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Abstract

While stochastic gradient descent (SGD) is one of the major workhorses in machine
learning, the learning properties of many practically used variants are still poorly
understood. In this paper, we consider least squares learning in a nonparametric
setting and contribute to filling this gap by focusing on the effect and interplay of
multiple passes, mini-batching and averaging, in particular tail averaging. Our re-
sults show how these different variants of SGD can be combined to achieve optimal
learning rates, providing practical insights. A novel key result is that tail averaging
allows faster convergence rates than uniform averaging in the nonparametric setting.
Further, we show that a combination of tail-averaging and minibatching allows
more aggressive step-size choices than using any one of said components.

1 Introduction

Stochastic gradient descent (SGD) provides a simple and yet stunningly efficient way to solve a
broad range of machine learning problems. Our starting observation is that, while a number of
variants including multiple passes over the data, mini-batching and averaging are commonly used,
their combination and learning properties are studied only partially. The literature on convergence
properties of SGD is vast, but usually only one pass over the data is considered, see, e.g., [23]. In the
context of nonparametric statistical learning, which we consider here, the study of one-pass SGD was
probably first considered in [35] and then further developed in a number of papers (e.g., [37} 136} 25]).
Another line of work derives statistical learning results for one pass SGD with averaging from a
worst-case sequential prediction analysis [29, |18, 28]]. The idea of using averaging also has a long
history going back to at least the works of [32]] and [27]], see also [34] and references therein. More
recently, averaging was shown to lead to larger, possibly constant, step-sizes, see [2, [10} [11]]. A
different take on the role of (weighted) averaging was given in [24]], highlighting a connection with
ridge regression, a.k.a. Tikhonov regularization. A different flavor of averaging called tail averaging
for one-pass SGD was considered in [19] in a parametric setting. The role of minibatching has
also being considered and shown to potentially lead to linear parallelization speedups, see e.g. [7]]
and references therein. Very few results consider the role of multiple passes for learning. Indeed,
this variant of SGD is typically analyzed for the minimization of the empirical risk, rather than
the actual population risk, see for example [4]. To the best of our knowledge the first paper to
analyze the learning properties of multipass SGD was [31], where a cyclic selection strategy was
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considered. Other results for multipass SGD were then given in [[16] and [20]. Our starting point are
the results in [21] where optimal results for multipass SGD where derived considering also the effect
of mini-batching. Following the approach in this latter paper, multipass SGD with averaging was
analyzed by [26] with no minibatching.

In this paper, we develop and improve the above results on two fronts. On the one hand, we consider
for the first time the role of multiple passes, mini-batching and averaging at once. On the other hand,
we further study the beneficial effect of tail averaging. Both mini-batching and averaging are known
to allow larger step-sizes. Our results show that their combination allows even more aggressive
parameter choices. At the same time averaging was shown to lead to slower convergence rates in some
cases. In a parametric setting, averaging prevents linear convergence rates [2,[11]. In a nonparametric
setting, it prevents exploiting the possible regularity in the solution [10], a phenomenon called
saturation [[12]]. In other words, uniform averaging can prevent optimal rates in a nonparametric
setting. Our results provide a simple explanation to this effect, showing it has a purely deterministic
nature. Further, we show that tail averaging allows to bypass this problem. These results parallel
the findings of [19]], showing similar beneficial effects of tail-averaging and minibatching in the
finite-dimensional setting. Following [21]], our analysis relies on the study of batch gradient descent
and then of the discrepancy between batch gradient and SGD, with the additional twist that it also
considers the role of tail-averaging. The rest of the paper is organized as follows. In Section[2] we
describe the least-squares learning problem that we consider, as well as the different SGD variants we
analyze. In Section[3] we collect a number of observations shedding light on the role of uniform and
tail averaging. In Section[d] we present and discuss our main results. In Section [5| we illustrate our
results via some numerical simulations. Proofs and technical results are deferred to the appendices.

2 Least Squares Learning with SGD

In this section, we introduce the problem of supervised learning with the least squares loss and then
present SGD and its variants.

