,1. However, it is also of considerable interest to understand
the behavior of empirical Bayes estimation when the specification (1) doesn’t hold. In this section,
we consider properties of our estimator under the weaker assumption that we only have a generic
data-generating distribution for (X;, p;, Z;) of the form

(X, 1) ~ PEOH) B (Z; | g, Xi] = pay, Var [Z; | g, Xi] = 02, )

and we seek to estimate the unknown p1, ..., u, underlying the experiments we have data for. The
distributions indexed by 7 are assumed to be independent, but need not be identical. This setting is
sometimes referred to as the compound estimation problem [Brown and Greenshtein, 2009].

We proceed with a cross-fold estimator, which we call EBCF (empirical Bayes with cross-fitting), as
follows: We split the data as above, but now also consider flipping the roles of I; and I such that we
can make predictions ji; foralli =1, ..., n as

[EBCE — ¢ (X, Z) fori € I, & P =1+ (Xi,Z;) fori € I.

? mr,Ar, g mr,,Ary



This is a 2-fold cross-fitting scheme, which has been fruitful in causal inference [Chernozhukov et al.,
2017, Nie and Wager, 2018, Schick, 1986] and multiple testing [Ignatiadis et al., 2016, Ignatiadis and
Huber, 2018]. We also note that extensions to k-fold cross-fitting are immediate.

SURE for empirical Bayes The key property of our estimator that enables our approach to be
robust outside of the strict model (1) is as follows. Let SURE(-) denote Stein’s Unbiased Risk
Estimate, a flexible risk estimator that is motivated by the study of estimators for y; in the Gaussian
model Z; ~ N (u;, 02) [Stein, 1981]. Then, although our estimator was not originally motivated by
SURE, one can algebraically verify that our estimator with a plug-in choice of A in fact minimizes
SURE among all comparable shrinkage estimators (the same holds true with I, I» flipped):

12 <|I | Z (g, (X )2 _ U2> — /112 = argmin {SURE, (A)},
5 A>0
i€l + 4 4 (10)
. 7 2 O—
where SURE,, (A) : ‘ 2| Z ( m(& — 1y, (Xi))” — 2A+¢72> .

Furthermore, SURE has the following remarkable property in our setting: For any data-generating
process as in (9) and any A > 0 [see also Jiang et al., 2011, Kou and Yang, 2017, Xie et al., 2012],

2
E [SUREIQ(A) | Xl;n,,uln == |I | Z]E |:(,Uq jhfl,A(Xi’Zi)) | Xl:nvﬂl:n:| ) (11)
i€ls

even when the distribution of Z; conditionally on p; and X; is not Gaussian. Putting (10) and
(11) together, we find that we can argue using SURE that our estimator minimizes an unbiased
risk estimate for the generic specification (9), despite the fact that our procedure was not directly
motivated by SURE and SURE itself was only designed for Gaussian estimation.

Gaussian data with equal variance and James-Stein property To derive a first consequence of
the above, let us first focus on a special case of (9), where Z; | (u;, X;) ~ N (ui, 02). Then the
EBCEF estimate satisfies the James-Stein property of strictly dominating the direct estimator Z; [James
and Stein, 1961]3. In other words, even if one has covariates X;, which are uninformative, or one
uses a really poor method for prediction, one still does no worse than just using ji; := Z;.

Theorem 6 (James-Stein property). Under the assumptions above and if |I1| , |I2| > 5, the proposed
estimator [i; uniformly dominates the (conditional) maximum likelihood estimator Z;, in other words
forall py,...,up and X1, ..., X, it holds that:

—ZE — P2 | Xiin, p1em] < ZE )2 | Xiin, piren] = 0

Non-Gaussian data with equal variance Next we drop the Gaussianity assumption, and consider
the model (9) in full generality. We use properties of SURE outlined above to establish the following:

Theorem 7. Assume the pairs (X;, Z;)1<i<n are independent and satisfy (9). Furthermore as-
sume that there exist T, M < oo such that sup, E [Zf | ui,Xﬂ < T'* and that sup, |p;| < M,
sup,, |mr, ()] < M almost surely. Then (the analogous claim holds also with I, I flipped):