2.1 Least squares learning

We let (X,Y) be a pair of random variables with values in H x R, with JH a real separable Hilbert
space. This latter setting is known to be equivalent to nonparametric learning with kernels [31].
We focus on this setting since considering infinite dimensios allows to highlight more clearly the
regularization role played by different parameters. Indeed, unlike in finite dimensions, regularization
is needed to derive learning rates in this case. Throughout the paper we will suppose that the
following assumption holds:

Assumption 1. Assume || X|| < &,

Y| < M almost surely, for some k, M > 0.

The problem of interest is to solve

. 1 2
ggélcil(w), L(w) = i]E[(Y —(w, X))"] (D
provided a realization x4, . . ., x,, of n identical copies X7, ..., X,, of X. Defining
Y=EX®X], and h=E[XY], 2)

the optimality condition of problem (1)) shows that a solution w., satisfies the normal equation
Yw, = h. 3)

Finally, recall that the excess risk associated with any w € JH can be written asE]

L(w) — L(w,) = H21/2(w - w*)Hz.

't is a standard fact that the operator 3 is symmetric, positive definite and trace class (hence compact), since
X is bounded. Then fractional powers of X are naturally defined using spectral calculus.



2.2 Learning with stochastic gradients

We now introduce various gradient iterations relevant in the following. The basic stochastic gradient
iteration is given by the recursion

W41 = Wt — ’tht(<$t,wt> - yt)
forallt =0,1...,withwg=0.Forallw € Handt=1,...n,
E[X:((X:, w) — V)] = VL(w), €]

hence the name. While the above iteration is not ensured to decrease the objective at each step, the
above procedure and its variants are commonly called Stochastic Gradient Descent (SGD). We will
also use this terminology. The sequence (7:); > 0, is called step-size or learning rate. In its basic
form, the above iteration prescribes to use each data point only once. This is the classical stochastic
approximation perspective pioneered by [30].

In practice, however, a number of different variants are considered. In particular, often times, data
points are visited multiple times, in which case we can write the recursion as

W1 = Wt — Vtzit,(<xit7wt> - y7f)

Here i; = i(t) denotes a map specifying a strategy with which data are selected at each iteration.
Popular choices include: cyclic, where an order over [n] is fixed a priori and data points are visited
multiple times according to it; reshuffling, where the order of the data points is permuted after
all of them have been sampled once, amounting to sampling without replacement; and finally the
most common approach, which is sampling each point with replacement uniformly at random. This
latter choice is also the one we consider in this paper. We broadly refer to this variant of SGD as
multipass-SGD, referring to the “multiple passes” ‘over the data set as t grows larger than n.

Another variant of SGD is based on considering more than one data point at each iteration, a procedure
called mini-batching. Given b € [n] the mini-batch SGD recursion is given by

bt

W1 = Wt + V¢ 5 Z (<wt’xji> - yji)xji )
i=b(t—1)+1

where j1, ..., jpr are i.i.d. random variables, distributed according to the uniform distribution on [n].
Here the number of passes over the data after ¢ iterations is [b¢/n|. Mini-batching can be useful for
at least two different reasons. The most important is that considering mini-batches is natural to make
the best use of memory resources, in particular when distributed computations are available. Another
advantage is that in this case more accurate gradient estimates are clearly available at each step.

Finally, one last idea is considering averaging of the iterates, rather than working with the final iterate,

1 T
’lI)T:Tt_Zl’wt.

This is a classical idea in optimization, where it is known to provide improved convergence results
[32] 27, [15} 2], but it is also used when recovering stochastic results from worst case sequential
prediction analysis [33) [17]. More recently, averaging was shown to lead to larger step-sizes, see
[2,[10L [11]. In the following, we consider a variant of the above idea, namely tail-avaraging, where

for0 < S <T —1welet
T

_ 1
WsT =7 _"g Z Wt -
t=5+1
We will occasionally write w;, = wg,r, with L =T — S. In the following, we study how the above

ideas can be combined to solve problem (I)) and how such combinations affect the learning properties
of the obtained solutions.

3 An appetizer: Averaging and Gradient Descent Convergence

Averaging is known to allow larger step-sizes for SGD but also to slower convergence rates in certain
settings [[LO]. In this section, we present calculations shedding light on these effects. In particular,



we show how the slower convergence is a completely deterministic effect and how fail averaging
can provide a remedy. In the rest of the paper, we will build on these reasonings to derive novel
quantitative results in terms of learning bounds. The starting observation is that since SGD is based
on stochastic estimates of the expected risk gradient (cf. equations (I)), () it is natural to start from
the exact gradient descent to understand the role played by averaging.

For v > 0, wy = 0, consider the population gradient descent iteration,
up = up—1 — YE[X (X, u—1) = Y)] = (I — vE)us—1 + vh,

where the last equality follows from (2). Then using the normal equation (3) and a simple induction
argument [[12], it is easy to see that,

T
ur = gr(¥)Xw,, gr(X) =Y (I—-+%). (5)
J

|
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Here, g7 is a spectral filtering function corresponding to a truncated matrix geometric series (the
von Neumann series). For the latter to converge, we need 7 such that || — Y| < 1,e.g. v <
/oy < 1/k% with o = 0z () < K2, hence recovering a classical step-size choice. The above
computation provides a way to analyze gradient descent convergence. Indeed, one can easily show
that

Wy — up = rp(X)wy, rr(Z) = (I —~4%)T
since g7 () = (I — (I —vX)T)w., from basic properties of the Neumann series defining gr.

The properties of the so-called residual operators r(X) control the convergence of GD. Indeed, if
Om = Omin(2) > 0, then
2

< oar(1 = 705) " .|| < oare 2777 |,

2
HEl/Q(uT — Wy) ’ = HEl/er(Z)w*

from the basic inequality 1 + z < e?, highlighting that the population GD iteration converges
exponentially fast to the risk minimizer. However, a major caveat is that assuming 7,5, (X) > 0
is clearly restrictive in an infinite dimensional (nonparametric) setting, since it effectively implies
that X has finite rank. In general, ¥ will not be finite rank, but rather compact with 0 as the only
accumulation point of its spectrum. In this case, it is easy to see that the slower rate
2 1
1/2 _ L 2
|52 —wa) [ <

holds without any further assumption on the spectrum, since one can show, using spectral calculus
and a direct computation that s*/277(s) < 1/~T. It is reasonable to ask whether it is possible to
interpolate between the above-described slow and fast rates by making some intermediate assumption.
Raher than making assumption on the spectrum of X, one can assume the optimal solution w., to
belong to a subspace of the range of 3, more precisely that

wy = X", (6)

holds for some r > 0 and v, € H, where larger values of r correspond to making more stringent
assumptions. In particular, as r goes to infinity we are essentially assuming w, to belong to a finite
dimensional space. Assumption (6)) is common in the literature of inverse problems [[12]] and statistical
learning [I8 9]]. Interestingly, it is also related to so-called conditioning and f.ojasiewicz conditions,
known to lead to improved rates in continuous optimization, see [[13]] and references therein. Under
assumption (6, and using again spectral calculus, it is possible to show that, for all r > 0,

2 1 2r+1 )
S(g) Il
Y

Thus, higher values of r result in faster convergence rates, at the price of more stringent assumptions.

2
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*Setting L s(1 —vs)”
1

yt-

t
— 0o _ _ 1 1 1
=0givesl —ys—syT =0 = s—mandm(l—’Ym) <



3.1 Tail averaged gradient descent

Given the above discussion, we can derive analogous computations for (tail) averaged GD and draw
some insights. Using (3)), for S < T, we can write the tail-averaged gradient

1 T
us,r = T7—5 Z Ut )
t=5+1
as
1 T
Us,r = Ggr(8)Xw,, Gsr(X) = T—S g¢(2). ®)
J=5+1

As before, we can analyze convergence considering a suitable residual operator
wy —usr = Rg1(X)ws, Rsr(X)=1—-Gsr(X)E )
which, in this case, can be shown to take the form,

Rsr(®) = T - -y

and where with an abuse of notation we denote by X~! the pseudoinverse of . The case of uniform
averaging corresponds to S = 0, in which case the residual operator simplifies to

=%

R R

Ror(X) =

When o, > 0, the residual operators behave roughly as

e—crm’y(S—i-l)
YT —=8)

1

Rsr(2)|? ~ Ror(D)|? ~ —
[Rsr(X)|l [Ro.r(2) |l T

respectively. This leads to a slower convergence rate for uniform averaging and shows instead how
tail averaging with S oc T" can preserve the fast convergence of GD.