~ 2 * 2 1
ZI;% { |12| Z |:( - EBCF) - (Ml - t?’hflaA(X“Zi)) |X11n7:u117l7Z11:| } S O <m)

Corollary 8. Assume that |I1| = |I2| = n/2 and (X;, ui, Z;) are i.i.d. and satisfy the assumptions
of Theorem 7. Then, the following holds, with (X, u) a fresh draw from (9):

*ZE[ AEBCF)Q} - o2E {(mn/2(X)_:u) } +0<1). 1)

T 24+ E [(mn/Q(X) - M)Q]

3Li and Hwang [1984] provide a similar result when 772(-) is a linear smoother.
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Figure 2: Root mean squared error (RMSE) for estimating /.; in model (1). Results are shown
as a function of n for the four estimators described in the main text. a) Here we let 0 = 2, A =
0 corresponding to the case of nonparametric regression. In panel b), we let 0 = VA = 2.0
corresponding to intermediate shrinkage and in panel ¢) we let ¢ = 2,v/A = 3. The standard errors
of all RMSEs are smaller or equal to 0.01.

Here 101, /5(-) is the fitted function based on n/2 samples (X;, Z;). To interpret this result, we note
that when 7i2(-) can accurately capture p;, i.e., m(-) is a good estimate of m(-) and y; can be well
explained using the available covariates X, the error in (12) essentially matches the error of the
direct regression-based method fi; := 0, /2(X;). Conversely, when the error of 772(-) for estimating
1u; is large, we recover the error o2 of the simple estimator /; := Z;. But in the interesting regime
where the mean-squared error of 7(-) for y; is comparable to o2, we can do a much better job by
taking a convex combination of the regression prediction 772, /2(X;) and Z;, and the EBCF estimator
automatically and robustly navigates this trade-off.

Non-Gaussian data with unequal variance: Finally, we note that we may even drop the assump-
tion of equal variance and assume each unit has its own (conditional) variance 01.2 in (9) rather than

the same o2 for everyone. We may think of the Bayes estimator (2) as also being a function of o, i.e.
write itas t, ,(z, z,0). Then, the EBCF estimator takes the following form: For i € I> we estimate

1; by t’:h i (X, Z;,01). We get m, by regression, while for Aj,, we generalize (10):

11,41,
Ao . _ 1 2 ol . W o 0%
Ap, = arfg;m {SURE,(A)}, SURE(A) = ] 1212 (oi + (At 07) (Z; — mr, (X3)) 2A +o?

The result of Theorem 7 (see Appendix C.2) also holds in this case and we demonstrate the claims in
the empirical application on the MovieLens dataset below.

S Empirical results

For our empirical results we compare the following 4 estimation methods for y;: a) The unbiased
estimator [i; := Z;, b) the out-of-fold * regression prediction fi; := m(X;), where 17 is the fit from
boosted regression trees, as implemented in XGBoost [Chen and Guestrin, 2016] with number of
iterations chosen by 5-fold cross-validation and n = 0.1 (weight with which new trees are added
to the ensemble), ¢) the empirical Bayes estimator (2) without covariates that shrinks Z; towards
the grand average > ., Z;/n, with tuning parameters selected via SURE following [Xie et al.,
2012], and d) the proposed EBCF (empirical Bayes with cross-fitting) method, with 5 folds used for
cross-fitting and XGBoost as the regression learner (with cross-validation nested within cross-fitting).