When o,,, = 0, taking again S o< T, it is easy to see by spectral calculus that the residual operators
behave similarly,

1
T’

1

2
SV2Re (S H ~ -
H s7(2) ~T’

1/2 2~
YRy (D)|| =~

leading to comparable rates. The advantage of tail averaging is again apparent if we consider
Assumption (6)). In this case for all » > 0, if we take S oc T'

5 1\ 2t
=2 Rs x| ~ <w> : (10)
whereas with uniform averaging one can only prove
H21/2RO o 5 . <1)2min(r,1/2)+1' o
; ~T

One immediate observation following from the above discussion is that uniform averaging induces a
so-called saturation effect [12], meaning that the rates do not improve after  reaches a critical point.
As shown above, this effect vanishes considering tail-averaging and the convergence rate of GD is
recovered. These results are critically important for our analysis and constitute the main conceptual
contribution of our paper. They are proved in Appendix [B] while Section[A.T|highlights their critical
role for SGD. To the best of our knowledge, we are the first to highlight this acceleration property of
tail averaging beyond the finite-dimensional setting.



4 Main Results and Discussion

In this section we present and discuss our main results. We start by presenting a general bound and
then use it to derive the optimal parameter settings and corresponding performance guarantees. A key
quantity in our results will be the effective dimension

N(1/yL) = Tr{(E + WlL)lz] ,

introduced in [38] to generalize results from parametric estimation problems to non-parametric kernel
methods. Similarly this will be one of the main quantities in our learning bounds.

Further, in all our results we will require that the stepsize is bounded as vx? < 1/4, and that the
tail length L = T — S is scaled appropriately with the total number of iterations T". More precisely,
our analysis considers two different scenarios where S = 0 (plain averaging) is explicitly allowed
and where S > 0, i.e., where we investigate the merits of tail-averaging. To do so, we will assume

0<S5< % T for some 1 < K, and also T' < (K + 1)S for the latter case.

The following theorem presents a simplified version of our main technical result that we present in its
general form in the Appendix. Here, we omit constants and lower order terms for clarity and give
the first insights into the interplay between the tuning parameters, namely the step-size -, tail-length
L, and mini-batch size b, and the number of points n. Note that in a nonparametric setting these are
the quantities controlling learning rates. The following result provides a bound for any choice of the
tuning parameters, and will allow to derive optimal choices balancing the various error contributions.

Theorem 1. Let o € (0,1], 1 < L < T and let Assumptionhold. Assume 7&2 < 1/4 as well as
n 2 vL N(1/~vL). Then, the excess risk of the tail-averaged SGD iterates satisfies

‘] sl ra.)? + XOLE L ATE

| [t - v.)

The proof of the result is given in Appendix [E| We make a few comments. The first term in the
bound is the approximation error, already discussed in Section[3] It is controlled by the bound in (T0)
and which is decreasing in L. The second term corresponds to a variance error due to sampling
and noise in the data. It depends on the effective dimension which is increasing in yL. The third
term is a computational error due to the randomization in SGD. Note how it depends on both L and
the minibatch size b. The larger b is, the smaller this error becomes. The dependence of all three
terms on L suggest already at this stage that (L) ™! plays the role of a regularization parameter.
We derive our final bound by balancing all terms, i.e. choosing them to be of the same order. To do
so we make additional assumptions. The first one is Eq. (6), enforcing the optimal solution w, to
belong to a subspace of the range of X.

Assumption 2. For some r > 0 we assume w, = X"v,, for some v, € H satisfying ||v.|| < R.

The larger is r the more stringent is the assumption, or, equivalently, the easier is the problem, see
Section[3] A second further assumption is related to the effective dimension.

Assumption 3. For some v € (0, 1] and C, < oo we assume N(1/~vL) < C,(yL)".

This assumption is common in the nonparametric regression setting, see e.g [6]. Roughly speaking, it
quantifies how far 3 is from being finite rank. Indeed, it is satisfied if the eigenvalues (o ); of ¥ have

a polynomial decay o; ~ i~v. Since ¥ is trace class, the assumption is always satisfied for v = 1
with C,, = k2. Smaller values of v lead to faster convergence rates.

The following corollary of Theorem I} together with Assumptions [2]and 3] derives optimal parameter
settings and corresponding learning rates.

Corollary 1. Let all assumptions of Theorem([l|be satisfied, and suppose that Assumptions 2} Bl also
hold. Further, assume either

1. 0<r<1/2, 1 <L <T (here S =0, ie., full averaging is allowed) or

2. 1/2 <r, 1< L < T with the additional constraint that for some K > 2
K+1
—S<T<(K+1)8

(only tail-averaging is considered).



Then, for any n sufficiently large, the excess risk of the (tail)-averaged SGD iterate satisfies

E[ HE%(H;L" —w,)

2 2r41
:| S n_ Irfitv
for each of the following choices:
_2r4v
(a) b, ~1, L, ~n, v, =n" 2++v (one pass over data)
2r+v 1
(b) by, ~nz+1+v, L, ~nz+i+v, v, ~ 1 (one pass over data)
S 1
(c) by ~n, L, ~n>+%v, ~, ~1 (n2+F passes over data) .

The proof of Corollary [T]is given in Appendix [E]} It gives optimal rates [6| [5] under different
assumptions and choices for the stepsize -y, the minibatch size b and the tail length L, considered as
functions of n and the parameters r and v from Assumptions[2] [3] We now discuss our findings in
more detail and compare them to previous related work.

Optimality of the bound: The above results show that different parameter choices allow to achieve
the same error bound. The latter is known to be optimal in minmax sense, see e.g. [6]. As noted
before, here we provide simplified statements highlighting the dependence of the bound on the
number of points n and the parameters 7 and v that control the regularity of the problem. These are
quantities controlling the learning rates and for which lower bounds are available. Note however, that
all the constants in the Theorem are worked out and reported in detail in the Appendices.

Regularization properties of tail-length: We recall that for GD it is well known that (y7") !
serves as a regularization parameter, having a quantitatively similar effect to Tikhonov regularization
with parameter A > 0, see e.g. [12]]. More generally, our result shows that in the case of tail averaging
the quantity (yL)~! becomes the regularizing parameter for both GD and SGD.

The benefit of tail-averaging: For SGD with b = 1 and full averaging it has been shown by
[1O] that a single pass over data (i.e., T;, = n) gives optimal rates of convergence provided that
. is chosen as in case (a) in the corollary. However the results in [10] held only in the case
r < 1/2. Indeed, beyond this regime, there is a saturation effect which precludes optimality for
higher smoothness, see the discussion in Section eq. (TI). Our analysis for case (a) shows that
optimal rates for » > 0 can still be achieved with the same number of passes and step-size by using
non-trivial tail averaging. Additionally, we compare our results with those from [26]. In that paper it
is shown that multi-passes are beneficial for obtaining improved rates for averaged SGD in a regime
where the optimal solution w* does not belong to H (Assumption [2]does not hold in that case). In
that regime, tail-averaging does not improve convergence. Our analysis focuses on the “opposite”
regime where w* € H and saturation slows down the convergence of uniformly-averaged SGD,
preventing optimal rates. Here, tail-averaging is indeed beneficial and leads to improved rates.

The benefit of multi-passes and mini-batching: We compare our results with those in [21] where
no averaging but mini-batching is considered. In particular, there it is shown that a relatively large

stepsize of order log(n) ! can be chosen provided the minibatch size is set to nZ+1+> and a number

of n2r+1+v passes is considered. Comparing to these results we can see the benefits of combining
minibatching with tail averaging. Indeed from (c¢) we see that with a comparable number of passes,
we can use a larger, constant step-size already with a much smaller minibatch size. Further, comparing
(b) and (c) we see that the setting of  and L is the same and there is a full range of possible values

for b,, between [n% ,n] where a constant stepsize is allowed, still ensuring optimality. As noted
in [21]], increasing the minibatch size beyond a critical value does not yield any benefit. Compared to
[21], we show that that tail-averaging can lead to a much smaller critical minibatch size, and hence
more efficient computations.