Synthetic data: We generate data from model (1) with PX = U[0, 1]*® and m(-) is the Friedman
[1991] function m(z) = 10sin(mx1w2) + 20(x3 — 1/2)? + 1024 + 55, and the last 10 coordinates
are noise. Furthermore, we let o = 2.0 and vary A € {0, 4, 9}, mimicking the three cases in Figure 1,
and we also vary n. Results are averaged over 100 simulations and shown in Figure 2. We make the
following observation: The unbiased estimator Z; and the SURE estimator which shrinks towards
the grand mean have constant mean squared error and results do not improve with increasing n. The
XGBoost predictor improves with increasing n, since m(+) is estimated more accurately; indeed in
panel a), if 72(-) would be exactly equal to m(-), then the error would be 0. However, as seen in panels

*By out-of-fold we mean that the regression prediction is the one used by 5-fold EBCF described below.
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Figure 3: EB analysis of the Movielens dataset for prediction of average movie rating. a) Mean-
squared error (MSE) n= ' >™"" | (fi; — Z;)* (& 2 standard errors of the MSE ) of four estimators for

the Movielens dataset (where Z; is the average rating computed from the heldout data with 90% of
users) for all movies, as well as the subset of movies that are classified as both Horror and Sci-Fi.
b) LOESS smooth of mean squared error across all movies against the rank of N;, where NV, is the
number of users that rated movie ¢ in the training set. ¢) Deviations of EBCF (empirical Bayes with
cross-fitting) and SURE (Stein’s unbiased risk estimate) predictions from the unbiased estimator Z;
as a function of V; for all Horror & Sci-Fi movies. We also show the “true” errors Zi — Z;.

b, c), when A > 0, the mean squared error of XGBoost is lower bounded by A, even under perfect
prediction of m(-). In contrast, EBCF always improves with n by leveraging the improved predictions
of XGBoost, and outperforms all other estimators, even in the case A = 0 which corresponds to
nonparametric regression.

MovieLens data [Harper and Konstan, 2016]: Here we elaborate on the example from the introduc-
tion which aims to predict the average movie rating given ratings from a finite number of users. The
MovieLens dataset consists of approximately 20 million ratings in {0, 0.5, ..., 5} from 138,000 users
applied to 27,000 movies. To demonstrate the applicability of our approach, when model (1) does not
necessarily hold, we randomly choose 10% of all users and attempt to estimate the movie ratings
from them. This corresponds to having a much smaller dataset. We then summarize the i-th movie,
by Z;, the average of the N; users (in the training dataset) that rated it. We further have covariates
X; € R? that include N;, the year the movie was released, as well as indicators of 18 genres to
which the movie may belong (action, comedy, etc.). We posit that Z; | pi, X; ~ (u;,02/N;) and
want to estimate y;.> As our pseudo ground truth for movie i we use Z;, the average movie rating
among the remaining 90% of users and then report the error >, (Z; — fi;)?/n, where n is the total
number of movies.®

The average error across all movies is shown in Figure 3a; here the XGBoost predictor performs worst,
followed by the unbiased estimator Z;. Instead, the two EB approaches perform a lot better with
EBCEF scoring the lowest error. The same is true when comparing only the 253 movies with genre
tags for both horror and Sci-Fi. In panel b), we show the relationship between the error (Z; — i;)?
and the rank of the per-movie number of reviews N; using a LOESS smoother [Cleveland and Devlin,
1988]. We observe that the 3 estimators that use Z;, do a perfect job for large IV, and a worse job
for smaller V;. In particular, the error of Z; blows up at small N;, and the error gains of EBCF
occur precisely at low sample sizes. On the other hand, the XGBoost prediction has an error that
does not get reduced by larger IV, but is competitive at small N. Panel c) shows ji; — Z; for the 253
predictions of EBCF and SURE for horror/Sci-Fi movies as a function of the rank of /NV;. For large
N, again both EB estimators agree with the unbiased estimator. However, for small [V, it appears
that most Sci-Fi/Horror movies are worse than the average movie, and EB without covariates tries to
correct for this by assigning them a higher rating. Conversely, EBCF automatically realizes that these
movies tend to get low ratings, and pulls the unbiased estimator Z; further down.

Communities and Crimes data from the UCI repository [Dua and Graff, 2017, Redmond and Baveja,
2002]: The dataset provides information about the number of crimes in multiple US communities

SWe replace o by 62 = 0.94, the average of the sample standard deviations across all movies.
SWe filter movies and keep only movies with at least 3 ratings in the training set and 11 in the validation set.



B =200 B =500  Table 1: EB analysis of the Communities and

MSE (x10%) MSE (x10%)  Crimes dataset: The table reports the mean-

Unbiased  223.9 (+16.8) 92.2 (£7.1) squared error (+ 2 standard errors) of four dif-

XGBoost  398.0 (+81.8) 370.2(+78.6)  ferent estimators for the non-violent crime rate.

SURE 184.2 (£18.9) 85.6 (£7.2)  The columns correspond to down-sampling the

EBCF 152.0 (£22.2) 78.5(£10.3) dataset to a population of B = 200 or B = 500
for each community.

as compiled by the FBI Uniform Crime Reporting program in 1995. Our task is to predict the
non-violent crime rate p; of community 4, defined as p; := Crimes in community ¢/Population ¢, for
each of n = 2118 communities’. We observe a dataset in which the population of each community is
down-sampled to B = 200 as

C; ~ Hypergeometric(B, Crimes in community ¢, Population )

We seek to predict p; based on C; and covariates X; € R which include all unnormalized,
numeric predictive covariates in the UCI data set description (after removing covariates with missing
entries) and comprise features derived from Census and law enforcement data, such as percentage
of people that are employed and percentage of police officers assigned to drug units. We note that
the hypergeometric subsampling makes the estimation task harder and also provides us with pseudo
ground truth p;; cf. Wager [2015] for further motivation of such down-sampling.

The problem may be cast into the setting of this paper by defining Z; := /C;/B. Then, by a variance
stabilizing argument, it follows that Z; ~ (\/pi, 1/(4 - B)) and we may apply the same methods as
in the preceding examples to estimate ji; := /p, by fi;. After transforming the estimates back to
the original scale through p; = 7, we report the error Y. (p; — p;)*/n, where n is the number
of communities analyzed. Table 1 shows the results of this analysis, as well as the same analysis
repeated for B = 500. EBCF shows promising performance compared to the other baselines for both
B. As we decrease the amount of downsampling from B = 200 to B = 500, we see that methods
that depend on Z; (unbiased, SURE and EBCF) improve a lot, while XGBoost does not.

6 Discussion

Empirical Bayes is a powerful framework for pooling information across many experiments, and
improve the precision of our inference about each experiment on its own [Efron, 2010, Robbins,
1964]. Existing empirical Bayes methods, however, do not allow the analyst to leverage covariate
information unless they assume a rigid parametric model as in Fay and Herriot [1979], or are willing to
commit to a specific end-to-end estimation strategy as in, e.g., Opsomer et al. [2008]. In contrast, the
approach proposed here allows the analyst to perform covariate-powered empirical Bayes estimation
on the basis of any black-box predictive model, and has strong formal properties whether or not the
model (1) used to motivate our procedure is well specified. Our approach may be extended in future
work by considering generalizations of (1), such as covariate-based modulation of the prior variance,
ie., pi | Xi ~ N(m(X;), A(X;)). The working assumption of a normal prior could also be replaced
by heavy-tailed priors [Zhu, Ibrahim, and Love, 2018] or priors with a point mass at zero.

The prevalence of settings where we need to analyze results from many loosely related experiments
seems only destined to grow, and we believe that empirical Bayes methods that allow for various
forms of structured side information hold promise for fruitful application across several different
areas.

Code availability and reproducibility

The proposed EBCF (empirical Bayes with cross-fitting) method has been implemented in
EBayes.jl (https://github.com/nignatiadis/EBayes. jl), a package written in the Julia lan-
guage [Bezanson et al., 2017]. Dependencies of EBayes.jl include MLJ.jl [Blaom et al., 2019],
Optim.jl [Mogensen and Riseth, 2018] and Distributions.jl [Besancon et al., 2019]. We also provide a
Github repository (https://github.com/nignatiadis/EBCrossFitPaper) with code to repro-
duce all empirical results in this paper, including a specification for downloading the dependencies
and datasets.

"We filter out communities with a missing number of non-violent crimes.
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https://github.com/nignatiadis/EBCrossFitPaper
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