Comparison to finite-dimensional setting: The relationship between the step-size and batch size
in finite dimensions dim H = d < oo is derived in [19] where also tail-averaging but only one
pass over the data is considered. One of the main contributions of this work is characterizing the
largest stepsize that allows achieving statistically optimal rates, showing that the largest permissible



stepsize grows linearly in b before hitting a certain quantity byesh. Setting b > byresh results in loss
of computational and statistical efficiency: in this regime, each step of minibatch SGD is exactly as
effective in decreasing the bias as a step of batch gradient descent. The critical value byesh and the
corresponding largest admissible stepsize is problem dependent and does not depend on the sample
size n. Notably, the statistically optimal rate of order o2d/n is achieved for all constant minibatch
sizes, and the particular choice of b only impacts the constants in the decay rate of the bias (which
is of the lower order 1/n? anyway). That is, choosing the right minibatch size does not involve a
tradeoff between statistical and optimization error. In contrast, our work shows that setting a large
batch size b, ~ n®, « € [0, 1] yields optimality guarantees in the infinite dimensional setting. This
is due to the fact that choosing the optimal values for parameters like v and b involve a tradeoff
between the bias and the variance in this setting. [19] also show that tail-averaging improves the
rate at which the initial bias decays if the smallest eigenvalue of the covariance matrix oy (%) is
lower-bounded by a constant. Their analysis of this algorithmic component is based on observations
similar to the ones we made in Section[3] Our analysis significantly extends these arguments by
showing the usefulness of tail-averaging in cases when o,,;;, is not necessarily lower-bounded.

5 Numerical Illustration

This section provides an empirical illustration to the effects characterized in the previous sections. We
focus on two aspects of our results: the benefits of tail-averaging over uniform averaging as a function
of the smoothness parameter r, and the impact of tail-averaging on the best choice of minibatch sizes.
All experiments are conducted on synthetic data with d = 1, 000 dimensions, generated as follows.
We set ¥ as a diagonal matrix with entries >.;; = i~1/7 and choose w* = Y."e, where e is a vector of
all 1’s. The covariates X; are generated from a Gaussian distribution with covariance %, and labels
are generated as Y; = (w*, X;) + &, where ¢, is standard Gaussian noise. For all experiments, we
choose ¥ = 1/2 and n = 10, 000. With this choice of parameters, we have seen that increasing d
beyond 100 does not yield any noticeable change in the results, indicating that setting d = 1, 000 is
an appropriate approximation to the infinite-dimensional setting.

Our first experiment illustrates the saturation effect described in Section [3] (cf. Eqs. [TO]TT) by
plotting the respective excess risks of uniformly-averaged and tail-averaged SGD as a function

of r (Figure a)). We fix b = 1 and set v = n~TH¥r as recommended in Corollary As
predicted by our theoretical results, the two algorithms behave similarly for smaller values of 7, but
uniformly-averaged SGD noticeably starts to lag behind its tail-averaged counterpart for larger values
of r exceeding 1/2, eventually flattening out and showing no improvement as r increases. On the
other hand, the performance of the tail-averaged version continues to improve for large values of r,
confirming that this algorithm can indeed massively benefit from favorable structural properties of
the data.

In our second experiment, we study the performance of both tail- and uniformly-averaged SGD as
a function of the stepsize v and the minibatch-size b (Figure b), (c)). We fix r = 1/2 and set
T = n/b for all tested values of b, amounting to a single pass over the data. Again, as theory predicts,
performance remains largely constant as ~y - b remains constant for both algorithms, until a critical
threshold stepsize is reached. However, it is readily apparent from the figures that tail-averaging
permits the use of larger minibatch sizes, therefore allowing for more efficient parallelization.

(c)
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Figure 1: Illustration of the effects of tail-averaging and minibatching. (a) Excess risk as a function of r with
uniform and tail averaging. (b) Excess risk as a function of stepsize v and minibatch-size b for SGD with
uniform averaging. (c) Excess risk as a function of stepsize v and minibatch-size b for SGD with tail-averaging.
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